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Abstract: Defect structure models for C-doped non-stoichiometric lithium niobate and lithium tantalate were generally

based on the defect model proposed for undoped crystals i.e. Li-site vacancy or Nb-site vacancy descriptions. The atomic

radius of C is rC = 135 pm. This work is an extension of the Safaryan theory. A new analytical description has been

proposed. It is based on the vibrations of crystal planes. The substitution mechanism of the doped compositions C in LiBO3

crystal is discussed. The mechanism of phase transition due to thermal expansion of crystal is also described.
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1. Introduction

Lithium niobate (LiNbO3) and Lithium tantalate (LiTaO3)

are two well known ferroelectric materials which have

been the subject of intense studies due to their many

applications to the technology of optical, electro-optical,

and piezoelectric devices. Since their discovery in 1949

[1], numerous theoretical and experimental papers have

been published, and yet the phase transformation mecha-

nism remains unclear [2–6].

The structure of ferroelectric LiTaO3 (LT) as well as

that of LiNbO3 (LN) belong to space group R3c and can be

considered as a superstructure of a Al2O3 corundum

structure, with Li? and Ta5? cations along the c-axis [7].

LT and LN are well-known to be narrow-range nonstoi-

chiometric compounds; in LT, the solid solubility range

extends from about 46 to 50.4 % mol Li2O at room tem-

perature [8]. The Curie temperature TC decreases linearly

with decreasing Li2O concentration [9, 10]. Different

defect models have been proposed to account for non-

stoichiometry. The oxygen vacancy model has been

eliminated [11, 12] and among the cation site vacancy

models, the Li-site vacancy model [11, 13, 14] seems more

probable than the Nb-site vacancy model [15–17]. Differ-

ent works have been published on LN or LT doped with

different cations [12, 14, 18].

Torii et al. [14] have studied the evolution of TC, as a

function of doping in (Li1-xMx/2)TaO3 (M = Zn, Ni, Mg,

Ca) solid solutions. They have shown that TC increases

with the c/a ratio of the hexagonal cell parameters.

Katsumata al [19] have studied the LiNbO3 mesh

parameters variation doped with Mg on the elementary

volume and its applications on the transition temperature

and density. They have found that the transition temperature

increases with the increase of doping rate up to 3 % and

slightly decreases beyond this value. The calculated value

of density increases slightly to 3 % and then it decreases.

Iyi et al. [13] have studied the Mg-doping effect on the

structure of LN and Malovichko et al. [20] have studied K

and Mg-doped LN. Paul et al. [8] have examined Ni and

Co-doped LN and LT. Substitution mechanisms have

been the subject of controversy and depend upon the Li/Nb

(Li/Ta) ratio of the pure LN or LT, the chosen type of

substitution and the nature of the doping cations [8, 11–13,

15].
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Several critical properties of these studied materials

depend clearly on the defects in the lattice and the pres-

ence of impurities. The problem that persists in using

these materials is their susceptibility to optical damage.

Doping improves the physical properties of these com-

pounds and serves to minimize damage. The Approach of

Safaryan [21] arises in the analysis of the structure defects

in LiNbO3. This theory has been very important to

determine the Curie temperature for some compounds

near the stoichiometry. In this article, we have extended

the Safaryan theory [21] by making a new theoretical

approach to study doped LiBO3 compounds (B = Nb,

Ta). We have proposed quantitative and qualitative defect

models in order to interpret some observed phenomena

such as change of the Curie temperature and the substi-

tution mechanism. In addition, we have presented results

obtained by applying this new theory in the study of the

LiNbO3 and LiTaO3 temperature transition doped with

nickel and Zinc.

2. The new theoretical approach formalism of doped

LiBO3 compounds

2.1. Soft mode

The ferroelectric phase transition in LN and LT has been

considered theoretically by Safaryan [21], who has

assumed that the phase transition is the freezing of the

optical vibration branches in parallel planes along the polar

axis ‘‘c’’. To calculate the frequency of these vibrations, it

is necessary to develop a system of differential equations

describing the movement of parallel planes through the

energy of their interaction. We proceed to determine the

doped structure of perovskite LiBO3 ferroelectric materials

and apply particularly to the experimental results of solid

solutions of lithium tantalate doped with nickel. For this we

have used the four-atom theory.

In literature there is no real, stable, well-shaped structure

of the LiCBO3 form. We consider that the crystalline

structure of these doped samples is formed by a succession

of four planes, where each one is formed from the same

type of atoms. The dynamic solution of vibration of these

planes shows that one of the two branches describes optical

soft modes in ferroelectric transition in LiCBO3.

As the charge and ionic radius of doping elements (C2?)

are different from those substituted (Li? or B5?), then their

location is offset from that of the latter. So the doping

element C will also help it with its own plane in the doped

structure. In this case, we can assume that the structure is

composed of four homogeneous planes, which are arranged

as shown in Fig. 1. The N2? doping plane is inserted

between the two metal (Li?) and (B5?) planes. So, the

plane succession follows a certain ordering depending on

the atomic degree of ionization forming these planes,

namely in the sequence: Li?, C2? and B5?.

The dynamic problem of the composed system vibra-

tions of these loaded planes can be reduced to a problem of

a linear lattice vibration of four ions (Li?, C2?, B5? and

O2-) where each of them is a plane that contains only ions

of the same spiece.

Projection of Fig. 1 on an axis perpendicular to these

planes gives a linear lattice of period a: is the distance

between two successive planes of oxygen). Figure 2 shows

the arrangement of these ions representative of each plane

considered, with vs (Li?), ks (C2?), us (B5?) and ns (O2-)

which respectively indicate the ions displacement: Li?,

C2? and B5? O2- in the unit cell of order s.

The calculation of these vibration frequencies is con-

sidered as a system of differential equations describing the

linear movement planes in the case of doped solid

solutions.

We are limited to interactions between atoms’ first

nearest neighbors. So we have got a system of linear and

homogeneous equations, such as: The system is described

by the differential equations as

O2-

C2+

Li+

B5+

Fig. 1 Different planes in an elementary cell of C2? doped LiBO3

Fig. 2 Displacement of Li?,

B5?, C2? and 3O2- ions in a

linear lattice
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M1€uS ¼ C10 nSþ1 � usð Þ þ C13 kS � usð Þ
M3

€kS ¼ C13 us � kSð Þ þ C23 vs � kSð Þ
M2€vS ¼ C23 kS � vsð Þ þ C20 nS � vsð Þ
M0

€nS ¼ C20 vS � nSð Þ þ C10 us�1 � nSð Þ

ð1Þ

where M1, M2, M3 and M0 are respectively the masses of

the elements B, Li, C and O. The elastic constants Cij,

describing the interactions between nearest neighbors

planes i and j, are determined in the same way as in

Safaryan’s article [21]. That is to say:

CB�O � C10 ¼ 3
q1 � q0 � e2

b� R2
10

CLi�O � C20 ¼ 3
q2 � q0 � e2

b� R2
20

CLi�O � C23 ¼
q2 � q0 � e2

b� R2
23

CLi�O � C20 ¼ 3
q2 � q0 � e2

b� R2
20

CB�C � C13 ¼
q1 � q3 � e2

b� R2
13

ð2Þ

with q0, q1, q2 and q3 are respectively charges of O2-, B5?,

Li? and C2? ions, and b is the unit cell parameter of

equidistant planes perpendicular to the axis c. The

parameter Rij denotes the distance between two planes

nearest neighbors.

The solutions of this system of equations are functions

of plane waves in this form:

gs ¼ geiðxtþaskÞ with g = u,v,k or n: ð3Þ

which lead to a system of linear equations which have a

nontrivial solution. In order to obtain the fundamental

frequencies of the optical branches, we put k = 0 in the

determinant equation (D = 0). Then, we get the following

equation, substituting these expressions in the system (1).

We obtain a system of linear algebraic homogeneous

equations.

M1x
2 þ C13 � C10

� �
us � C13ks þ C1ans ¼ 0

�C13us þ C13 þ C23 þM3x
2

� �
ks � C23vs ¼ 0

�C23ks þ M2x
2 þ C23 � C2a

� �
vs þ C20fs ¼ 0

C10us þ C20vs þ M0x
2 � C10 � C20

� �
fs ¼ 0

ð4Þ

The removal of the parameter k in the expression of

the determinant leads to getting the fundamental fre-

quencies of optical branches, for the sound becomes zero.

The determinant of this system of equations is a

polynomial of order four in x2, its detailed expression is

complicated, we simplify it by giving the intermediate

functions F, S and R as follows:

F ¼ C13

1

M1

þ 1

M3

� �
þ C23

1

M2

þ 1

M3

� �

� C10

1

M0

þ 1

M1

� �
� C20

1

M0

þ 1

M2

� � ð5Þ

S ¼ �C10C20

1

M0M1

þ 1

M0M2

þ 1

M1M2

� �

þ C10C13

1

M0M1

þ 1

M0M3

þ 1

M1M3

� �

þ C10C23

1

M0M2

þ 1

M0M3

þ 1

M1M2

þ 1

M1M3

� �

þ C20C32

1

M0M2

þ 1

M0M3

þ 1

M2M3

� �

þ C20C31

1

M0M1

þ 1

M0M3

þ 1

M1M2

þ 1

M2M3

� �

� C31C32

1

M1M2

þ 1

M1M3

þ 1

M2M3

� �
:

ð6Þ

R ¼ C10C20C31 þ C10C20C32 � C10C31C32 � C20C31C32ð Þ

� M0 þM1 þM2 þM3ð Þ
M0 �M1 �M2 �M3

ð7Þ

With these expressions, the general expression of the

determinant is written:

x6 þ F � x4 � S� x2 þ R ¼ 0 ð8Þ

The expressions obtained are very long; we simplify them

in writing as follows:

x2
1 ¼

1

3
½�F �

ffiffiffi
2

3
p L

P
þ P

ffiffiffi
23
p

x2
2 ¼

1

3
½�F þ 1þ i

ffiffiffi
3
p

L
ffiffiffi
23
p 2

L

P
� 1� i

ffiffiffi
3
p

2�
ffiffiffi
23
p P

x2
3 ¼

1

3
½�F � 1� i

ffiffiffi
3
p
ffiffiffi
23
p L

P
� 1þ i

ffiffiffi
3
p

2�
ffiffiffi
23
p P

ð9Þ

with:

L ¼ �F2 � 3S

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L3 þ 2F3 þ 9F � Sþ 27Rð Þ2

q

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F3 þ 9F � sþ 27Rð Þ2þM:

3

q
ð10Þ

2.2. Temperature of transition

The real solution, most probable in the expression (8), is

the soft mode of solid non-stoichiometric solutions LiC-

BO3 (C = Ni, Zn) vibrations. The corresponding fre-

quency is given by the following formula:

x2
sm ¼

1

3
�F �

ffiffiffi
2

3
p L

P
þ P

ffiffiffi
23
p

� �
ð11Þ
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In the case of non-stoichiometric doped solution, the soft

mode frequency is written by analogy:

x�2sm ¼
1

3
�F� �

ffiffiffi
2

3
p L�

P�
þ P�

ffiffiffi
23
p

� �
ð12Þ

with

L� ¼ � F�2 � 3S�

M� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4L�3 þ 2F�3 þ 9F� � S� þ 27R�ð Þ2

q

P� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F�3 þ 9F� � S� þ 27R�ð Þ2þM�:

3

q
ð13Þ

At T = 0 K, the frequencies x2
sm and x�2sm are respec-

tively proportional to the temperature of phase transition

corresponding respectively Tc and T�c , we can deduce

the expression of the transition temperature of non-

stoichiometric ceramics doped by:

T�c ¼
P

P�
22=3L� þ 21=3F�P� � P�2

22=3Lþ 21=3FP� P2
� Tc ð14Þ

It remains to determine the link between the masses

and charges in both systems stoichiometric and non-

stoichiometric doped to find expressions of the form in

Eq. (12). For this, it suffices to introduce deficient models

for this doped non-stoichiometric structure.

3. Deficient models of compounds LN and LT doped

with C21

According to the literature, we found that some authors like

Paul [8], Katsumata [19] and Bennani [22, 23] have

insisted that the substitution mechanism changes with the

concentration of Ni to determine the temperature transition

Tc and ionic conductivity of ceramic LT, doped nickel.

The samples used in the experimental studies were

described elsewhere [21, 22].

Tables 1 and 2 give the analyzed chemical formulae

The number of vacancies was calculated by subtraction of

the cation sites amount, considering a main substitu-

tion mechanism 5Li? ? B5? $ 5Ni2?. The errors in the

obtained formulae were estimated to be about 0.8 % for Li,

0.1 % for Ta, and 0.5 % for Ni. We found that there are two

substitution models in this doped non-stoichiometric

structure. The first is valid for the concentrations lower than

3 % and the second, for those superior or equal to 3 %.

From the experimental results presented in Tables 1 and

2, we found that there are two alternative models in this

doped non-stoichiometric structure. The first will be valid

for Ni concentrations below 3 % (a) and the second for

those greater or equal than 3 % ðbÞ.

3.1. Substitution model of dopant C \ 3 %

In both tables, a change in the mechanism of substitution is

observed at y = 3 mol% C. We proposed a vacancy model

that is based on that of lithium [21, 22] to describe the

structure of non-stoichiometric substitution where Ta cat-

ions are in excess, which occurs in the sublattice of lithium

(Li). This model (a) is given by:

Li1�5x�3yB1þx�yC4yO3 ð15Þ

whose expression is modified by considering the various

sub-lattices of the structure and showing up the vacancy

(V) which permits compensation of the charge, where:

Table 1 Experimental

chemical formulas and proposed

the LT doped nickel

%Ni Experimental formulas analysed Proposed formulas

0 Li0.977Ta1.005O3 [Li0.977Ta0.005 V0.019][Ta]O3

1 Li0.972 Ta1.002 Ni 0.010 O3 [Li0.96 Ta0.0015 Ni 0.01 V 0.0165][Ta]O3

2 Li0.955Ta1.001 Ni 0.02 O3 [Li0.955 Ta0.001 Ni 0.02 V 0.024][Ta] O3

3 Li0.942 Ta0.999 Ni 0.03 O3 [Li0.9420Ni 0.029 V0.029][Ta0.999 Ni 0.001]O3

5 Li0.912 Ta0.998 Ni 0.050 O3 [Li0.912Ni 0.048 V 0.057][Ta0.998 Ni 0.002]O3

8 Li0.897 Ta0.988 Ni 0.08 O3 [Li0.897 Ni 0.068 V0.035][Ta0.988 Ni 0.012]O3

15 Li0.836 Ta0.973 Ni 0.15 O3 [Li0.836 Ni 0.123 V0.041][Ta0.973 Ni 0.027]O3

20 Li0.78 Ta0.964 Ni 0.20 O3 [Li0.780 Ni 0.164 V0.056][Ta0.964Ni 0.036]O3

Table 2 Experimental

chemical formulas and proposed

the LN doped nickel

%Ni Experimental formulas analysed Proposed formulas

0 Li0.976Nb1.005O3 [Li0.976Nb0.005 V0.019][Nb]O3

1 Li0.960 Nb1.0038 Ni 0.010 O3 [Li0.96 Nb0.0038 Ni 0.01 V 0.026][Nb]O3

3 Li0.939 Nb1 Ni 0.03 O3 [Li0.939Ni 0.03 V0.031][Nb]O3

5 Li0.92 Nb0.9958 Ni 0.04975 O3 [Li0.92Ni 0.046 V 0.034][Nb0.996 Ni 0.004]O3

8 Li0.869 Nb0.9941 Ni 0.08 O3 [Li0.869 Ni 0.074 V0.057][Nb0.9941 Ni 0.006]O3

10 Li0.867 Nb0.988 Ni 0.098 O3 [Li0.867 Ni 0.086 V0.0047][Nb0.988 Ni 0.012]O3
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Li1�5x�3yBx�yC4yV4x

	 

½B� O3½ � ð16Þ

It is defined by two phenomena that take place at the sub-

lattice [Li], while the other two sub-lattices ([B] and [O])

remain intact:

A substitution of the five atoms of lithium by a metal

atom Ta:

5� Liþ $ B5þ þ 4� V ð17Þ

Next, a substitution of three lithium cations and a metal

cation (B) by four doping divalent cations:

B5þ þ 3� Liþ $ 4� C2þ ð18Þ

3.2. Substitution model of dopant C C 3 %

From Tables 1 and 2 we see that from the concentration of

3 mol% of C, sub-lattice of tantalate begins to be affected

by the substitution of nickel. While the mechanism of the

impurity incorporation changes, we have tried to find a

comprehensive and simplified formula that will generate all

the compositions analyzed with the dopant concentration

which is above 3 mol% of C. That is to say:

Li1�5x�13yB1�ðx�yÞC4yO3 ð19Þ

As in the previous case, the various sub-lattices of the

structure are considered in showing the vacancies

concentration (V) allowing compensation to balance the

global charge:

Li1þ5x�13yBð5y�xÞV4ð2y�xÞ
	 


B1�ðx�yÞCðx�yÞ
	 


O3½ � ð20Þ

The model (b) given by Eq. (19) is defined by two types

of substitutions:

– In the sub-lattice [Li]:

13� Liþ $ 5C2þ þ 8� V and 4Vþ C2þ $ 5Liþ

8� Liþ $ 4C2þ þ 4� V

ð21Þ

– In the sub-lattice [B]:

ðx� yÞ � B5þ $ ðx� yÞ � C2þ ð22Þ

What characterized this last model from the first (a) is

that the metal sub-lattices [Li] and [B] are both con-

cerned with the substitution, which involves replacing the

cations of lithium Li? by that of nickel C2? and B5?

cations.

On the contrary, in the model (a), the site [Ta] is

completely filled with its own cations B5?, and in the site

[Li] any substitution could take place. This is summed up

in a replacement of some atoms by Li Ta atoms which are

in excess in the non-stoichiometric composition. They will

be substituted in their laps with other atoms by the Li

doping elements C [Eqs. (17) and (18)].

As the number of seats that can be occupied by Ta atoms

in the sites [Li] is limited by the non-stoichiometric field, it

makes sense to have a saturation of the substitution at some

doping rate which corresponds to 3 mol% C for C-doped

LiBO3.

4. New formulations of vacancy models

It is worthy to note that in passing from the stoichiometric

state considered pure to the doped non stoichiometric state,

all the physical quantities X (in particular the masses and

the charges) become functions of the composition x and the

parameter doping y (X* x, y)).

Therefore, x�sm and T�C respectively designate the fre-

quency of soft mode and the Curie temperature in the

doped non-stoichiometric case. The evaluation of T�C, from

Eq. (14), requires a combination of the new theory based

on a simplified structure to four planes, and the new models

incomplete ðaÞ and ðbÞ of the other part.

The knowledge of the Curie temperature in the pure

stoichiometric case, and the frequency x�sm and x�sm allows

to determine the Curie temperature in the doped non-stoi-

chiometric considered case.

Then, we need to determine the frequency x�sm. For this,

we must determine the masses M�i and q�i the charges

corresponding to the various sub-lattices of the doped

structure. As the percentage (4y) of foreign elements in the

structure is very limited (without considering the structures

to side effects), we assume that the fourth plane is formed

(1-4y). With these assumptions, we have tried to rewrite

the models ðaÞ and ðbÞ in such a way to show a fourth sub-

lattice which corresponds to the doping elements. We then

propose the following expressions:

The new version of the vacancy model ðaÞis:

Li1�5x�3yBx�yC�4yV4ðxþ2yÞ
	 


B½ � C½ � O3½ � ð23Þ

The new version of the vacancy model ðbÞ is:

Li1þ5x�13yCx�5yV4ð2y�xÞ
	 


B1�ðx�yÞCðy�xÞ
	 


C½ � O3½ � ð24Þ

For pure stoichiometric, we have x = y = 0 which

corresponds to a structure with four atoms or four sub-

lattices that are [Li] [B], [C] and [O]. We will use the

models Eqs. (23) and (24) to determine the masses

and charges of each type of atoms contributing to the

doped non-stoichiometric considered structure, then we

have:

A new analytical description in C2? 579



For the vacancy model ðaÞ

For the vacancy model ðbÞ

Therefore, it can determine the elastic constants which

describe the interactions between the atoms’ closest

neighbors i and j in the non-doped stoichiometric case, and

also the functions F and S which appear in the expression

(13) of the Curie temperature in the doped non stoichi-

ometric case.

Accordingly, we can calculate theoretically the transi-

tion temperature of the ferroelectric phase to the para-

electric phase compositions for non-stoichiometric LiBO3

doped with solid solutions whose parameters x and y are

determined.

5. Results

In principle, one could test these models by comparing the

experimental results with the calculated values according

to the theoretical approach previously mentioned.

To make the comparison between the two models (a)

and (b), we have used the experimental data of the Curie

temperatures and the crystal parameters measured by

Bennani [23] and Shuangquan Fang et al. [24].

To calculate the Curie temperatures suggested in Eq.

(14), we need to know the Curie temperature of the exact

stoichiometry compositions. So, we used the following

estimations of the Curie temperatures in the stoichiometry

lithium tantalate 928 K [25], 917 K [23] and 913 K [26]

and in the stoichiometry lithium niobate 1475 K [27],

1479.5 K [28]. The average values of these estimations are

TCTa ¼ 919 K and TCNb ¼ 1480 K.

The calculated and experimental values of T�CTa for

different Ni-doped LT are illustrated in Fig. 3. We note

that the temperature increases while increasing ratio Ni.

Comparing the measured Curie temperature for doped

nonstoichiometric LiTaO3 with the two vacancy models

(model (a) and model (b)), the results demonstrate clearly

that the calculated values are in a good agreement with the

data obtained by the experiment.

To illustrate the nonstoichiometric LiNbO3 structure

doped with Ni, we report in Fig. 4 the Curie temperature,

T�CNb as a function of the ratio Ni. In this figure, we pre-

sented only the theoretical results calculated from the

vacancy models (a) and (b). As LiNbO3 is isomorphous

with LiTaO3 we can employ the experimental results for

Curie temperature calculated from the LiTaO3.

In Fig. 5, the Curie temperature NSLN was plotted as a

function of ZnO content in the melt. In LiNbO3 crystals,

the Curie temperature reflected the Nb concentration of

crystal, which increased with the decrease of NbLi (anti-

site Nb, Nb in Li site) concentration or the increase of

NbNb (normal Nb site) [29].
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960

980
  Exp      The

C
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Fig. 3 Comparison experimental [18] and theoretical Curie temper-

ature T�C as function of Ni content in the LiTaO3

M�0 ¼ M0; M�1 ¼ M1; M�3 ¼ M3 q�0 � q0; q�1 ¼ q1; q�3 ¼ q3

M�2 ¼ 1� 5x� 13yð ÞM2 þ ðx� yÞM1 � 2y�M3 q�2 ¼ ð1� 5x� 3yÞq2 þ ðx� yÞq1 � 2y� q3
ð25Þ

M�0 ¼ M0; M�1 ¼ ð1� ðx� yÞÞM1 þ y�x
2

� �
M3 q�0 � q0; q�1 ¼ ð1� ðx� yÞÞq1 þ y�x

2

� �
q3

M�2 ¼ 1þ 5x� 13yð ÞM2 þ x�5y
2

� �
M3; M�3 ¼ M3 q�2 ¼ ð1þ 5x� 13yÞq2 þ x�5y

2

� �
q3; q�3 ¼ q3

ð26Þ
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6. Discussion

The results of our theory indicate that the mechanism

of change effect of the LiBO3 occurs in the range

2.0–3.0 mol% of C. This effect may be caused by the lattice

defect or by the substitution of C in both sub-lattice sites.

According to Figs. 3 and 4 representing the variation

of the Curie temperature depending on the concentration

of Ni:LiBO3, the evolution of temperature as a function of

(% Ni) shows a change of slope when the concentration

exceeds 2.5 Ni mol% [22]. This change may be related to

the fact that we have a change of mechanism of substitution

Ni in the lattice. For the vacancy model (a) (% Ni \ 3), the

growth of temperature may be due to the decrease of atoms

Nb (Ta) and Li in the sub-lattice [Li] which is obviously

accompanied by an increase of Ni atoms. For higher Ni

contents (model b), Ni ions occupy simultaneously the

vacant Li and Nb (Ta) ions sites.

The Curie temperature (Fig. 5) reached a maximum

value when ZnO doped concentration was between 2 and

3 mol% in near-stoeichiometric samples. At this doping

level, all NbLi ions were completely replaced by Zn ions,

and this doping level of ZnO was called as the ‘threshold

concentration’. When ZnO dopant concentration was lower

than ‘threshold’, NbLi ions were gradually replaced by Zn

ions, thus the curie temperature would increase; otherwise,

when ZnO dopant concentration was higher than ‘thresh-

old’, all NbLi ions were replaced and Zn ions began to

occupy LiLi site (normal Li site) and NbNb site simulta-

neously, which made NbNb ions decrease. So the Curie

temperature would decrease.

7. Conclusions

Measured and calculated results show that the substitution

mechanism of C:LiBO3 is between 2 and 3 mol%. We can

conclude that the new theory based on the simplified

structure with four planes, combined with new theoretical

vacancy models (a) and (b), is a successful means to

describe the doped non-stoichiometric LiBO3 structure.
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