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Abstract: In recent years plentiful research papers have been advocated to the study of analytical techniques in calculus

of variations. Many important applications are found in such fields as quantum field theories and many new properties have

been raised, studied and explicit solutions have been achieved by many authors. In this work we derive a modification of

the Klein–Gordon and Dirac equations of quantum field theories starting from an exponential action functional recently

introduced by the author of the present work. Both standard and non-standard Lagrangians are considered. It was observed

that some quantum field equations which appear in many field theories dealing with quantum gravitational corrections are

raised.
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1. Introduction

In recent years overflowing research papers have been

advocated to the study of generalized and modified quan-

tum field theories that help to solve divergence problems

[1]. Some of them include higher-derivative theories [2, 3],

quantum field theory on noncommutative spacetime [4],

Galilei-invariant version of a field theory [5], fractional

quantum field theories [6–18] and so on. Besides, some of

basic equations of quantum field theory are modified at

very high energies due to quantum gravity effects [19–22].

On the other hand, it is strongly believed that the varia-

tional approach is one of the corner-stones of nonpertur-

bative methods in quantum mechanics and quantum field

theory where many applications can be found in the liter-

ature with growing attractiveness [23, 24]. The main pur-

pose of this communication is to construct some of the

basic equations in a modified quantum field theory mainly

the modified Klein–Gordon and the modified Dirac equa-

tions starting from the exponential action function S ¼
R

eLdt recently introduced by the author [25]. Here L is the

Lagrangian of the theory which could be standard and non-

standard as well. It is noteworthy that the non-standard

Lagrangian formalism is a new approach introduced

recently in literature to formulate many hidden properties

of a given dynamical system [26–28]. We will demonstrate

how this new functional will lead to numerous original

attractive properties of the quantum field theory. Herein,

units where �h = c = 1 are used. The metric is diagonal and

its entries are (1, - 1, - 1, - 1). Greek indices run from 0

to 3. Before we do so however, let us reexamine some well-

known aspects of the exponential action function (EAF). In

fact, the EAF is basically defined by S ¼
R b

a eLðt; _qðtÞ;qðtÞÞdt

where ðt; _qðtÞ; qðtÞÞ ! Lðt; _qðtÞ; qðtÞÞ is assumed to be a C2

functions with qðtÞ 2 C1ð½a; b�; RnÞ the generalized coor-

dinate and Lðt; _qðtÞ; qðtÞÞ 2 C2ð½a; b� � Rn � Rn; RÞ is the

Lagrangian of the theory and _qðtÞ ¼ dq=dt. Any admissible

function q 2 C1½a; b� subject to given boundary conditions

q(a) = qa and q(b) = qb for which the action has an

extremum satisfies the subsequent Euler–Lagrange

equation:

oL

oqðtÞ �
d

dt

oL

o _qðtÞ

� �

¼ oL

o _qðtÞ
oL

ot
þ _qðtÞ oL

oqðtÞ þ €qðtÞ oL

o _qðtÞ

� �

:

ð1Þ

In two dimensions, this equation is generalized as follows:

we consider a smooth 2-dimensional manifold M and we*Corresponding author, E-mail: nabulsiahmadrami@yahoo.fr
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let q : X � R2 ! M be the admissible paths satisfying

fixed Dirichlet conditions on qX. The 2-dimensional EAF

is defined by S ¼
RR

XeLðx; y; q; qx; qyÞdxdy where qx ¼ oq=ox;

qy ¼ oq=oy, and q = q(x, y). The Lagrangian is supposed

to be an adequately smooth function of its five arguments.

It is an easy exercise to prove that if q = q(x, y) makes the

two-dimensional action stationary, then it satisfies the

following two-dimensional modified Euler–Lagrange

equation:

oL

oq
� d

dx

oL

oqx

� �

� d

dy

oL

oqy

� �

¼ dL

dx

oL

oqx
þ dL

dy

oL

oqy
;

¼ oL

ox
þ qx

oL

oq
þ qxx

oL

oqx

� �
oL

oqx

þ oL

oy
þ qy

oL

oq
þ qyy

oL

oqy

� �
oL

oqy
:

ð2Þ

Here qxx ¼ o2q
�
ox2 and qyy ¼ o2q

�
oy2. The proof is

obtained by considering the following scalar function SðeÞ ¼
RR

XLdxdy for any e 2 R where L ¼ eLðx; y; qþeQ; qxþeQx; qyþeQyÞ.

Here the variation Q(x, y) is assumed to satisfy homogeneous

Dirichlet boundary conditions Qðx; yÞ ¼ 0 for (x, y) e X. If

q = q(x, y) is a minimizer then the EAF will have a

minimum at e = 0 and accordingly S
0
(0) = 0. We assume

naturally that the functions involved are adequately smooth

so as to permit us to bring the derivative inside the integral,

and then apply the chain rule. Accordingly, following the

standard procedure found in any ‘‘Calculus of Variations’’

textbooks, we obtained the required result.

All the previous arguments can be repeated to higher

dimensions and it is an easy exercise to prove that for the

following 4-dimensional EAF S ¼
RRR R

X eLðx; qðxÞ; _qðxÞÞdx with

x = (x1, x2, x3, x4) and where the admissible paths are

smooth functions q : X � R4 ! M satisfying giving Di-

richlet boundary conditions on qX, the following modified

Euler–Lagrange equation holds accordingly:

oL

oqi
� d

dxi

oL

oqxi

� �

¼ oL

oxi
þ qxi

oL

oq
þ qxixi

oL

oqxi

� �
oL

oqxi

; ð3Þ

where the Einstein summation is used. We expect naturally

that all these arguments may be applied successfully to both

scalar and spinor fields. Our main aim afterward is to con-

struct some of the basic equations of quantum field theory

based on the EAF, mainly the Klein–Gordon and the Dirac

equations, and to explore some of their consequences.

2. Modified Klein–Gordon equation

In order to derive the corresponding Klein–Gordon equation

from the EAF, we replace the generalized coordinate qi by

the scalar field /(x)where x ¼ ðt; x~Þ, i.e. the generalized

coordinate qi has been replaced by the field variable /(x) and

the discrete index i has been replaced by a continuously

varying index x. A covariant form of the EAF may be

obtained from the non-covariant EAF S ¼
R

eLdt by simply

considering S ¼
R

eLd4x ¼
R

eLd3xdt where eL ¼
R

eLd3x

and eL ¼ eLð/;ol/Þ where Roman letters (i, j, k, l, m, n) run

from 1 to 3, Greek letters (a, b, c, d, l, m, g, n) run from 0 to

3, 4-vector (t, x, y, z) ? (x0, x1, x2, x3), contravariant vec-

tors transform as A0a ¼ ðox0a
�
oxbÞAb and covariant vectors

transforms as A0a ¼ ðoxb
�
ox0aÞAb. For a given scalar field /,

o/a � o/=oa. We can perform the following replacement

into Eq. (2) [1]:

oL

oqi
$ oL

o/ðxÞ ;

d

dt
$ ol �

o

oxl
;

oL

o _qi
$ oL

oðol/ðxÞÞ
:

It is notable that ql contains space and time derivatives as

well. Accordingly, the modified covariant generalization of

the point particle Euler–Lagrange equation is:

oL

o/ðxÞ � ol
oL

oðol/ðxÞÞ

� �

¼ oL

oxl
þ ol/ðxÞ

oL

o/ðxÞ

� ��

þolol/ðxÞ
oL

oðol/ðxÞÞ

� ��
oL

oðol/ðxÞÞ
: ð4Þ

If there is more than one scalar field, then we replace

simply /(x) by /ðxiÞ � /i in Eq. (4). To illustrate, we

choose the Lagrangian density L = q l/(x) - M/(x) -

Mxl where Mis a free parameter. The field equation is then

easily derived and takes the form ql ql/(x) - M ql/
(x) = 0 or after contracting by the inverse Minkowski

metric tensor glm and letting l = m, we get h/ðxÞ �
Mol/ðxÞ ¼ 0 where h ¼ olol. This could be interpreted

as the modified damped massless Klein–Gordon equation

[29]. If for instance, the Lagrangian is function of scalar

field and its derivative through the invariant d’Alembertian

operator h, i.e. L ¼ Lð/ðxÞ;h/ðxÞÞ, then from the

principle of least action, Eq. (1) takes the special form:

oL

o/ðxÞ þh
oL

oðh/ðxÞÞ

� �

¼ h/ðxÞ oL

o/ðxÞ

� ��

þhh/ðxÞ oL

oðh/ðxÞÞ

� ��
oL

oðh/ðxÞÞ :
ð5Þ

To illustrate, we consider the well-know massive Klein–

Gordon Lagrangian density given by L ¼ �1
2
/ðxÞh/ðxÞ �

1
2
m2/2ðxÞ where m is the mass of the field. Then the

corresponding Euler–Lagrange equation is derived from

Eq. (4):

380 A R El-Nabulsi



1

2
/2ðxÞhh/ðxÞ þ 1

2
/ðxÞh/ðxÞh/ðxÞ

þ ð1þ m2/2ðxÞÞh/ðxÞ þ m2/ðxÞ ¼ 0:

ð6Þ

This is a modified Klein–Gordon equation for a free massive

scalar field and is somewhat mathematically complicated. For a

massless scalar field, this equation is reduced to /2ðxÞhh/ðxÞ
þ/ðxÞh/ðxÞh/ðxÞ þ 2h/ðxÞ ¼ 0. If, for instance, we

choose L ¼ h/ðxÞ þ m2/ðxÞ, then the equation of motion is

m2h/ðxÞ þhh/ðxÞ ¼ m2. One more illustration concerns

the non-standard Lagrangian L ¼ h/ðxÞ þ UðxÞ þ m2/ðxÞ
where U(x) is a potential. Hence, Eq. (4) gives m2h/ðxÞþ
hh/ðxÞ ¼ m2 � dUðxÞ=dx.

More generally, we can consider L ¼ Lð/ðxÞ; ðhþ
m2

1Þ/ðxÞÞ with m1 a real parameter. It is easy to check that

Eq. (5) is replaced by:

oL

o/ðxÞ þ ðhþ m2
1Þ

oL

oððhþ m2
1Þ/ðxÞÞ

� �

¼ hþ m2
1

� �
/ðxÞ oL

o/ðxÞ

� �

þ hþ m2
1

� �
hþ m2

1

� �
/ðxÞ

�

oL

o hþ m2
1

� �
/ðxÞ

� �

 !!
oL

o hþ m2
1

� �
/ðxÞ

� � : ð7Þ

Accordingly, let us consider the Lagrangian L ¼ ðhþ
m2

1Þ/ðxÞðhþ m2
2Þ/ðxÞ where m2 is another real parameter.

Eq. (7) gives easily:

ðhþ m2
1Þðhþ m2

2Þ/ðxÞ 1� L½ � ¼ 0: ð8Þ

As L 6¼ 1, then the field equation is ðhþ m2
1Þðhþ m2

2Þ/
ðxÞ ¼ 0 or hh/ðxÞ þ ðm2

1 þ m2
2Þh/ðxÞ þ m2

1m2
2/ðxÞ ¼ 0.

This equation is obtained long time ago by Pais and Uhlenbeck

in their quantum approach to field theory [30] and recently by

the authors of [19, 20] in their Lorentz-covariant deformed

Quesne–Tkachuk algebra formulation of quantum field theory

in the presence of a minimal length due to gravitational cor-

rections. One more interesting example is obtained if we choose

the simple Lagrangian L ¼ ðhþ m2
1Þ/ðxÞ from which we

derive ðhþ m2
1Þðhþ m2

1Þ/ðxÞ ¼ 0. These equations are

interesting as they are derived from the EAF without any

quantum arguments.

To have a naı̈ve idea about the approximate solutions of

some of the modified Klein–Gordon equations obtained pre-

viously, we follow the standard and usual approach and we

separate the equation into the space and time parts. We con-

sider for straightforwardness the case of one space dimension.

Consequently our preliminary point is to write the

equation m2h/ðxÞ þhh/ðxÞ ¼ m2 as:

d4/ðxÞ
dx4

� m2 d2/ðxÞ
dx2

¼ m2; ð9Þ

where the solution is given by:

/ðxÞ ¼ c1

m2
emx þ c2

m2
e�mx � x2

2
þ c3xþ c4; ð10Þ

ci, i = 1, 2, 3, 4, … are constants of integration. Assuming

the boundary conditions /ð0Þ ¼ 0 and /0ð0Þ ¼ 0, this

equation is reduced to:

/ðxÞ ¼ c1

m2
emx � 1� xð Þ þ c2

m2
e�mx � 1þ xð Þ � x2

2
: ð11Þ

Notice that for a positive value of m, this equation is

approximated for a very large distance to /ðxÞ ¼ c1emx
�

m2.

The second class of modified Klein–Gordon equation

corresponds for m2h/ðxÞ þhh/ðxÞ ¼ m2 � dUðxÞ=dx

which in space dimension is written as:

d4/ðxÞ
dx4

� m2 d2/ðxÞ
dx2

¼ m2 � dUðxÞ
dx

: ð12Þ

We choose the quadratic potential UðxÞ ¼ 1
2
m2x2. Then

the solution of Eq. (12) is given by:

/ðxÞ ¼ 1

6

6 c5emx þ c6e�mxð Þ
m2

þ ðx� 3Þx2

� �

þ c7xþ c8:

ð13Þ

With the boundary conditions /ð0Þ ¼ 0 and /0ð0Þ ¼ 0,

this equation is reduced to:

/ðxÞ ¼ c5

m2
emx � mx� 1ð Þ þ c6

m2
e�mx þ mx� 1ð Þ þ ðx

� 3Þx2:

ð14Þ

This equation is approximated for a very large distance

and in particular for positive m to /ðxÞ ¼ c5emx
�

m2.

The third class is hh/ðxÞ þ ðm2
1 þ m2

2Þh/ðxÞ þ m2
1m2

2/
ðxÞ ¼ 0 which is written in space dimension as:

d4/ðxÞ
dx4

� ðm2
1 þ m2

2Þ
d2/ðxÞ

dx2
þ m2

1m2
2/ðxÞ ¼ 0: ð15Þ

The solution is given by:

/ðxÞ ¼ c9em1x þ c10e�m1x þ c11em2x þ c12e�m2x: ð16Þ

If, for instance, m2
1 ¼ �m2

2, then hh/ðxÞ � m4
1/ðxÞ ¼ 0

or d4/ðxÞ
�

dx4 � m4
1/ðxÞ ¼ 0 and then the solution is

reduced with /ð0Þ ¼ 0 and /0ð0Þ ¼ 0 to:

/ðxÞ ¼ c13 em1x � sinðm1xÞ � cosðm1xÞð Þ
þ c14 e�m1x þ sinðm1xÞ � cosðm1xÞð Þ: ð17Þ

For large distance, this equation is approximated by

/ðxÞ � c13em1x whereas for very short distances, Eq. (17) is

approximated by /ðxÞ � c13ð1� sinðm1xÞ � cosðm1xÞÞ þ
c14ð1þ sinðm1xÞ � cosðm1xÞÞ which resembles the har-

monic oscillator solutions.
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3. Modified Dirac equation

All the previous arguments may be repeated for the case of

a Dirac electrodynamics complex spinor field, i.e. /ðxÞ $
wðxÞ with its complex conjugate �w, which are invariant

under the transformation w! w0 ¼ eiXw and �w! �w0 ¼
e�iX �w where X is the infinitesimal arbitrary function of x

[1]. Assuming for simplicity the (0 ? 1)-dimensional

Lagrangian L ¼ Lðt;wðtÞ; _wðtÞÞ, it is an easy exercise to

check that the corresponding Euler–Lagrange equation is:

oL

owðtÞ �
d

dt

oL

oð _wðtÞÞ

 !

¼ oL

ot
þ _wðtÞ oL

owðtÞ

� ��

þ€wðtÞ oL

oð _wðtÞÞ

 !!
oL

oð _wðtÞÞ
:

ð18Þ

The one associated to the complex conjugate of the spinor

field takes again the form:

oL

o�wðtÞ
� d

dt

oL

oð _�wðtÞÞ

 !

¼ oL

ot
þ _�wðtÞ oL

o�wðtÞ

� ��

þ€�wðtÞ oL

oð _�wðtÞÞ

 !!
oL

oð _�wðtÞÞ
:

ð19Þ

To illustrate, we consider the free standard electron

Lagrangian in (0 ? 1)-dimensions L ¼ �wðtÞ½ic0
_wðtÞ � mw

ðtÞ� where w(t) is a two-components spinor, �wðtÞ ¼ wyðtÞc0

is the adjoint field operator, m is a constant parameter with

the dimension of the mass and

c0 ¼
1 0

0 �1

� �

: ð20Þ

In fact, it was argued in [31] that quantum field theory in

(0 ? 1) dimensions is formally equivalent to quantum

mechanics and besides it simplifies the mathematical

concepts considerably. Then Eqs. (18) and (19) give:

�m�wðtÞ � ic0
_�wðtÞ ¼ ic0

�wðtÞ�wðtÞ ic0
€wðtÞ � m _wðtÞ

� �
;

ð21Þ

and

ic0
_wðtÞ � mwðtÞ ¼ 0: ð22Þ

Deriving Eq. (22) with respect to time and replace into

the RHS of Eq. (21) gives:

ic0
_�wðtÞ þ m�wðtÞ ¼ 0: ð23Þ

Equations (22) and (23) are the well-known Dirac

equations. It is an easy exercise to check that these

equations hold as well for a time-dependent mass, i.e.

L ¼ �wðtÞ½ic0
_wðtÞ � mðtÞwðtÞ�.

One supplementary illustration concerns the non-stan-

dard Lagrangian L ¼ ln ic0wðtÞ _�wðtÞ
� �

� 2 ln wðtÞ�wðtÞ
� �

þ

a _wðtÞ þ b _�wðtÞ where a and b are real parameters. Equa-

tions (18) and (19) give accordingly:

a2wðtÞ€wðtÞ � a _wðtÞ ¼ �1; ð24Þ

and

m
�wðtÞ
þ €�wðtÞ 1

_�wðtÞ
¼ 1

_�wðtÞ
þ b

 !

�2 _�wðtÞ 1
�wðtÞ
þ €�wðtÞ 1

_�wðtÞ

 !

:

ð25Þ

Equation (25) gives for 8b
€�wðtÞ�wðtÞ � 2 _�w

2ðtÞ ¼ 0: ð26Þ

We choose a ¼ �1 and then the solutions of Eqs. (24)

and (26) are respectively:

wðtÞ ¼ ðd1 þ tÞ d2 � logðd1 þ tÞð Þ; ð27Þ

and

wðtÞ ¼ d3

t þ d4

: ð28Þ

Here di, i = 1, 2, 3, 4 are constants of integration.

Up to now, we have derived the equations of motion for

some scalar and spinor field systems characterized by both

standard and non-standard Lagrangians in an easy way. It is

notable that when applying the EAF to those fields holding

standard and non-standard Lagrangians, the equations of

motion will appear to be absolutely different from what is

obtained when we use the standard action principle char-

acterized by the action functional S ¼
R

Ldt. Of course,

further Lagrangians may be examined as well; hitherto

more mathematical analysis of the far-reaching equations

of motion will be addressed with awareness in a forth-

coming work.

4. Conclusions

In conclusion, we have derived in this work the modified

Klein–Gordon and the modified Dirac equations starting

from the exponential action functional S ¼
R

eLdt recently

introduced by the author. Both the standard and non-standard

Lagrangians are considered and discussed. It is noteworthy

that classical and quantum dynamics with non-standard

Lagrangians are still in their infancies and much work is

required. Yet the modified Klein–Gordon equation derived

from the standard Klein–Gordon Lagrangian is somewhat

complicated and required more numerical analysis. Never-

theless, it is in this work that, starting from an exponential

action, the scalar field equation hh/ðxÞ þ ðm2
1 þ m2

2Þh/
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ðxÞ þ m2
1m2

2/ðxÞ ¼ 0 which appears in many theories deal-

ing with quantum gravitational corrections arise. Besides,

when we have applied the EAF to the Dirac electrodynamics

spinor field characterized by its usual Lagrangian, it is that

the Dirac equations for both the spinor field and its complex

conjugate are not affected and acquire their standard form.

We argue that these outcomes may have many physical

applications, e.g. Higgs field [32], black-holes fields [33] and

more advanced field theories [34–36]. The main advantage

of the results obtained in this work is that they offer a new-

fangled view of quantum field theory, yet much work is

required for a better understanding of the theory. We speculate

that these new arguments can have several consequences in

several modified field theories, e.g. higher-derivative theories

and quantum field theory on noncommutative spacetime that

deserve future inquiries. Associated work that lies ahead could

include the formulation of quantum field theories starting

from different types of action functional and derivatives

operators [37–42].
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