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Abstract: This paper obtains the solitary wave solution of the Bona-Chen equation which is a coupled system of

nonlinear evolution equation that arises in the study of shallow water waves flow. The ansatz method and Jacobi elliptic

function method are used to obtain the solutions. The conservation law of the equation is obtained by the multiplier

method. Finally, the numerical simulations are also given.
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1. Introduction

The coupled nonlinear evolution equations (NLEEs) arise in

various areas of applied mathematics and theoretical phys-

ics. Some of the commonly seen applications of these cou-

pled NLEEs are in nonlinear optics, fluid dynamics, plasma

physics and various other areas. The issue of integrability is

one of the major focuses of these coupled NLEEs. Several

techniques of integrability, developed particularly in the last

decade, address the integrability aspects of NLEEs as well as

coupled NLEEs. Some of these techniques of integrability

are variational iteration method, Adomian decomposition

method, exp-function method G0=G-expansion method,

simplest equation method, variational principle and so on

[1–25].

In this paper one such coupled NLEE has been studied.

It is the Bona-Chen (BC) equation, first studied by Bona

and Chen in 1998 and subsequently re-visited by several

other authors [1, 4, 12]. This equation appears in the study

of surface water waves. The solitary wave ansatz method is

applied to retrieve the 1-soliton solution to this equation.

Subsequently, the multiplier method is applied to find the

conservation laws of this equation. The Jacobi elliptic

function method has been also used to obtain the cnoidal

wave solutions and in the limiting case the solitary wave

solutions fall out.

Compared to other methods for finding exact solutions

for nonlinear equations such as inverse scattering trans-

form, dressing method, Hirota method and others, the an-

satz method has the advantage that it can also handle

nonlinear nonintegrable equations [25]. By using the ansatz

method the equations are reduced from partial differential

equation to algebraic equations. For the case of the BC

system the ansatz system depends on only two parameters

that are then manipulated by an algebraic relationship. The

conservation law that will be derived in this paper will

utilize the multiplier method from Lie symmetry. It is

otherwise going to be extremely cumbersome to derive the

only conservation law for the BC equation

The Jacobi’s elliptic function method directly extracts

the cnoidal and snoidal wave solutions from the BC equa-

tion. This is a less involved approach than the approach

adopted in 2007, where a series solution in terms of the

elliptic cn function is initially assumed [4]. The limiting

cases of the solutions also lead to the solitary wave solutions

as will be seen later in this paper. The explode decay mode

solutions and the singular solitary wave solutions will also*Corresponding author, E-mail: biswas.anjan@gmail.com
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be derived in this paper. In the final section of this paper, a

few numerical simulations will be given to complete the

analysis of this equation. The advantages of these methods

of integration are that these methods are direct approaches

to integrate the equation. This keeps the methods simple

enough.

2. Mathematical analysis

The dimensionless form of the BC equation is given by

[1–5, 12]

qt þ a1rx þ a2qqx þ a3rxxx þ a4qxxt ¼ 0 ð1Þ
rt þ b1qx þ b2ðqrÞx þ b3qxxx þ b4rxxt ¼ 0 ð2Þ

For this coupled system of equations q(x, t) and r(x, t) are

the dependent variables while x and t are the independent

variables. The real valued constants are ai and bi for

i = 1, 2, 3, 4.

BC equations, modeled by Eqs. (1) and (2), approximate

the small amplitude long waves on the surface of an ideal

fluid due to gravitational force. Thus, physically Eqs. (1)

and (2) approximately represent the two-dimensional

propagation of surface waves in an uniform horizontal

channel with irrotational, incompressible and inviscid fluid

with an undisturbed state. Thus, the dimensionless variables

q(x, t) represent the deviation of the water surface from its

undisturbed position while r(x, t) is the horizontal velocity

at a certain water level [4, 5, 20].

The BC equation given by Eqs. (1) and (2) have been

solved in this section by the aid of ansatz method. The search

is for a 1-soliton solution. To start off, the hypotheses

qðx; tÞ ¼ A1sechp1s ð3Þ

and

rðx; tÞ ¼ A2sechp2s ð4Þ

are selected where,

s ¼ Bðx� vtÞ ð5Þ

Here in Eqs. (3) and (4), A1 and A2 are the amplitudes of

the solitary waves, while in Eq. (5) B represents the inverse

width of the solitary wave and v is the soliton velocity.

Substitution of these assumptions into Eqs. (1) and (2),

reduces them to

p1vA1Bsechp1s� a1p2A2Bsechp2s� a2p1A2
1Bsech2p1s

� a3p2
2A2B3sechp2sþ a3p2ðp2 þ 1Þ

� ðp2 þ 2ÞA2B3sechp2þ2s

þ a4p3
1A1B3vsechp1s� a4p1ðp1 þ 1Þ

� ðp1 þ 2ÞA2B3vsechp1þ2s ¼ 0 ð6Þ

and

p2vA2Bsechp2s� b1p1A1Bsechp1s

� b2ðp1 þ p2ÞA1A2Bsechp1þp2s

� b3p3
1A1B3sechp1sþ b3p1ðp1 þ 1Þ

� ðp1 þ 2ÞA1B3sechp1þ2s

þ b4p3
2A2B3vsechp2s� b4p2ðp2 þ 1Þ

� ðp2 þ 2ÞA2B3vsechp2þ2s ¼ 0 ð7Þ

respectively. From Eq. (6), equating the exponents 2p1 and

p2 ? 2 gives

2p1 ¼ p2 þ 2 ð8Þ

Again from Eq. (7), equating the exponents p1 ? p2 and

p1 ? 2 gives

p1 þ p2 ¼ p2 þ 2 ð9Þ

From Eqs. (8) and (9),

p1 ¼ p2 ¼ 2 ð10Þ

Now from Eqs. (6) and (7), the linearly independent

functions are sechpiþj for i = 1, 2 respectively, where

j = 1, 2. Thus, setting their respective coefficients to zero

yields, from Eq. (6)

v ¼ A2 a1 þ 4a3B2ð Þ
A1 1þ 4a4B2ð Þ ð11Þ

v ¼ 12a3A2B2 � a2A2
1

12a4A2B2
ð12Þ

while from Eq. (7),

v ¼ A1 b1 þ 4b3B2ð Þ
A2 1þ 4b4B2ð Þ ð13Þ

v ¼ A1 6b3B2 � b2A2ð Þ
6b4A2B2

ð14Þ

Equating the two values of v from Eqs. (11) and (13) gives

the width of the soliton as

B ¼ M

N

� �1
4

ð15Þ

where

M¼ a4b1A2
1þb3A2

1

�a1a4A2
2�a3A2

2þ
�

a4b1A2
1þb3A2

1�a1a4A2
2�a3A2

2

� �2

þ4 b1A2
1�a1A2

2

� �
a3b4A2

2�a4b3A2
1

� ��1
2

ð16Þ

N ¼ 8 a3b4A2
2 � a4b3A2

1

� �
ð17Þ

Similarly, from Eqs. (12) and (14)
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B ¼ A1 2a4b2A2 � a2A1ð Þ
12 a4b3A1 � a3A2ð Þ

� 	1
2

ð18Þ

Finally, equating the two values of the width B from Eqs.

(15) and (18) yields the relation between the amplitudes of

the solitary waves as

M

N
¼ A1 2a4b2A2 � a2A1ð Þ

12 a4b3A1 � a3A2ð Þ ; ð19Þ

where M and N are respectively given by Eqs. (16) and

(17). Thus, finally, the 1-soliton solution to BC equation is

given by

qðx; tÞ ¼ A1sech2½Bðx� vtÞ� ð20Þ

and

rðx; tÞ ¼ A2sech2½Bðx� vtÞ�; ð21Þ

where the amplitudes A1 and A2 are connected by the

relation (19), while the inverse width is given by Eq. (15)

or Eq. (18). Finally, the velocity of the soliton is given by

Eq. (11) or Eq. (12) or Eq. (13) or Eq. (14).

2.1. Conservation law

In Eq. (1), if a1 is replaced by f0(t), then the system of Eqs.

(1) and (2) has a nontrivial conserved flow by the multiplier

(1, f(t)) which leads to the conserved density

Tt ¼ qþ 1

3
a4qxx þ f ðtÞ 3r þ b4rxxð Þð Þ:

Thus, the given system of Eqs. (1) and (2) has a conserved

flow with f0 = a1 and f = a1t, viz.,

Ut ¼ 1

3
3qþ 3ða1t þ kÞr þ a4qxx þ a1b4trxxf g:

Hence the conserved quantity is given by

I ¼
Z1

�1

Utdx ¼ 1

3

Z1

�1

3qþ 3ða1t þ kÞr þ a4qxxf

þ a1b4trxxgdx ¼ 2

B
A1 þ ða1t þ kÞA2f g ð22Þ

Since I is a conserved quantity it is necessary to have dI/

dt = 0. This gives the condition a1 = 0 for Ut to be a

conserved density.

3. Jacobi elliptic function solutions

In this section we have derived solitary wave solutions

(SWSs) and explode decay mode solutions as infinite

period counterparts of Jacobi elliptic function (JEF) solu-

tions [8, 10].

We consider the traveling wave solution given in Eq. (5)

for Eqs. (1) and (2) so that they reduce to the ordinary

differential equations (ODEs)

�Bvqs þ a1Brs þ a2Bqqs þ a3B3rsss � a4B3vqsss ¼ 0

ð23Þ

and

�Bvrs þ b1Bqs þ b2BðqrÞs þ b3B3qsss � b4B3vrsss ¼ 0:

ð24Þ

Integrating Eqs. (23) and (24) with respect to s, we get

�vqþ a1r þ 1

2
a2q2 þ a3B2rss � a4B2vqss ¼ K1 ð25Þ

and

�vr þ b1qþ b2qr þ b3B2qss � b4B2vrss ¼ K2; ð26Þ

where, K1 and K2 are integration constants.

3.1. Solitary wave solutions

We assume solutions for Eqs. (25) and (26) in the form

q ¼ A1 cns1ðsÞ; r ¼ A2 cns2ðsÞ; ð27Þ

where A1 and A2 are constants.

Equating the nonlinear terms and the highest derivative

terms in Eqs. (25) and (26) we can easily see that s1 = 2

and s2 = 2.
Thus our solutions of Eqs. (25) and (26) are in the form

q ¼ A1 cn2ðsÞ; r ¼ A2 cn2ðsÞ: ð28Þ

Substituting Eq. (28) in Eqs. (25) and (26), and equating

the coefficients of powers of cn(s), we arrive at the

equations

1

2
a2A2

1 � 6m2a3B2A2 þ 6m2a4B2vA1 ¼ 0; ð29Þ

� vA1 þ a1A2 þ 4ð2m2 � 1Þa3B2A2

� 4ð2m2 � 1Þa4B2vA1 ¼ 0; ð30Þ

2ð1� m2Þa3B2A2 � 2ð1� m2Þa4B2vA1 ¼ K1; ð31Þ

b2A1A2 � 6m2b3B2A1 þ 6m2b4B2vA2 ¼ 0; ð32Þ

� vA2 þ b1A1 þ 4ð2m2 � 1Þb3B2A1

� 4ð2m2 � 1Þb4B2vA2 ¼ 0; ð33Þ

2ð1� m2Þb3B2A1 � 2ð1� m2Þb4B2vA2 ¼ K2; ð34Þ

where m is the modulus of the JEFs. When m! 1; cns!
sechs: From Eqs. (31) and (34), we get a relation between

A1 and A2 given by

A2 ¼
K1b3 þ K2a4v

K2a3 þ K1b4v
A1: ð35Þ
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Substituting for A2 from Eq. (35) in Eq. (29), we obtain

explicit expressions for A1 and A2 given by

A1 ¼
12m2B2K1

a2

a3b3 � a4b4v2

K2a3 þ K1b4v

� �
; ð36Þ

A2 ¼
12m2B2K1ðK1b3 þ K2a4vÞða3b3 � a4b4v2Þ

a2ðK2a3 þ K1b4vÞ2
: ð37Þ

From Eq. (32), we can derive an equivalent expression

for A1 which is

A1 ¼
6m2B2K2

b2

a3b3 � a4b4v2

K1b3 þ K2a4v

� �
: ð38Þ

Equating Eqs. (36) and (38), we get an explicit

expression for v as a function of the coefficients a’s and

b’s and the integration constants K1 and K2 in the form

v ¼ 2b2b3K2
1 � a2a3K2

2

K1K2ða2b4 � 2a4b2Þ
: ð39Þ

Now, using the remaining two Eqs. (30) and (34) we

arrive at two constraint relations

K1a1b3 þ 4ð2m2 � 1ÞK1a3b3B2 þ K2ða1a4 � a3Þv
� 4ð2m2 � 1ÞB2a4b4 þ b4


 �
K1v2 ¼ 0; ð40Þ

K2a3b1 þ 4ð2m2 � 1ÞK2a3b3B2 þ K1ðb1b4 � b3Þv
� 4ð2m2 � 1ÞB2a4b4 þ a4


 �
K2v2 ¼ 0: ð41Þ

In fact, we can also derive expressions for the inverse

width B of the wave as functions of the coefficients a’s and

b’s and the integration constants K1 and K2 from the two

constraint relations.

Thus the periodic wave solutions of Eqs. (1) and (2) are,

q ¼ 12m2B2K1

a2

a3b3 � a4b4v2

K2a3 þ K1b4v

� �
cn2ðBðx� vtÞÞ; ð42Þ

r ¼ 12m2B2K1ðK1b3 þ K2a4vÞða3b3 � a4b4v2Þ
a2ðK2a3 þ K1b4vÞ2

cn2

� ðBðx� vtÞÞ: ð43Þ

In the infinite period limit, when m! 1; the periodic

wave solutions will give rise to the SWSs

q ¼ 12B2K1

a2

a3b3 � a4b4v2

K2a3 þ K1b4v

� �
sech2ðBðx� vtÞÞ; ð44Þ

r ¼ 12B2K1ðK1b3 þ K2a4vÞða3b3 � a4b4v2Þ
a2ðK2a3 þ K1b4vÞ2

� sech2ðBðx� vtÞÞ: ð45Þ

3.2. Explode decay mode solutions

Now we look for explode decay mode solutions. For this

purpose, we assume solutions for Eqs. (25) and (26) in the

form

q ¼ A1 sns1ðsÞ; r ¼ A2 sns2ðsÞ; ð46Þ

where A1 and A2 are constants.

Equating the nonlinear terms and the highest derivative

terms in Eqs. (25) and (26) we can again see that s1 = 2

and s2 = 2.

Thus in this case our solutions to Eqs. (25) and (26) are

in the form

q ¼ A1 sn2ðsÞ; r ¼ A2 sn2ðsÞ: ð47Þ

Substituting Eq. (47) in Eqs. (25) and (26), and equating

the coefficients of powers of ns(s), we arrive at the

equations

1

2
a2A2

1 þ 6a3B2A2 � 6a4B2vA1 ¼ 0; ð48Þ

� vA1 þ a1A2 � 4ð1þ m2Þa3B2A2

þ 4ð1þ m2Þa4B2vA1 ¼ 0; ð49Þ

2m2a3B2A2 � 2m2a4B2vA1 ¼ K1; ð50Þ

b2A1A2 þ 6b3B2A1 � 6b4B2vA2 ¼ 0; ð51Þ

� vA2 þ b1A1 � 4ð1þ m2Þb3B2A1

þ 4ð1þ m2Þb4B2vA2 ¼ 0; ð52Þ

2m2b3B2A1 � 2m2b4B2vA2 ¼ K2: ð53Þ

From Eqs. (50) and (53), we get a relation between A1

and A2 given by

A2 ¼
K1b3 þ K2a4v

K2a3 þ K1b4v
A1: ð54Þ

Substituting for A2 from Eq. (54) in Eq. (48), we obtain

explicit expressions for A1 and A2 given by

A1 ¼
12B2K1

a2

a4b4v2 � a3b3

K2a3 þ K1b4v

� �
; ð55Þ

A2 ¼
12B2K1ðK1b3 þ K2a4vÞða4b4v2 � a3b3Þ

a2ðK2a3 þ K1b4vÞ2
: ð56Þ

From Eq. (51), we can derive an equivalent expression

for A1 which is

A1 ¼
6m2B2K2

b2

a3b3 � a4b4v2

K1b3 þ K2a4v

� �
: ð57Þ

Equating Eqs. (55) and (57), we get an explicit

expression for v as a function of the coefficients a’s and

b’s and the integration constants K1 and K2 in the form

v ¼ 2b2b3K2
1 � a2a3K2

2

K1K2ða2b4 � 2a4b2Þ
; ð58Þ

which is the same as Eq. (39).

Now, as in the previous case, using the remain-

ing two Eqs. (49) and (52) we arrive at two constraint

relations
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K1a1b3 � 4ð1þ m2ÞK1a3b3B2 þ K2ða1a4 � a3Þv
þ 4ð1þ m2ÞB2a4b4 � b4


 �
K1v2 ¼ 0; ð59Þ

K2a3b1 � 4ð1þ m2ÞK2a3b3B2 þ K1ðb1b4 � b3Þv
þ 4ð1þ m2ÞB2a4b4 � a4


 �
K2v2 ¼ 0: ð60Þ

As in the previous subsection, we can derive expressions

for the inverse width B of the wave as functions of the

coefficients a’s and b’s and the integration constants K1

and K2 from the two constraint relations.

Thus another set of possible periodic wave solutions to

Eqs. (1) and (2) are,

q ¼ 12B2K1

a2

a4b4v2 � a3b3

K2a3 þ K1b4v

� �
sn2ðBðx� vtÞÞ; ð61Þ

r ¼ 12B2K1ðK1b3 þ K2a4vÞða4b4v2 � a3b3Þ
a2ðK2a3 þ K1b4vÞ2

� sn2ðBðx� vtÞÞ: ð62Þ

In the infinite period limit, when m! 1; the periodic

wave solutions will give rise to the explode decay mode

solutions

q ¼ 12B2K1

a2

a4b4v2 � a3b3

K2a3 þ K1b4v

� �
csch2ðBðx� vtÞÞ; ð63Þ

r ¼ 12B2K1ðK1b3 þ K2a4vÞða4b4v2 � a3b3Þ
a2ðK2a3 þ K1b4vÞ2

� csch2ðBðx� vtÞÞ: ð64Þ

4. Numerical analysis

4.1. Solitary wave solution

In this section we present the numerical simulation of the

obtained results. For the solution obtained in Sect. 2 we let

a1 = a2 = a3 = b1 = b2 = b3 = 1 and a4 = b4 = -1.

Because of relationship given by Eq. (19) one of the

amplitude A1 and A2 can be chosen to be a parameter. In this

case we pick arbitrarily A2 and solve for A1. If we solve for

A1 we get four possible solutions a solution that will lead to

a real value of A1. In this we have that

A1 ¼
1

2
�3� 2A2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A2

2 þ 9

q� �
ð65Þ

The solution of q(x, t) and r(x, t) are plotted in

Fig. 1(a) and (b) respectively.

4.2. Periodic solution

We now examine the periodic solutions obtained in terms of

the Jacobi elliptic functions are shown in Fig. 2(a) and (b).

In case we again choose the values for a’s and b’s as in the

preceding section. This time, however, we have that the

values of A1 and A2 will depend on K1 and K2. We choose

the values of K1 = 1 and K2 = 4. This values were chosen

arbitrary but in such a way that A1 and A2 be defined and

different from 0. We show the periodic solutions for dif-

ferent values m = 0.5, 0.75, 0.9, 0.99 and see how the

solution is converging towards sech2[B(x - vt)].

4.3. Explode decay mode solution

In this final subsection we show the decay mode solutions.

The values for a’s and b’s are the usual. Similar to the

previous section we can choose values appropriate K. Thus

it is natural to use again K1 = 1 and K2 = 4. For the

explode decay values we let m = 0.5, 0.75, 0.9, 0.99

−50 −40 −30 −20 −10 0 10 20 30 40 50
−7

−6

−5

−4

−3

−2

−1

0

(a)

(b)

1

2

−50 −40 −30 −20 −10 0 10 20 30 40 50
−2

−1

0

1

2

3

4

5

Fig. 1 (a) Soliton solution, q(x, t) at t = 10 with parameters

a1 = a2 = a3 = b1 = b2 = b3 = 1 and a4 = b4 = -1. (b) Soliton

solution, of r(x, t) at t = 10 with parameters a1 = a2 = a3 =

b1 = b2 = b3 = 1 and a4 = b4 = -1
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and see how the solution is converging towards

csch2[B(x - vt)] (Fig. 3).

5. Conclusions

In this paper the BC equation that arises in the study of

shallow water waves, was studied. The ansatz method

obtained the solitary wave solution. Subsequently, the

Jacobi’s elliptic function method obtained the cnoidal wave

solution. In the limiting case the SWSs were obtained and

thus the results matched with that of the ansatz method.

This second method also obtained an additional piece of

information, namely the singular solitary wave solutions

were also obtained. The conserved density and hence the

conserved quantity was also calculated using the multiplier

approach. Finally, the numerical simulations were also

given to supplement the analytical results.

It needs to be noted that all the results of this paper

matches with the results that are published earlier. The

difference is that the integration architecture that is adopted

in this paper is different from the previously published

results. The SWSs that are obtained by the ansatz method

matches with the results that were derived in 1998 [5] and

2011 [12]. Additionally, the cnoidal wave solutions that are

derived in this paper also match with those results that were

published in 2007 [4]. Additionally, the numerical results

that are obtained in this paper are in conjunction with the

analytical development here.
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−6

−4
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2
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−10 −8 −6 −4 −2 0 2 4 6 8 10
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Fig. 2 (a) Periodic solution of q(x, t) at t = 10 with parameters

a1 = a2 = a3 = b1 = b2 = b3 = 1, a4 = b4 = -1, K1 = 1 and K2 =

4. (b) Periodic solution of r(x, t) at t = 10 with parameters

a1 = a2 = a3 = b1 = b2 = b3 = 1 and a4 = b4 = -1
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Fig. 3 (a) Solution of q(x, t) at t = 10 with parameters

a1 = a2 = a3 = b1 = b2 = b3 = 1, a4 = b4 = -1., K1 = 1 and

K2 = 4. (b) Solution of r(x, t) at t = 10 with parameters a1 = a2 =

a3 = b1 = b2 = b3 = 1, a4 = b4 = -1., K1 = 1 and K2 = 4
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There are certain disadvantages though with the inte-

gration tools that are adopted in this paper, in order to

extract these variety of solutions. One disadvantage of the

ansatz method is that this method cannot extract the soliton

radiation that is unavoidable in the dynamics of solitary

waves. Additionally, the ansatz method cannot obtain

N-soliton solution to the equation of study. The same is the

problem with the Jacobi’s elliptic function approach.

The soliton radiation or the multi-soliton solution cannot

be covered using this approach.
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