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Abstract:

This paper implemented the tanh method to solve a few coupled nonlinear wave equations in (2 + 1)-

dimensions. They are the Konopelchenko—Dubrovsky equation, dispersive long wave equation and the Riemann wave
equation. Additionally, the traveling wave hypothesis is used to extract a few more solutons to some of these equations.
Finally, the numerical simulations supplement these analytical results.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been the subject
of study in various branches of Mathematical and Physical
sciences such as physics, biology, chemistry, biochemistry,
applied and pure mathematics, applied and pure physics, just
to name a few [1-28]. In particular soliton solutions of such
NLEE:s play a vital role in the dynamics of pulse propagation
through optical fibers for trans-continental and trans-oceanic
distances [27, 28]. These analytical solutions of such equa-
tions are of fundamental importance since a lot of mathe-
matical and physical models are described by NLEE:s.

The nonlinear wave phenomena observed in the above
mentioned scientific fields, are often modeled by the bell-
shaped sech solutions and the kink-shaped tanh solutions. The
availability of these exact solutions, for those nonlinear
equations can greatly facilitate the verification of numerical
solvers on the stability analysis of the solution. The investi-
gation of exact solutions of NLPDEs plays an important role in
the study of these phenomena [29-33]. In the past several
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decades, many effective methods for obtaining exact solutions
of NLPDEs have been presented. In the literature, there is a
wide variety of approaches to nonlinear problems for con-
structing traveling wave solutions, such as the Backlund
transformation method [1], Hirota’s direct method by Hirota
[2], tanh-sech method by author(s) [1, 3, 4], extended tanh
method [5-8], hyperbolic function method [9], sine cosine
method [10, 11], F-expansion method [12], the transformed
rational function method [13] and ansatz method [14].

This paper outlines the implementation of efficient and
reliable technique which is called Tanh method for solving
system of coupled equations which are very important in
applied sciences. The hyperbolic tangent (tanh) method is a
powerful technique to symbolically compute traveling
wave solutions of one-dimensional nonlinear wave and
evolution equations. In particular, the method is well suited
for problems where dispersion, convection, and reaction
diffusion phenomena play an important role.

2. Description of the tanh method

The tanh method will be introduced as presented by
Malfliet [15] and by Wazwaz [16]. The tanh method is
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based on a priori assumption that the traveling wave
solutions can be expressed in terms of the tanh function to
solve the coupled KdV equations.

The tanh method is developed by Malfliet [ 15]. The method
is applied to find out exact solutions of a coupled system of
nonlinear differential equations with three unknowns:

)=0
)=0 (1)

where P, P, are polynomials of the variable u, v and
its derivatives. If we consider u(x,t) = u(¢),v(x,1)
=v(&), E=kx+oay+ wt+ 0y, so that u(x,z) = U(),

(x,1) = V(&), we can use the following changes:
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and so on, then Eq. (1) becomes an ordinary differential equation

o\(U, U, U",U",...) =0,
o,(U, U, U U",..)=0 (2)

with Q;, 0, being another polynomials form of there
argument, which will be called the reduced ordinary
differential equations (ODEs) of Eq. (2). Integrating Eq.
(2) as long as all terms contain derivatives, the integration
constants are considered to be zeros in view of the localized
solutions. However, the nonzero constants can be used and
handled as well. Now finding the traveling wave solutions
to Eq. (1) is equivalent to obtaining the solution to the
reduced ordinary differential equation given in Eq. (2). For
the tanh method, we introduce the new independent variable

Y(x,1) = tanh(¢) (3)
that leads to the change of variables:
L=(-mL
:—; =-2r(1 - YZ)%+ (1- Yz)zdd—;,
j—; =2(1 - Y*)(3Y? — 1)%
—6Y(1 —Yz)za%ﬂl —Y2)3dd% (4)

The next crucial step is that the solution we are looking
for is expressed in the form

ux, ) =U©E) =Y a¥', v(x,)=V(E) = _bY (5)
i=0 i=0

where the parameters m, and n can be found by balancing
the highest-order linear term with the nonlinear terms in
Eq. (2), and k,4,a9,ay,...,an,by,by,...,b, are to be
determined. Substituting Eq. (5) into Eq. (2) will yield a set

of algebraic equations for k, 4, ag,ay,...,anu, by, b1, ..., by
because all coefficients of ¥’ have to vanish. From these
relations, k, A,ag,ay, .. .,ay, by, by, ..., b, can be obtained.
Having determined these parameters, knowing that m, n are
positive integers in most cases, and using Eq. (5) we obtain
analytic solutions u(x, 1), v(x,¢) in a closed form [16]. The
tanh method seems to be powerful tool in dealing with
coupled nonlinear physical models.

3. Applications

The tanh method is generalized on three examples that will
now be discussed in the following sub-sections.

3.1. Konopelchenko—Dubrovsky equation

2

3
Uy — Uper — ObuL, + Eazu uy — 3vy + 3au,w =0 (6)

Uy =V, (7)

This system was studied by Taghizadeh and Mirzazadeh [17]
by the first integral method. By using tanh method and using
the traveling wave transformations in Egs. (3) and (5) with

E=kx+ay+ ot + 0 (8)

The nonlinear system of partial differential equations
given in Egs. (6) and (7) is carried to a system of ordinary
differential equations

3
U —KBU" — 6bkUU' + EakuzU' — 3aV’
+3akU'V =0 )
alU = kV' (10)

Integrating Eq. (10) once with zero constant and we
postulate the tanh series, Eq. (10) reduces to

o
V=_U 11

Subtitute Eq. (11) in Eq. (9), then
3
ol —KPU" + Ea2kU2 U —

3ao — 6bk
2

3
;oczU'
>2U’U:O (12)

Integrating Eq. (12) once with zero constant, it reduces to
1 3 3ao — 6bk
oU — U +2akU? = 202U + (22 225) 2 = 0
2 k 2
(13)

Now, to determine the parameters m, and n we balance the
linear term of highest-order with the highest order
nonlinear terms. So, in Eq. (13) we balance U"” with U3,
to obtain 2 + m = 3m, so that m = 1, while in Eq. (11) we
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balance V with U, then n = 1. The tanh method admits the Case2
use of the finite expansion for both: _
2k
an = ad) = ——
u(x,t) =U(Y)=ap+a1¥, a #0 (14) 0o a
k
and by = by = —4[b + ak]?
V(X,I)ZV(Y):b0+b1Y, by #0 (15) oc:%[b—i—ak]
Substituting U’ ) U"” in Eq. (14), then equating the 2% 2%
coefficient of Y', i =0, 1, 2, 3 leads to the following ulx,y, 1) = 4 1 + tanh kx+;(b+ak)y
nonlinear system of algebraic equations: 32 6bk
1 k(= £ —— + 4K%)t + O H (20)
2k3Y(1 sz)al +§a2k(a8+3aga1Y+3a0a%Y2+a?Y3) a a
3, and
+ w(ag+a1¥Y) — o (ap + arY)
k 4k 2k
3ao — 6bk =__ e
+ (7% 5 ) (aé + 2apa,Y + a%Y2) =0, VY, 1) a? [b+ ak] [1 + tanh{kx + a (b+ak)y
0 2,2 2 2 3b*  6bk .,
Y" : 2wk + a“k“ay — 60 + 3k[ax — 2bk]ag = 0, +4k(?:|:7+4k )i+ O (21)
3 3
1, 3,2 2,0 O o _ —
Y' rw+2k +2a kag koc + 3[ao — 2bk|ag = 0, for,a=b—k=1and 0 =0
2. 2 _ 3. 2, 22
Y :a“kag +aon —2bk =0, Y :—4k"+aa; =0 u(x,y,1) = —2{1 + tanh(x + 4y + 527)}
(16)
or
Substituting U, V in Eq. (11), then equating the coefficient
of Yi,i =0, 1,2, 3 leads to the following nonlinear system u(x,y,t) = —=2{1 + tanh(x + 4y + 41)}
of algebraic equations and
b — oag
0T Tk v(x,y,1) = —8{1 + tanh(x + 4y + 41)}.
oag
by = & (17) 32 Dispersive long wave equation
Solving the nonlinear systems of Eq. (16) we can get: This coupled system of equation is given by
Casel : |
2k 4k it Ve + 5 (1), =0 22
ap=da; = —, b():b]:—z[b—ak], e Y Z(M )xy ( )
a a
2% Vit (v +u+uy), =0 (23)
o=—I[b— ak],
a

2k 2k
uia(x,y,1) =— [1 + tanh{kx +—(b—ak)y
a a
4k 2o 2,2
+— (3b" & 6abk + 4a"k”)t + 0o (18)
a
and
4k 2k
via(x,y,t) =— [b — ak] {1 + tanh{kx +—(b—ak)y
a a
4k 2o 2,2
+— (3b” & 6abk + 4a”k*)t + 0o (19)
a

fora=b=k=1and 0y =0

uy (x,7) = 2[1 + tanh{x + 52¢}],
up(x, 1) = 2[1 + tanh{x + 4¢}],
v(x,y,t) =0

Using the traveling wave transformations in Egs. (3) and
(5) with

& =kx+ay+ wt+ 0 (24)

the nonlinear system of partial differential equations given
in Egs. (22) and (23) is transformed to the system of ODEs
given by

koU" + V" + ka(UU') =0 (25)
oV + KUV + kU + K*aU" = 0 (26)

Integrating Eq. (25) twice with zero constant and we
postulate the tanh series, Eq. (22) reduces to

wU+kV+gU2:0 (27)

we postulate the tanh series, Eq. (27) reduces to
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av
1 —Y>)==} + KUV +kU
a){( )dY}—i- +
dUu d*U
2 _ oy~ _ 22_ _
—i—koc{ 27(1 Y)dY—i-(l Y?) de} 0

(28)

Now, to determine the parameters m, and n we balance the
linear term of highest-order with the highest order
nonlinear terms. So, in Eq. (28) we balance U” with UV,
to obtain m 4+ 2 = m + n, so that n = 2, while in Eq. (26)
we balance V with U2, then 2m = n and m = 1. The tanh
method admits the use of the finite expansion for both:

u(x,t) =U(Y)=ap+a1¥Y a; #0 (29)
and
v(x,1) = V(Y) = bg 4+ b1 Y + by Y> by #0 (30)

Substituting U’,U” into Eq. (28), then equating the
coefficient of Y, i =0, 1, 2, 3 leads to the following
nonlinear system of algebraic equations:

Y : wby + KPagby + kaoy = 0,
Y': 2wby + K [aph) + aibo] + ka; — 2k*aa; = 0,
Y?: —wby + k2[a0b2 + albl] =0,
Y3 —2wb; + k*a1by + 2k*0a; =0

(31)

Substituting U, V in Eq. (28), then equating the coefficient
of Yi,i =0, 1, 2, 3 leads to the following nonlinear system
of algebraic equations

o
2
way + kb + aapa; = 0,

kb + %af =0 (32)

wag + kby + = a2 =0,

Solving the nonlinear system of Eq. (32) we get:

ag =0, by=0, b =0,
K 5
by = — 1 -2k
: 2w2a( %)’
k2
=—(1-2k
@ a)oc( “),
k2
w=——=(1—2ka
”"2.«( )
Then:
up (x7y7t)
k2 2

K
— (1 — 2ka) tanhy kx + oy + —— (1 — 2ka)t + 6
o= 2tk oy + (1= 2k 400}

(33)

Vl(x7y7t):
K 2
L § )
2a)2:x( ko)
2 K
x tanh“<{ kx + oy + —(1 — 2ka)t + 0 34
{ros i -zapeal o)

3.3. Riemann wave equation

The Riemann wave equation is given by
U + Putyy + 4Puvy + 4puy =0 (35)
Uy = Vy (36)

where f is a known constant. Egs. (35) and (36) describe the
(2 4+ 1)-dimensional interaction of a Riemann wave
propagating along the y-axis with a long wave along the
x-axis. In the past years, many authors have studied Eqgs.
(35) and (36). For instance, the Painleve’ property was
examined and localized coherent structures were presented
[20, 21]. Some soliton-like solutions were obtained by the
generalized expansion method of Riccati equation [22].
Recently, a class of periodic wave solutions was obtained
by the mapping method [23]. Two classes of new exact
solutions were obtained by the singular manifold method
[24]. Very recently, Jacobi elliptic function solutions and
their degenerate solutions are obtained by a generalized
extended F-expansion method [25]. In this section, many
new and more general exact solutions by tanh method
proposed in Section 2 were introduced. Using the traveling
wave transformations in Egs. (3) and (5) with

& =kx+ay+ ot + 0, (37)

the nonlinear system of partial differential equations given
in Egs. (35) and (36) is transformed to a system of ODEs as
follows

oU' + paU"” + 4pkUV' + 4BkU'V =0 (38)
alU' = kV' (39)

Integrating Eq. (38) once with zero constant and we
postulate the tanh series, Eq. (38) reduces to

au da*u
oU + /fk2a{—2y(1 - Y?) - YWW}

+4pkUV =0 (40)

Integrating Eq. (39) once with zero constant and we
postulate the tanh series, Eq. (39) reduces to

alU = kV (41)

Now, to determine the parameters m and n we balance the
linear term of highest-order with the highest order
nonlinear terms. So, in Eq. (38) we balance U” with UV,
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to obtain 2 + m = m + n, then n = 2 while in Eq. (39) we
balance V with U, then m = 2. The tanh method admits the
use of the finite expansion for both:

u(x,t) =U(Y) =ap +a1¥ + a¥*, ay #0 (42)
and
v(x, 1) = V(Y) = bo + b Y + by Y2, by #0 (43)

Substituting U’,U” in Eq. (38), then equating the
coefficient of Y, i =0, 1, 2, 3 leads to the following
nonlinear system of algebraic equations:

YY : wag + Pk o2a; + 4faghy = 0,

Y': wa, — 2pk*aa; + 4fk[aphby + a1bg] = 0,

Y2 wa; — Sﬁkzdaz + 4ﬁk[a0b2 + bia; + 612[90] =0,

Y3 BkPaa; + 2fklaiby + byb YY) =0,

Y*: 3pkPoay + 2pkb =0 (44)
Substituting U, V in Eq. (39), then equating the coefficient

of Yi,i =0, 1, 2, 3 leads to the following nonlinear system
of algebraic equations

dag = kb(),
oa) = kb], (45)
oday = kb2

Solving the nonlinear systems of Egs. (42) and (43) we get:

Casel :
w -3
=k - — = =K
agp 8fo’ a=0, a TPRE
[0) -3
bp=o0k ——=—, b =0, by=—Fk
0 o 8kﬂ7 1 ) 2 2
Then:
3
u(x,t) =k* — %—2—“# tanh?(kx + oy + ot +0p)  (46)
v(x, t) = ak—i—ékztanh2(kx+ozy+wt+9 ) (47)
’ 8kp 2 0
Case?2 :
Q) K
kK- =0 -
ap Sﬂrx’ a 5 a 2(k+0€)’
w o
bo=ok ——, by = by = —k*———
0T TRk T 2(k+0)’
Then:
u(x, 1) —kz—ﬂ—;tanhz(kx—i—u + wt + 0p)
VT T8 2(k+ o) Y 0
(48)
v(x,t) = ok — @ kthanhz(kx + oy + wt + Op)
8kp 2(k + o)

(49)

4. Traveling wave solutions

In this section the traveling wave hypothesis will be applied to
integrate dispersive long wave equation and Riemann wave
equation to obtain the soliton solutions. The focus in this
section is going to be on the soliton solutions only. The tool of
integration in this section is the traveling wave hypothesis.

4.1. Dispersive long wave equation

The (2 4 1)-dimensional dispersive long wave equations,
in shallow water, are given by

1
Gy + ot 5 (@), =0, (50)
r+(qr+q+4qy), =0, (51)

where ¢ and r are functions of the spatial variables x,y and
the temporal variable ¢, and subscripts denote partial
derivatives. The traveling wave hypothesis are now given by

q(x,y,t) :g(le+BZy_Vt) :g(S) (52)
r(x,y,t) = h(B1x + By — vt) = h(s) (53)

where g and & represent the respective wave profiles while
v is the velocity of the wave and

s =Bix+ By —vt (54)

The parameters By and B, are inverse width of the wave in
the x - and y -directions respectively. By introducing these
traveling wave hypothesis equations given by Egs. (50) and
(51) reduce to

1
—vBag" + BIh' + EBllsz(gz)” =0, (55)
—vh' +Bi(gh+ g+ Bleg")/ =0, (56)

Integrating Eq. (55) once gives
1
—vB>g' + Bih + EBle(gz)’ =C, (57)

where C is an integration constant. Integrating Eq. (57)
once again, we obtain

1
—vB,g + Bih + 531325’2 = Cy, (58)
where C; is again an integration constant. From Eq. (58),

we find that

C] VB2 Bz )
h(s) = = 4 2g — 2202, 59
(S) B% + B% 8 231g ( )

Substituting Eq. (59) into Eq. (56) yields

C] Bz V2 3VBZ 332
5 5, S~ 8 BB =0
1

+Bl}g’+

(60)
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which can be rewritten as

3 3y 1 [C; Bp?
" 2.7 / 1 2
-—— —gh' + —— B =0
& Tops e T s Ty [Bl B ‘] ’
(61)
Eq. (61) can be integrated with respect to s directly to yield
g —ag+mg’ —ag’ =0 (62)

where the integration constant is taken to be zero and

1 BQV2 C]
- | p 63
a] BZB% |: B% Bl 1:| 9 ( )
3v
= 64
ap B? ) ( )
3
=2 65
as ZB% ( )

Multiplying Eq. (62) by ¢’ and integrating once and then
separating variables leads to

dg

Bix+ Byy — vt = / (66)

2a2g+ Zugg

which after simplification yields

1 H\/7|M|
2 K N

Bix + By — vt =
a1 —3mg +3a383 Q
S U
X H( ——;sin” —?\ K) (67)
where
4a, 5r
=2
H=2 (s ) (©%)
_ 4a, _ 5r
“vn ¢ v (69)
23 —iV3)ay  5(3+iV3)r
- 7
K=" " s 70)
2(1+iV3)a 5(1 —iv3)r )
3rd12 4a3m
_ 4a2\/— 5v3r
N= o 2a3v/18 (72)
C2(14+iV3)ar | 5(1—iV3)r (73)
3r3/ﬁ 4a3m
21— iV3)ay 51+ iV/3)r
C=TEE T 4 74
21— iV3)as 5(1+iV3)r
ST T v 73)

4za2\/— 5r/3 (76)
312 2a3\3/ﬁ
U— 4za2f 5irV/3 (77)
31"\/ 2(13\7@
1
81 2 36 ’
r= |4 @a%ag - §a%a3 - Ealaél (78)

and IT is the incomplete elliptic integral of the third kind
that is defined as

sin ¢
dt
I (n; p|k) = (1 — i) /(121 - &) (79)
or as
¢ do
ot = [ o

o (1 —nsin®0)4/(1 — sin® 0sin® o)

4.2. Riemann wave equation

The coupled Riemann wave equation is rewriten in this
subsection as

qt+aqxxy+bqrx+Cer:O (81)
gy =Ty (82)

In order to solve Egs. (81) and (82), the traveling wave
hypothesis is taken as in the previous subsection. Therefore,
subsituting these hypotheses into Eqs. (81) and (82) leads to
the ODEs given by

—vg + aBiByg" + bBygh' + cBig'h =0 (83)
Brg' = B\i (84)

Eliminating & between Eqgs. (83) and (84) and integrating

once leads to the following ODE for g

bB} + ¢B\B, ,
2aB3iB,

"n_ v g—
aB?B,

(85)

On multiplying both sides of Eq. (85) by g’ and taking the
integration constant to be zero gives

bB BB
¢ =22 (86)

3a3332

where
3vB 1

= 87
bB} + BB, 87)

Separating variables in Eq. (86) leads to

sz + CB]BZK
= (B By — vt 88
\\ " 3aBiB, I ) (88)

=
gvi—g




Nonlinear evolution equations

287

which upon integration yields the soliton solutions

g(x,v,1) = Aysech’[B(Bix + Byy — vt)] (89)
h(x,y,1) = Aysech®[B(Bix + Byy — vt)] (90)
where the amplitudes A; and A, are respectively
3VB[
A= f=— """ 91
! bB3 + cB\B; Oy
le 3\132
Ay=—=—5—""T"-— 92
>7 B, bB2+cBiB, 2)
and the parameter B is given by
1 v
B=—/— 3
2B, \ AB, (93)
Eq. (93) requires the constraint condition
v >0 (94)
and in terms of original notations as
V(ng + CBl) >0 (95)

to hold in order for the soliton solutions to exist.

5. Conclusions

This paper integrates a few of the nonlinear wave equations
in (2 4+ 1)-dimensions by the aid of tanh method as well as
using the traveling wave hypothesis. These lead to several
kinds of solutions including the soliton solutions, Jacobi’s
elliptic function of the third kind as well as several other
solutions. These results are going to be extremely useful in
various areas of applied mathematics and theoretical
physics wherever there is a study of soliton theory.
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