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Abstract: The problem of small amplitude electron acoustic solitary waves is discussed using the reductive perturbation

theory in magnetized plasmas consisting of cold electrons, hot electrons obeying superthermal distribution and stationary

ions. The effects of superthermal electrons, the population ratio of hot to cool electrons and also the magnetic field on the

behavior of plasma are investigated. The results show that only rarefactive solitary waves propagated in this plasma and the

presence of superthermal electrons reduces the soliton amplitude and its width.
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1. Introduction

Recently, the studies on the propagation of electron-acoustic

(EA) waves have been attracted significant attentions

because of their potential importance in interpreting the

electrostatic component of the broad-band electrostatic

noise observed in the cusp region of the terrestrial magne-

tosphere [1, 2], geomagnetic tail [3] and in the dayside

auroral acceleration region [4, 5], beside the other situations.

EA waves may occur in plasmas characterized by a co-

existence of two distinct electron populations, here referred

to as cool and hot electrons. These are electrostatic waves of

high frequency (in comparison with the ion plasma fre-

quency), propagating at a phase speed which lies between

the hot and cool electron thermal velocities. On such a fast

(high frequency) dynamical scale, the positive ions may

safely be assumed to create a uniform background stationary

charge simply providing charge neutrality. Therefore this

part of plasma has no essential role in the plasma dynamics.

The cool electrons provide the inertia necessary to maintain

the electrostatic oscillations, while the restoring force comes

from the hot electron pressure. Singh et al. [6] examined

electron acoustic solitary waves in four-component plasma

and applied their results to explain the Viking satellite

observations in the dayside auroral zone. Verheest et al. [7,

8] showed that inclusion of hot electron inertia can lead to

positive potential electron-acoustic solitons. Lakhina et al.

[9, 10] investigated large amplitude ion- and electron-

acoustic solitary waves in an unmagnetized multi-fluid

plasmas. The propagation of EASWs in a plasma system has

been studied by several investigators in unmagnetized two-

electron plasmas [11–13] as well as in magnetized plasmas

[14–18]. The nonlinear propagation of the EA waves in

magnetized plasma has been considered by Dubouloz et al.

[14] who reported that the electric field spectrum produced

by an EASW is not significantly modified at the presence of

the magnetic field. Mace and Hellberg [17] studied the

properties of obliquely propagating EASWs in magnetized

plasmas. They showed the existence of negative potential

EASWs corresponding to compression of the cold electron

density. The properties of obliquely propagating EAWs in

magnetized plasmas were studied by Mamun et al. [18].

Their model supports EAWs with a positive potential, which

corresponds to a hole (hump) in the cold (hot) electron

number density. Ergun et al. [19, 20] observed that BEN

bursts in the dayside auroral zone have three-dimensional

wave structure with the inclusion of the magnetic field

effects. The external magnetic field and the wave oblique-

ness are found to change significantly the properties of the*Corresponding author, E-mail: pakzad@bojnourdiau.ac.ir
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EAWs. On the other side, space plasma observations indi-

cate clearly the presence of electron populations which are

far away from their thermodynamic equilibrium [21–29].

Numerous observations of space plasmas [30–33] clearly

prove the presence of superthermal electron and ion struc-

tures as ubiquitous in a variety of astrophysical plasma

environments. Ghosh et al. [34] demonstrated that both

negative as well as positive nonplanar ion acoustic solitons

are formed in the plasmas with superthermal electrons and

positrons. More recently, the properties of dust acoustic

solitary waves with superthermal electrons in cylindrical and

spherical geometry have been investigated in [35]. Super-

thermal particles may arise due to the effect of external

forces acting on the natural space environment plasmas or

because of wave–particle interactions. Plasmas with an

excess of superthermal (non-Maxwellian) electrons are

generally characterized by a long tail in the high energy

region. It has been found that generalized Lorentzian of j
distribution can be modeled such space plasmas, better than

the Maxwellian distribution [36–40]. Kappa distribution has

been used by several authors [41–47] in studying the effect

of Landau damping on the various plasma modes. ‘‘Super-

thermal’’ plasma behavior was observed in several experi-

mental plasma contexts, such as laser matter interactions or

plasma turbulence [48]. At very large values of the spectral

index j, the velocity distribution function approaches a

Maxwellian distribution, while for low values of j, they

represent a ‘‘hard’’ spectrum with a strong non-Maxwellian

tail having a power-law form at high speeds. The motivation

of the presented paper is therefore to study the existence of

EASWs in magnetized plasmas having stationary ions, cold

inertial electrons and hot superthermal electrons. Because of

nonlinear nature of the system it is expected to find new

results different from the other situations.

2. Basic equations

Consider a homogeneous plasma consisting of a cold

electron fluid, hot electrons obeying a superthermal dis-

tribution and stationary ions in the presence of an external

magnetic field B ¼ B0ẑ. The nonlinear dynamics of the

electron acoustic solitary waves is governed by the conti-

nuity and motion equations for cold electrons, and the

Poisson’s equation [18]

onc

ot
þr � ðncucÞ ¼ 0

ouc

ot
þ ðuc � rÞuc ¼ ar/� xccðuc � ẑÞ ð1Þ

r2/ ¼ 1

a
nc þ nh � 1þ 1

a

� �

In the above equations, nc ðnhÞ is the cold (hot) electron

number density normalized by its equilibrium value

nc0ðnh0Þ; uc is the cold electron fluid velocity normalized

by Ce ¼ ðkBTh=a meÞ1=2; xcc ¼ ðeB0=mcÞ=xpc is the cold

electron cyclotron frequency normalized by the cold

electron plasma frequency xpc; / is the electrostatic

wave potential normalized by kBTh=e while kB is the

Boltzmann’s constant. ‘‘e’’ is the electron charge, me is

electron mass and a ¼ nh0=nc0. The time and space

variables are in units of the cold electron plasma period

x�1
pc and the hot electron Debye radius kDh, respectively.

The nh is superthermal hot electron density and it is given

by [24]

nh ¼ ð1�
/

j� 1=2
Þ�j�1

2 ð2Þ

The parameter j shapes predominantly the superthermal

tail of the distribution [49] and the normalization is pro-

vided for any value of the spectral index j[ 1/2 [50]. In

the limit j!1, (2) reduces to the well known Maxwell–

Boltzmann density. Low values of j represent distributions

with a relatively large component of particles where their

velocity is greater than the thermal speed (‘‘superthermal

particles’’) and an associated reduction in ‘‘thermal’’ par-

ticles, as one observes in a ‘‘hard’’ spectrum. Such a very

hard spectrum, with an extreme accelerated superthermal

component, may be found near very strong shocks asso-

ciated with Fermi acceleration [40].

3. Solitary structure

In order to study electron acoustic solitary waves in the

plasma model under consideration, we construct a weakly

nonlinear theory of the electrostatic waves with small but

finite amplitude which leads to a scaling of the independent

variables through the stretched coordinates n ¼ e1=2 ðlxxþ
lzz� ktÞ; s ¼ e3=2t [51]; where e is a small dimensionless

parameter measuring the weakness of the dispersion and

nonlinearity, k is the unknown phase velocity (to be

determined later) normalized by Ce, and lx; ly and lz are the

directional cosines of the wave vector k along the x, y and

z axes, respectively, so that l2x þ l2y þ l2
z ¼ 1.

We also expand nc; ucx; ucy; ucz and / in a power series

of e

nc ¼ 1þ en1c þ e2n2c þ � � �
ucx ¼ 0þ e3=2u1cx þ e2u2cx þ � � �
ucy ¼ 0þ e3=2u1cy þ e2u2cy þ � � �
ucz ¼ 0þ eu1cz þ e2u2cz þ � � �
/ ¼ 0þ e/1 þ e2/2 þ � � �

:

2
66666664

ð3Þ
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One can write Eq. (1) in various powers of e after inserting

Eq. (3) in these equations. The lowest order of e from the

continuity equation, the z component of the momentum

equation and Poisson’s equation give n1c ¼ �al2z
k2 /1; u1cz ¼

�alz
k /1 and k ¼

ffiffiffiffiffiffiffiffi
2j�1
2jþ1

q
lz. We can also obtain the lower and

next leading orders of x and y components of the

momentum equation as

u1cx ¼
�aly
xcc

o/1

on
; u1cy ¼

alx
xcc

o/1

on 1

u2cx ¼
�alxk
x2

cc

o2/1

on2
; u2cy ¼

�alyk
x2

cc

o2/1

on2

:

8>>><
>>>:

ð4Þ

Using the next orders of e from the continuity equation,

the z-component of the momentum equation and Poisson’s

equation one can find the following relations

on1c

os
� k

on2c

on
þ lx

ou2cx

on
þ ly

ou2cy

on
þ lz

ou2cz

on
¼ 0

ou1cz

os
� k

ou2cz

on
þ u1czlz

ou1cz

on
� alz

o/2

on
¼ 0

o2/1

on2
� n2c

a
� 2jþ 1

2j� 1
/2 þ

ð2jþ 1Þð2jþ 3Þ
ð2j� 1Þ2

/2
1

" #
¼ 0

��������������
ð5Þ

Finally from Eqs. (4) and (5) the KdV equation yields

o/1

os
þ A/1

o/1

on
þ B

o3/1

on3
¼ 0 ð6Þ

where the coefficients are

A ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j� 1

2jþ 1

r
lz

2jþ 3

2j� 1
þ 3

2jþ 1

2j� 1

� �
a

� �
;

B ¼ 2j� 1

2jþ 1

� �
k
2

1þ 1� l2z
x2

cc

� � ð7Þ

The above results can be compared with the results

reported [52, 53] for unmagnetized plasmas with planar

and nonplanar geometries, respectively. In order to study a

stationary solitary wave solution of Eq. (6), we assume that

the stationary solution can be expressed as /1 ¼ /1ðvÞ,
where v ¼ n� us. Substituting this expression into Eq. (6),

we can obtained the stationary solitary wave solution as

/1 ¼ /m sec h2 v
w

� 	
ð8Þ

where /m ¼ 3u=A is the soliton amplitude and w ¼
2
ffiffiffiffiffiffiffiffi
B=u

p
is its width.

The electron-acoustic soliton, Eq. (8) which is obtained

in the small amplitude approximation, clearly indicates the

existence of solitary waves with negative amplitude. Note

that Eq. (7) shows that ‘‘A’’ is negative for all the values of

the parameters. Therefore only the rarefactive solitons are

able to propagate in this plasma. The soliton maximum

amplitude is independent of the magnitude of the external

magnetic field as can be observed in other such plasma

systems [18, 21]. It is obvious that the magnetic field

cannot change the energy of a physical system. Eq. (8)

shows that the parameter ‘‘A’’ is proportional to lz

(lz ¼ cos c; where c is the angle between the directions of

the wave propagation vector k and the external magnetic

field B0). Therefore /m is inversely proportional to lz. In

plasmas with nonisothermal distributions of electrons the

soliton maximum amplitude is inversely proportional to l2
z

[18]. On the other hand the soliton amplitude is also

inversely proportional to a. /m is a complicated function of

j and one can find the effect of this parameter on the

soliton amplitude using numerical analysis.

For 1� l2
z � x2

cc the soliton width is almost independent

of xcc and directly proportional to
ffiffiffi
lz

p
. For 1� l2

z � x2
cc he

soliton width is very sensitive to xcc. These results are in

agreement with the results reported in ref. [18].

4. Results and discussion

Numerical analysis has been employed to study the effects

of superthermal hot electrons j, the density ratio between

hot and cold electrons (a) and external magnetic field on

the features of solitary waves.

Figure 1 shows how the amplitude /m changes respect

to the propagation angle for different values of superther-

mal parameter. Absolute value of the soliton amplitude /m

increases when ‘‘j’’ increases. Increasing in the soliton

amplitude is more sensible for the larger values of c
(smaller values of lz). This figure also shows that the sol-

iton amplitude is an increasing function of c. Thus the
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Fig. 1 Soliton amplitude /m respect to c with different values for the

parameter ‘‘j’’
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soliton amplitude finds its maximum value in smaller val-

ues of lz.

Figure 2 presents /m as a function of c with different

values of a. This figure clearly shows that the absolute

value of the soliton peak decreases with an increasing a.

Therefore the soliton energy decreases when the population

of hot electrons (relative to the cold electrons) increases.

Variation of the soliton width respect to c is shown in

Fig. 3. In general, the soliton width has a maximum value

in the range of variation of c. The maximum value of the

soliton width increases as ‘‘j’’ increases. It is mentioned

that superthermal distribution reduces to Maxwellian dis-

tribution for large values of ‘‘j’’. This means that the effect

of superthermality is noticeable with smaller values of ‘‘j’’.

Therefore one can conclude that the presence of super-

thermal electrons decreases the width of the soliton. Var-

iation of the j value does not change the angle in which the

maximum soliton width appears.

Figure 4 demonstrates the width of the soliton respect to

c with different values of the parameter xcc. Soliton width

decreases with an increasing xcc. It is obvious that for

c ¼ 0 the soliton width is not depending on the xcc as also

presented in Fig. 4.

The above results in general are agreement with the

results reported earlier [18, 21].

5. Conclusions

Properties of electron acoustic solitary waves propagating

in magnetized plasmas of cold fluid ions and electrons with

a superthermal distribution have been investigated in this

paper. It may be noted that Landau damping of electrostatic

plasma waves is often enhanced in the presence of a su-

perthermal electron population, as compared with Max-

wellian plasmas. It is found that only rarefactive solitons

can be propagated in this plasma. The absolute value of the

soliton amplitude increases with an increasing value of the

superthermal parameter ‘‘j’’ and also angle c. Therefore

the soliton energy is reduced in the presence of super-

thermal electrons. Solitons in plasmas with lower values of

‘‘j’’ have steeper profiles. On the other hand, solitons in

plasmas with greater values of a have smaller maximum

amplitude and therefore smaller energy. Also it is shown

that the soliton profile becomes narrower in stronger

magnetic fields.
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