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Two binary stars gravitational waves: homotopy perturbation method
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Abstract: Homotopy perturbation is one of the newest methods for numerical analysis of deferential equations. We have

used for solving wave equation around a black hole. Our conclusions have this method far reaching consequences for

comparison of theoretical physics and experimental physics.
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1. Introduction

The stars in the sky are usually binary and our sun is an

exception among them. The binary stars rotate around each

other; otherwise they collapse onto each other. Since the

mass of the stars is very high, the binary stars are the most

important source of gravitational waves (GW). Through

those two binary neutron stars and black holes binary

produce stronger gravitational waves. Thus, these are

studied as the main candidate in sky observations for GW

[1]. The gravitational waves emission reduces system’s

energy and causes the reduction of the distance between the

two stars. As a consequence, the stars will rotate with more

speed around each other. The higher is speed, the higher is

GW’s frequency. LIGO and VIRGO detectors works in

rang 10–100 Hz [2]. Indeed this frequency range is the

final step of binary stars before they collapse.

In this step, speed of stars is very high, so we should use

modified Newton’s equations or general relativity as well.

The GW of binary stars can give us useful information such

as direction of binary system, position in the sky, mass, spin

and the distance between them. The most important equation

of binary stars that we have here on the earth is the depen-

dence of system’s energy on their radiation frequency. It can

be shown that the energy decrease rate is as follows [1].

E ¼ EQF 1þ O v2
� �

þ O v3
� �

þ O v4
� �

þ . . .
� �

ð1Þ

In above equation EQF ¼ ð32=5Þðl=MÞ2v10 is the radi-

ation’s main term, l and M are respectively the reduced

mass and the mass of the whole system and also

v ¼ pMfð Þ1=3. The velocity in this equation is assumed to

be the velocity that produces the low frequency range of

gravitational spectrum (10 Hz).

Each term on this expansion is in fact related to a special

effect. The term O(v2) is related to Newtonian high effects

[3, 4]. The term O(v3) is related to two effects: first wave

tail effect [5] and the second, spin-orbital interaction effect

[6]. The term O(v4)is related to spin–spin effects [6].

Perturbation analysis can be used when the mass of one of

the two stars relative to whole mass be very small (rotation of

one star around a black hole). We have discussed gravita-

tional field’s perturbation of static or rotating black hole and

introduced homotopy perturbation method. We have applied

this method to the mentioned problems and then have com-

pared our numerical result with other numerical analysis.

2. Perturbation of black hole’s gravitational field

The gravitational field of a Schwarzschild black hole is

defined by the following metric:

ds2 ¼ � 1� 2M

r

� �
dt2 þ 1� 2M

r

� ��1

dr2

þ r2 dh2 þ sin2h du2
� �

ð2Þ

The wave equation in the Schwarzschild background is:

hU � ð�gÞ�1=2
ol ð�gÞ�1=2

glmomU
h i

¼ 0 ð3Þ
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where g is the determinant of the metric tensor glm. GW is a

spin two field, thus we must consider s = 2 field. Now we

consider for simplicity, mass-less scalar field first.

Since the metric of the Schwarzschild black hole has

spherical symmetry we guess, the solution has the fol-

lowing form:

Ulm ¼
ulðr; tÞ

r
Ylmðh;UÞ ð4Þ

where Ylmðh;UÞ are the spherical harmonics. By

substituting Eq. (4) into Eq. (3) we find that the function

ul (r, t) satisfies the following equation

o2

or2
�
� o2

ot2
� vlðrÞ

� 	
ulðr; tÞ ¼ 0 ð5Þ

where vl(r) is defined by

vlðr) ¼ ð1�
2M

r
Þ lðlþ 1Þ

r2
þ 2M

r3

� 	
ð6Þ

r� is defined by

d

dr�
¼ 1� 2M

r

� �
d

dr
ð7Þ

or equivalently as

r� ¼ rþ 2M log
r

2M
� 1


 �
þ constant ð8Þ

The r� coordinate is called tortoise coordinate because the

diagram of vl(r) in r� has tortoise shape [7]. Figure 1a

shows the effective potential in term of r and Fig. 1b shows

the effective potential in term of r�.
In those figure r� ? ?? is similar to r ? ?? in

Schwarzschild coordinate, whereas r� ? -? is similar to

r� ? 2M namely the event horizon of the black hole. The

potential vanishes for both of far distance and the event

horizon. Then for these regions, the field satisfies the flat

space wave equation. This equation in the time domain has

the form

d2

dr2
�

+ w2 � v1ðr)
� 	

u1ðr,w) ¼ 0 ð9Þ

Since this equation has the same form as that obtained by

Regge and Wheeler for the first time for gravitational

perturbations in 1957, is called Regge–Wheeler equation.

Now we discuss other spins. Price [9, 10] showed that

the waves equation with spin S is the same as the Regge–

Wheeler equation with the replaced potential.

v
ðsÞ
1 ðr) = 1� 2M

r

� �
1 1þ1ð Þ

r2
�

2M 1� S2
� �

r3

� 	
ð10Þ

For our purpose in this paper, we have, S = 2. Then the

effective potential has the following form

v
ðs¼2Þ
1 ðr) = 1� 2M

r

� �
1 1þ1ð Þ

r2
� 6Mð Þ

r3

� 	
ð11Þ

Exact solution of wave equation with S = 2 show that

there is another solution with the following potential:

v1ðr) = 2 1�2M

r

� �
n2 nþ1ð Þr3þ3n2Mr2þ9nM2r þ 9M3

r3 nr þ 3Mð Þ2

" #

ð12Þ

This potential for the first times was proposed by Zerilli in

1970 [11]. Chandrasekhar called the first one axial and the

second one polar [12].The Chandrasekhar’s terminology is

more common.

If a Gaussian wave pocket from infinity strike to the

black hole (namely to the potential of Fig. 1a or b then the

reflected wave behaves like Fig. 2.

This behavior is a reflection of black hole’s nature. If a

particle falls in the black hole or if a star collapses in it selves

to form a black hole, we would be encountered with the

behavior like a scattering problem. Thus in this paper, we

choose the scattering model and we analyze Eqs. (5) and (9)

by using homotopy perturbation technique for Gaussian

wave scattering proposed by He and Koçak et al. [13, 14].

Fig. 1 The effective potential

V‘ for ‘ = 0, 1, 2 as the

function of r (a) and r� (b) [8]
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3. Solution of the Regge–Wheeler equation using

homotopy perturbation method

Homotopy perturbation method (HPM) was first proposed

by He [13] and during the years it was applied to various

engineering and scientific problems [15–25]. In this section

we first extent the meaning of the two homotopic function

to the two homotopic differential equations and then con-

struct the whole theory and at the end we apply HPM to our

problem.

If two functions f and g be homotope then curves

between them can be chosen by different methods. In

general, all different paths can be obtained by selecting a

proper class of gi functions, from the following expansion.

Gðx; pÞ ¼ g0ðxÞ þ g1ðxÞpþ g2ðxÞp2 þ . . . ð13Þ

where g0(x) is the same as f(x)and g(x, 1) = g(x). If two

functions f and g be homotope then L1(f) and L2(g) will be

homotope, where L1 and L2 are two arbitrary operator.

Therefore, we can use the homotopy method to solve

differential Eq. (9). Suppose f be a solution of following

differential equation.

L1ðfÞ ¼ 0 ð14Þ

And g be a solution of following differential equation.

L2ðgÞ ¼ 0 ð15Þ

Suppose that f and g are homotope and also L1(f)and L2(g)

be homotope, so one can construct following homotopy

between them:

Hðx; pÞ ¼ ð1� pÞL1ðfÞ þ pL2ðgÞ ð16Þ

We see H(x, 0) = L1(f) and H(x, 1) = L2(g). Then in

these two limits, the H must vanish so:

Hðx; 0Þ ¼ 0 & Hðx; 1Þ ¼ 0 ð17Þ

Without losing generality, we can equal intermediate

functions to zero, therefore

Hðx; pÞ ¼ ð1� pÞL1ðfÞ þ pL2ðgÞ ¼ 0 ð18Þ

For any x 2 X and p e [0, 1] where X is domain of x. We

have to notice that if we choose the special homotopy Eq.

(16) for state the homotopy between L1(f) and L2(g). Then

we can use the general homotopy Eq. (13) to state the

homotopy between f and g. Therefore, Eq. (18) will be a

series in p. We will get unknown function (Eq. 13) with

vanishing coefficients of this expansion. We usually know

the solution of equation L1(f) = 0 and want to obtain the

solution of equation L2(g) = 0. In most problems L1 is a

part of L2. For example, L1 is a linear part of L2 operator

[15–21].

For solving of Eq. (5), by using homotopy perturbation

method, we suppose the L1 operator to be of following

form.

L1 ¼
o2

or2
�
� o2

ot2
ð19Þ

It is clear that the we know the solutions of L1(f) = 0.

This is the wave equation that one of the familiar solutions

of it is the Gaussian wave.

f ðx; tÞ ¼ e�ðr0þxþtÞ2 ð20Þ

Then we consider V1(r) potential as a perturbation for

wave equation L1(f) = 0, this means the L2 operator is as

follows

L1 ¼
o2

or2
�
� o2

ot2
� V1ðr) ð21Þ

Therefore, if u(r,t) be a solution of the equation L2(u) = 0,

we can write for it the following homotopy expansion

similar to Eq. (14).

Fig. 2 The response of a Schwarzschild black hole to a Gaussian

wave packet [8]

Fig. 3 Response of a Schwarzschild black hole to a Gaussian wave-

packet, using homotopy perturbation method
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u(r,t) ¼ u0ðr,t) þ u1ðr,t)p þ u2ðr,t)p2 þ u3ðr,t)p3 þ . . .

ð22Þ

where u0ðr,t) ¼ e�ðr0þxþtÞ2

Here, we also supposed that a Gaussian wave come to

black hole from a far primary position r0. By substituting

expansion Eq. (23) into the following homotopy

H ¼ ð1 � p)
o2

or2
�
� o2

ot2

� �
þ p

o2

or2
�
� o2

ot2
� V1ðr)

� �� 	
u ¼ 0

ð23Þ

We get a power series in term of P which coefficients of the

first four terms of it is as follows

p0 :
o2

or2
�
� o2

ot2

� �
u0 ¼ 0 ð24Þ

p1 :
o2

or2
�
� o2

ot2

� �
u1 � 1� 2M

r

� �
1 1þ1ð Þ

r3
þ 6M

r3

� �
u0 ¼ 0

ð25Þ

p2 :
o2

or2
�
� o2

ot2

� �
u2 � 1� 2M

r

� �
1 1þ1ð Þ

r2
þ 6M

r3

� �
u1 ¼ 0

ð26Þ

p3 :
o2

or2
�
� o2

ot2

� �
u3 � 1� 2M

r

� �
1 1þ1ð Þ

r2
þ 6M

r3

� �
u2 ¼ 0

ð27Þ

Using the arrangement in these equations, we can easily

write upper coefficients. As one can see from the first term,

Eq. (25) is nothing just nonperturbed equation, which we

used the Gaussian solution of it. Substituting solution u0

into Eq. (26), we can simply solve it. Notice that Eq. (26) is

the same as non-homogen wave equation, which we have

known its solution. Having u0, u1 can be obtained by

solving the Eq. (27) and so on. At the end the final solution

will be obtained by adding perturbation terms for p = 1.

u(r,t) ¼ u0 + u1 + u3 + u4 ð28Þ

Notice that for simplicity we used r* instead of r. We have

used Maple13 for numeric computations, the software

results depicted as a dashed curve in Fig. 3 that have very

good match with other numerical computations (Fig. 3).

4. Conclusions

The homotopy perturbation method is a useful method for

solving differential equation which is used in the problem

of gravitational radiation of binary stars. We have found

that this method is very useful to explain the bell frequency

of black hole. This frequency is very interesting for black

hole research. Thus by analyzing the tail of Fig. 2, we can

evaluate the validity of homotopy method.
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