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Abstract: In this paper, full state hybrid projective synchronization of two new incommensurate fractional hyperchaotic

systems are presented. The synchronization is achieved under a master–slave configuration in which these systems have

different fractional orders. The synchronization scheme and control technique are performed subject to parameter

uncertainty in both master and slave systems. The main idea of such asymptotical synchronization is an adaptive mech-

anism which employs Lyapunov stability criterion. Numerical simulations support the proposed techniques.
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1. Introduction

Fractional calculus has been known since the early seven-

teenth century [1]. This concept generalizes the concepts of

ordinary derivatives to some extent. It has been extensively

applied in many fields which have been seen an over-

whelming growth in the last three decades. A few examples

are: mathematics [2], physics [3, 4], engineering [5], math-

ematical biology [6], and finance [7], life science [8].

Actually, fractional derivative based approaches establish

far superior models of engineering systems than the ordinary

derivative based approaches do in many applications. Thus,

as mentioned in [1], there is no field that has remained

untouched by fractional derivatives.

On the other hand, chaos and its applications have been

studied and developed with much interest by scientists [9]. In

recent years, studies of chaos and hyperchaos generation,

control and synchronization have attracted considerable

attentions due to their theoretical and practical applications in

the fields of communications, laser, nonlinear circuit and neu-

ral network [10–15]. Many mathematical definitions of chaos

exist but roughly, it may be described as a type of dynamic

behavior with the following characteristics: extreme sensitiv-

ity to changes in initial conditions, random-like behavior,

deterministic motion, trajectories of chaotic systems passing

through any point infinite number of times. It is known that a

regular chaotic system has one positive Lyapunov exponent.

However, the system with more than one positive Lyapunov

exponent is called hyperchaotic which has more complicated

dynamics than a chaotic system. Consequently, hyperchaotic

systems have important applications especially in secure

communications. As mentioned above, in recent years, study

on fractional-order dynamical systems has attracted increasing

attention due to their great promise as a valuable tool in the

modeling of many phenomena [16], and as a matter of fact, real

world processes generally or most likely are fractional-order

systems [17]. It has been found that fractional-order systems

possess memory and displays much more sophisticated

dynamics compared to its integral-order counterpart, which is

of great significance in secure communication.

In the past two decades, a new direction of chaos research

has emerged to address the more challenging problem of

chaos synchronization due to its potential applications in laser

physics, chemical reactors, secure communication, biomedi-

cine and so on [18, 19]. The thrust of research within this area

is aimed at achieving master–slave synchronization between

two chaotic systems by choosing various kinds of methods

with the pioneering work of Pecora and Carroll [20]. The

master–slave synchronization has been naturally extended to

the fractional-order system. For example, in [21], the authors

studied the synchronization of a fractional-order unified
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system via one-way coupling method, while synchronization

of fractional-order chaotic systems such as Chua system,

Rössler system and Chen system are examined in [22].

Another recent work in synchronization of fractional chaotic

systems [23] which used an active control methodology for

synchronizing two Rössler systems.

A new synchronization [24] technique, known as Full

State Hybrid Projective Synchronization (FSHPS), has been

introduced and applied to chaotic and hyperchaotic systems

[25]. In this paper we synchronize two fractional order

systems in a master–slave configuration via FSHPS method.

As another novelty of this work, we consider some

parameter uncertainties in both master and slave systems,

and under these uncertainties by using an adaptive control

methodology, the asymptotical synchronization is achieved.

2. Numerical method for solving fractional differential

equations

Numerical methods used for solving ordinary differential

equations have to be modified for solving fractional dif-

ferential equations (FDE).

A modification of Adams–Bashforth–Moulton algorithm

is proposed to solve FDEs [26–28].

Consider for q 2 ðm� 1;m� the initial value problem:
C
0 Dq

t xðtÞ ¼ f ðt; xðtÞÞ; 0� t� T

xkð0Þ ¼ x
ðkÞ
0 ; k ¼ 0; 1; . . .;m� 1

ð1Þ

This equation is equivalent to the Volterra integral

equation:

xðkÞ ¼
Xm�1

k¼0

x
ðkÞ
0

tk

k!
þ 1

CðqÞ

Z t

0

ðt � sÞq�1f ðs; xðsÞÞds ð2Þ

Consider the uniform grid tn ¼ nh : n ¼ 0; 1; . . .;Nf g for

some integer N and h ¼ T
N. Let xhðtnÞ be approximation to

xðtnÞ. Assume that we have already calculated approximations

xhðtjÞ; j ¼ 1; 2; . . .; n and we want to obtain xhðtnþ1Þ by

means of the equation:

xhðtnþ1Þ ¼
Xm�1

k¼0

x
ðkÞ
0

tk
nþ1

k!
þ hq

Cðqþ 2Þ f ðtnþ1; x
p
hðtnþ1ÞÞ

þ hq

Cðqþ 2Þ
Xn

j¼0

aj;nþ1f ðtj; xnðtjÞÞ ð3Þ

where
aj;nþ1

¼
nqþ1�ðn�qÞðnþ1Þq; j¼ 0

ðn� jþ2Þqþ1þðn� jÞqþ1�2ðn� jþ1Þqþ1; 1� j�n

1; j¼ nþ1

8
>><

>>:

ð4Þ

The preliminary approximation xp
hðtnþ1Þ is called predictor

and is given by:

xp
hðtnþ1Þ ¼

Xm�1

k¼0

x
ðkÞ
0

tk
nþ1

k!
þ 1

CðqÞ
Xn

j¼0

bj;nþ1f ðtj; xnðtjÞÞ ð5Þ

where

bj;nþ1 ¼
hq

q
ðn� jþ 1Þq � ðn� jÞqð Þ ð6Þ

The error in this method is:

Max
j¼0;1;...;N

xðtjÞ � xnðtjÞ
�� �� ¼ OðhpÞ ð7Þ

where p ¼ Min ð2; 1þ qÞ.
The algorithm that is considered above can be inter-

preted as a fractional variant of the classical second-order

Adams–Bashforth–Moulton method. It has been introduced

and briefly discussed in [29]. More information is given in

[30]. Some additional results for a specific initial value

problem are contained in [31], a detailed mathematical

analysis is provided in [32], and additional practical

remarks can be found in [26]. Numerical experiments and

comparisons with other methods are reported in [33].

3. System description

Usually a dynamical system with fractional order could be

described by:

C
0 Dq

t xðtÞ ¼ f ðxðtÞ; tÞ; m� 1\q\m 2 Zþ; t [ 0

xðkÞðtÞ t¼0j ¼ xk
0; k ¼ 1; 2; . . .;m:

(

ð8Þ

where x 2 Rn; f : Rn � R! Rn; q ¼ q1 q2 . . . qnð ÞT
are vector state, nonlinear vector field, and differentiation

order vector. If q1 ¼ q2 ¼ � � � ¼ qn we call Eq. (8) com-

mensurate fractional order dynamical system; otherwise we

call it incommensurate one. Moreover, sum of the orders of

all involved derivatives in Eq. (8), i.e.
Pn

i¼1 qi is called the

effective dimension of Eq. (8) [34]. The size of vector x in

state space form Eq. (8), i.e. n, is called the inner dimension

of system given by Eq. (8) [35].

Theorem 1 [36]. Consider the following linear fractional

order system:

C
0 Dq

t xðtÞ ¼ AxðtÞ; xð0Þ ¼ x0 ð9Þ

with x 2 Rn; A 2 Rn�n; q ¼ q1 q2 . . . qnð ÞT ; 0\qi

� 1 and qi ¼ ni

di
; gcdðni; diÞ ¼ 1. Let M be the lowest

common multiple of the denominators di’s. The zero

solution of system in Eq. (9) is globally asymptotically

stable in the Lyapunov sense if all roots k’s of the equation:

162 A Razminia



DðkÞ ¼ det diag ðkMqiÞ � A
� �

¼ 0; ð10Þ

satisfy: argðkiÞj j[ p
2M :

Recently a novel hyperchaotic system is described by

the following equations [37]:

_x ¼ ax� yz

_y ¼ xz� by

_z ¼ cxy� dzþ gxw

_w ¼ kw� hy

ð11Þ

Here x; y; z;w 2 R are the pseudo-state variables, and

a; b; c; d; g; h and k are positive constant parameters of the

system. For a ¼ 8; b ¼ 43:75; c ¼ 2; d ¼ 10; g ¼ 5; h ¼
0:2; k ¼ 0:05 one can find five equilibria for this system as

follows:

Q1 : 0; 0; 0; 0ð Þ
Q2 : �4:4594; þ1:9069; �18:7083; þ7:6277ð Þ
Q3 : þ4:4594; þ1:9069; þ18:7083; þ7:6277ð Þ
Q4 : þ4:4594; �1:9069; �18:7083;� 7:6277ð Þ
Q5 : �4:4594; �1:9069; þ18:7083; �7:6277ð Þ

ð12Þ

For each equilibrium point, one can compute the Jacobian

matrix and then find the eigenvalues. As derived in [37] all

of the above equilibria are unstable. Numerical simulations

of this system are depicted in Figs. 1 and 2. It is mentioned

that the system given by Eq. (11) can produce both chaotic

and quasiperiodic behaviors.

Now consider the following fractional order dynamical

system:

C
0 Dq1

t x ¼ ax� yz
C
0 Dq2

t y ¼ xz� by
C
0 Dq31

t z ¼ cxy� dzþ gxw
C
0 Dq4

t w ¼ kw� hy

ð13Þ

Note that the equilibria for this new fractional order

hyperchaotic system are the same as for the integer order

counterpart; i.e. Eq. (11). First let constitute the Jacobian

matrix for Eq. (13) computed in equilibrium as follows:

JQ ¼
a �z� �y� 0
z� �b x� 0

cy� þ gw� cx� �d gx�

0 �h 0 k

0
B@

1
CA ð14Þ

For instance let focus on Q2. Since a natural symmetry

exists in the structure of the system [37], a similar approach

for other equilibria can be used. Evaluating Jacobian

matrix in Q2, one can write:

JQ ¼
8 18:7083 �1:9069 0

�18:7083 �43:75 �4:4594 0
41:9524 �8:9188 �10 �22:2971

0 �0:2 0 0:05

0
B@

1
CA

ð15Þ

The corresponding eigenvalues of Q2 can be easily

obtained as follows:

K2 ¼ ðk1 k2 k3 Þ
¼ ð�40:6033 0:0912 �2:5940þ i13:4997

�2:5940� i13:4997Þ ð16Þ

The equilibrium point Q2 is a saddle-focus point and therefore

this equilibrium point is unstable. Because one of the associ-

ated eigenvalues of the aforementioned equilibria of Eq. (13)

is real positive, the necessary condition derived in [38] has no

meaningful result for the case. So it may exhibit chaos or

hyperchaos for any order of fractional differentiation.

Now let consider the commensurate case; i.e. 0\q1 ¼
q2 ¼ q3 ¼ q4\1. If we take qi ¼ 0:98; i ¼ 1; 2; 3; 4; the

hyperchaoticity behavior in the fractional order system can

be observed as depicted in Figs. 3 and 4. Moreover, it may be

that beside hyperchaotic phenomenon one can observe

Fig. 1 Numerical simulations of trajectories of system of Eq. (13) with hyperchaotic natures
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chaotic behavior. This can be seen in Fig. 5. It is mentioned

that for identifying the chaoticity or hyperchaoticity for a

fractional order nonlinear dynamical system one can utilize

Lyapunov exponent criterion [39]. Using this technique the

Lyapunov exponents are computed as ðþ;þ; 0;�Þ for hy-

perchaotic behavior, and ðþ; 0;�;�Þ for chaotic behavior. It

is also mentioned that all following simulations are per-

formed using the method discussed in the Sect. 2.

4. Full state hybrid projective synchronization

Consider the master–slave (or drive-response) configuration

of two autonomous different fractional order chaotic systems:

Master: C
a Dq

t xmðtÞ ¼ f ðxmÞ
Slave: C

a Dq
t ysðtÞ ¼ gðys; xsÞ þ u

ð17Þ

where q is the fractional order, xm; ys 2 Rn represent the

pseudo-states of the master and slave systems, respectively,

f : Rn ! Rn; g : Rn ! Rn are the vector fields of the

master and slave systems, respectively. The aim of the

FSHPS problem is to choose a suitable linear control

function u ¼ u1 u2 . . . unð ÞT2 Rn such that the

pseudo-states of the master and slave systems are

synchronized, i.e. lim
t!1

ysðtÞ � axmðtÞk k ¼ 0, where a ¼
diagða1; a2; . . .; anÞ is a scaling matrix.

Consider a master–slave FSHPS scheme in which the

master system is described as:

C
0 Dq1

t xm ¼ axm � ymzm

C
0 Dq2

t ym ¼ xmzm � bym

C
0 Dq3

t zm ¼ cxmym � dzm þ gxmwm

C
0 Dq4

t wm ¼ kwm � hym

8
>>>><

>>>>:

ð18Þ

in which the subscript m is used for master variables. Slave

system is described as follows:

C
0 Dq1

t xm ¼ axm � ymzm

C
0 Dq2

t ym ¼ xmzm � bym

C
0 Dq3

t zm ¼ cxmym � dzm þ gxmwm

C
0 Dq4

t wm ¼ kwm � hym

8
>>>><

>>>>:

ð19Þ

Fig. 2 Phase portrait of system of Eq. (13) with hyperchaotic natures

Fig. 3 Numerical simulations of trajectories of system of Eq. (13) with order q = 0.98; hyperchaotic nature is cleared
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Note that in this configuration the constant parameters

a; b; c; d; g; k; hð Þ are unknown and considered as the

parameter uncertainties. Moreover, u ¼ u1ð u2 u3 u4ÞT 2 R4

is the control vector which should be designed such that the

two fractional order hyperchaotic systems can achieve FHSPS

based on an adaptive mechanism.

As the first step in designing the control law, consider

the control vector as:

u1 ¼ C
0 D

q0
1

t xsðtÞ � C
0 Dq1

t xsðtÞ þ v1

u2 ¼ C
0 D

q0
2

t ysðtÞ � C
0 Dq2

t ysðtÞ þ v2

u3 ¼ C
0 D

q0
3

t zsðtÞ � C
0 Dq3

t zsðtÞ þ v3

u4 ¼ C
0 D

q0
4

t wsðtÞ � C
0 Dq4

t wsðtÞ þ v4

ð20Þ

Thus inserting Eq. (20) in Eq. (19) yields slave system:

C
0 Dq1

t xs ¼ axs � yszs þ v1
C
0 Dq2

t ys ¼ xszs � bys þ v2
C
0 Dq3

t zs ¼ cxsys � dzs þ gxsws þ v3
C
0 Dq4

t ws ¼ kws � hys þ v4

8
>><

>>:
ð21Þ

Now define the scaling errors as follows:

e1 ¼ xs � a1xm

e2 ¼ ys � a2ym

e3 ¼ zs � a3zm

e4 ¼ ws � a4wm

ð22Þ

Subtracting the dynamics of master system (Eq. (18)) from

those of slave system (Eq. (21)), yields the following error

dynamical system:

C
0 Dq1

t e1ðtÞ ¼ ae1 � ðyszs � a1ymzmÞ þ v1

C
0 Dq2

t e2ðtÞ ¼ �be2 þ ðxszs � a2xmzmÞ þ v2

C
0 Dq3

t e3ðtÞ ¼ �de3 þ cðxsys � a3xmymÞ
þ gðxsws � a3xmwmÞ þ v3

C
0 Dq4

t e4ðtÞ ¼ ke4 � hðys � a4ymÞ þ v4

ð23Þ

It is well-known that if the integer order counterpart of a

fractional order dynamical system is stable, then the

Fig. 4 Phase portrait of system of Eq. (13) with order q = 0.98; hyperchaotic natures are cleared

Fig. 5 Phase portrait of system of Eq. (13) with order q = 0.85; chaotic natures are cleared
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original fractional order system would be stable. Thus if

the parameters of the master–slave systems are unknown,

the control laws are proposed as follows:

v1 ¼ ðyszs � a1ymzmÞ � e1ðâþ 1Þ
v2 ¼ �ðxszs � a2xmzmÞ þ ðb̂� 1Þe2

v3 ¼ ðd̂ � 1Þe3 � ĉðxsys � a3xmymÞ � ĝðxsws � a3xmwmÞ
v4 ¼ �ðk̂ þ 1Þe4 þ ĥðys � a4ymÞ ð24Þ

and the parameter estimation update law is chosen as:

_̂a ¼ e2
1;

_̂
b ¼ �e2

2;

_̂c ¼ e3ðxsys � a3xmymÞ; _̂
d ¼ �e3

2;
_̂g ¼ e3ðxsws � a3xmwmÞ;

_̂
h ¼ �e4ðys � a4ymÞ; _̂

k ¼ e2
4 ð25Þ

Theorem 2 For any given nonzero scaling matrix a,

master system Eq. (18) and response system Eq. (19) can

achieve FSHPS by the control law Eq. (24) and the update

law Eq. (25) of parameters.

Proof Consider the following Lyapunov function:

V ¼ 1

2
ðe2

1 þ e2
2 þ e2

3 þ e2
4 þ ~a2 þ ~b2 þ ~c2 þ ~d2

þ ~g2 þ ~h2 þ ~k2Þ ð26Þ

in which ~a ¼ â� a; ~b ¼ b̂� b; ~c ¼ ĉ� c; ~d ¼ d̂ � d; ~g ¼

ĝ� g; ~h ¼ ĥ� h; ~k ¼ k̂ � k. The time derivative of the

Lyapunov function along the trajectory of Eq. (23) is:

_V¼e1 _e1þe2 _e2þe3 _e3þe4 _e4þ ~a _~aþ ~b _~b

þ~c _~cþ ~d _~dþ ~g _~gþ ~h _~hþ ~k _~k

¼e1ðae1�ðyszs�a1ymzmÞþv1Þ

þe2ð�be2þðxszs�a2xmzmÞþv2Þ

þe3ð�de3þcðxsys�a3xmymÞþgðxsws�a3xmwmÞþv3Þ

þe4ðke4�hðys�a4ymÞþv4Þ

þ ~a _̂aþ ~b
_̂
bþ~c _̂cþ ~d

_̂
dþ ~g _̂gþ ~h

_̂
hþ ~k

_̂
k

¼�e2
1�e2

2�e2
3�e2

4\0: ð27Þ

Therefore based on the Lyapunov stability theory, the error

dynamical system given by Eq. (23) with integer order is

asymptotically stable at the origin with the proposed con-

troller Eq. (24) and the parameter update law Eq. (25).

Therefore, the fractional order error dynamical system is

stable and the pseudo-states of the master system Eq. (18)

and the pseudo-states of the response system Eq. (19) are

ultimately hybrid projective synchronized.

Some recent works in projective synchronization which

is a type of chaos-synchronization have been studied in the

literature [40].

Fig. 6 Time series of the

variables w and ws
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5. Simulation results

To verify the effectiveness of the proposed synchronization

method in the previous section, we simulate the configu-

ration with the numerical values. In the following simula-

tions we consider the fractional orders of the master and

slave:

q1 q2 q3 q4ð Þ ¼ 0:98 0:99 0:99 0:98ð Þ
q01 q02 q03 q04ð Þ ¼ 0:90 0:93 0:94 0:97ð Þ

ð28Þ

with the following scaling factors:

a1 a2 a3 a4ð Þ ¼ 2 3 3 5ð Þ ð29Þ

The actual parameters of the systems are a ¼ 8; b ¼
43:75; c ¼ 2; d ¼ 10; g ¼ 5; h ¼ 0:2; k ¼ 0:05. For instance

in Fig. 6 we present the time series of the variables wðtÞ and

wsðtÞ. For the scaling factor a4 ¼ 5, the error time series is

depicted in Fig. 7. Also in these simulations we have con-

sidered noise in the synchronization configuration.

6. Conclusions

This work discusses full state hybrid projective synchro-

nization for two hyperchaotic systems with different

incommensurate fractional orders. The fractional order

hyperchaotic systems have attracted scientists and engi-

neers from various fields. One of the main applications of

such systems is secure communication system. Synchro-

nization between receivers and transmitters in such com-

munication systems is the most important work. We have

presented an adaptive mechanism for full state hybrid

projective synchronization (FSHPS) of two systems in

which their parameters are assumed to be unknown. Under

this uncertainty and some noise signals we present a

complete FSHPS methodology. Some simulations support

our analytic results.

References

[1] K S Miller and B Ross An Introduction to the Fractional Cal-
culus and Fractional Differential Equations (New York: John-

Wiley & Sons) (1993)
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