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Abstract: An Algebraic Method (AMr) is used to evaluate rotational spectrum constants and energies using a known
accurate experimental/theoretical rovibrational energy subset of a given rovibrational band for a diatomic electronic state.
The AMr has been applied to study the rovibrational energies up to j = 40 in vibrational bands from v = 0 to 8§ of XlZg
electronic state of N, molecule. Calculations show that (i) the AMr not only reproduces the accurate experimental/
theoretical energies, but also generates rotational constants and the E,;’s of high-lying rovibtational excited states; (ii) The
accuracies of the rotational spectrum constants and energies are uniquely determined by the quality of the input experi-

mental/theoretical data.
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PACS Nos.: 33.15.Mt; 33.20.Sn; 33.20.Vq

1. Introduction

Molecular rovibrational states and energies are indispens-
able for the understanding of spectrum structures and
dynamical properties of a molecular system [1, 2]. Rotating
molecules could cause molecular anisotropic phenomena,
and molecular rovibrational states could strongly determine
the collisional interactions and molecule—condensate cou-
plings [3]. Accurate knowledge of complete rovibrational
energies is vital for studying rovibrationally resolved
reaction cross sections and reaction rates [4], is very useful
for the assignment of molecular spectroscopic bands and
possibly for investigating the nature of the resonances [5],
and is the key for identifying abundant astronomical spe-
cies. Highly excited rovibrational levels are essential for
accurate quantitative studies of various processes, such as
intramolecular vibrational redistribution, unimolecular
reaction, and collision energy transfer [6].

Although there have been many experimental tech-
niques such as resonance-enhanced multiphoton-ionization
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[7, 8], Fourier-transform spectroscopy [9], double reso-
nance spectroscopy [10], and multistep laser excitation [11]
spectroscopy etc., which are used to study the rovibrational
states and energies for many diatomic molecules, most of
the molecular rovibrational bands are incomplete, and
particularly sparse data on the highly excited states.
Theoretically, many studies on rovibrational states have
used a variation-perturbation method which been pre-
sented by Wolniewicz [12], although the theoretical data at
low energies agree with the experimental values, the results
at highly excited states are unreliable because of many
approximations and corrections were considered incom-
pletely such as nonadiabatic, relativistic, and radiative
corrections. An expand CSE model has been performed on
some electronic states of diatomic system [13, 14], which
gives a good description of the experimental energies and
line widths, but the precision of these characterizations has
been limited by the quality of the existing experimental
data, and there are weak rotational perturbations to be
considered. Nowadays, many other different methods [15—
18] are proposed for a diatomic system such as angular
momentum insensitive quantum defect theory [15] and a
hybrid computational technique combining discretization
and basis set methods [16] etc. However, it is difficult to
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obtain accurate rovibrational energies and constants of the
high-lying rotational excited states due to limitations of
those theoretical methods.

In this study, an Algebraic Method (AMr) is provided to
study the rotational spectrum constants and energies, just
based on a group of known experimental rovibrational
energy subsets of a vibrational band for a stable diatomic
electronic state. Since an algebraic method (AM) has been
proposed to generate accurate full vibrational spectrum
{E,} for a stable diatomic electronic state in our previous
studies [19, 20], we may call the above algebraic method
used to generate accurate rovibrational energies {E,Jj}v as
AMr, while the previous one [19, 20] for vibrational
spectrum as AMyv. Similarly, the AMr is also a hybrid
method which makes use of the experimental accuracy and
the theoretical advantages. The quality of the AMr rovi-
brational band is uniquely determined by the accuracy of
the known experimental energy subset [e,]. The lesser the
error of the experimental subset [3,2,-] is, the better the

accuracy of the AMr rovibrational band {SUJ}U will be.

2. An algebraic method for diatomic rovibrational
energies

An analytical nonrelativistic rovibrational energy expres-
sion for a diatomic molecular state can be written using
second order perturbation theory as [19]
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where A is the eigenvalue of the z component, L, of the
electronic angular momentum L whose z axis coincides
with the molecular axis, and ¢, = E,; — E,. One may
extend Eq. (2) as
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where the vibrational-dependent rotational constants
(VDRC) are
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Eq. (3) may be rewritten as an matrix form of
AX, =g, (11)

where the column solution matrix, the VDRC matrix, X,
and the energy matrix ¢, are

Eyj
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and the matrix element of coefficient matrix A 1is
Ap=[iGi+1) - A7, k=1,2,3,4,56,7

For every known rovibrational band, {suj; lj,j+ K,
Jj+ 1 ....j+q|},, of a diatomic system, one may solve for
a solution X, = {B,, D,, H,, L,, P,, Q,, S,} of Eq. (11).
There is different VDRC X, for different rovibrational band
{f‘:uj}u. Eq. (11) can be solved using standard algebraic
method. However, the coefficient matrix Ay = [j(j + 1)
—Az]k for K > 7 and j > 20 such that the algebraic cal-
culations of these elements performed using computers
with 32-digit precision may introduce notable numerical
errors in rotational constants. Usually, one may obtain an
energy subset [&,] of a given rovibrational band {e},
using modern spectroscopic method, and may chose 7
energies out of the m energies in the known subset [suj} ata
time. Therefore, Eq. (11) can be solved C; times. One can
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find a solution X, out of C,7n VDRC vectors X,,’s, and this X,
should best satisfy the following convergence requirements
for the rovibrational band { EDj}U’

AB!) %‘,) =100 x |B|)A’inp - BILAMr‘U/BlLinp —0 (13)
B 1 m 2
Ae(expt, AMr), = [EZJ: ’&)j,expt - Sl)j,AMr‘ ] —0

(14)
Error_j%|= |E™ — ES| [E5™ x 100%] -0 (15)

where B, ;,, is the experimentally determined rotational
constant, & expt are the known experimental rovibrational
energies of a subset [¢,] of a given rovibrational band.
Since accurate experimental energies &,;expt include all the
quantum effects and rovibrational information, the so
obtained converged X, ={B,, D,, H,, L,, Py, Oy, S,}
will be the true physical representation of the VDRC
constants, and the rovibrational band {8,)]'}0 evaluated
using the converged VDRC X, and Eq. (3) will be the
correct physical energies include many high-lying energies
&;’s which may be difficult to obtain experimentally.

3. Application and discussion

In this section, the AMr is applied to study the rovibra-
tional bands {8,)1-}0 for different vibrational levels of the
electronic state X' Z; of N, molecule. The unit of all
energies and spectrum constants are in cm /.

The AMr and the literature rotational spectrum constants
VDRC of corresponding vibrational levels which from
v =0 to 8 for the electronic state are given in Table 1
respectively. It is seen from Table 1 that the comparisons
show that the high order rotational constants such as

{Ly, Py, Qy, S,} are not given in the literature for every
rovibrational band, and the present AMr rotational con-
stants B, 4p have good agreement with those of the ref-
erence B, ;,,. For example, in the vibrational band v = 5,
the difference between Bsay, = 1.9021831 cm~! and
Bs iy, = 1.90177 cm™! is only 0.0004131 cm ™!, which all
satisfy requirement in Eq. (13), and that the second-order
constants D, have much small relative error of the calcu-
lated AMr D, 4y, with the literature values D, ;,,. The
differences in D, may be partly due to the fact that in the
literature, the value might be generated using an energy
expansion of fewer terms in an expression similar to Eq.
(2). However, the AMr can gives reliable VDRC contain
high order data which may be difficult to obtain experi-
mentally or theoretically for a given rovibrational band.
Table 2 gives these levels v’s input experimental rovi-

. . t
brational energies E;",

energies E%M’ those obtained using the AMr rotational

spectrum constants listed in Table 1 respectively, and the
relative percentage error Error _j % in Eq. (15). Since the

the present AMr rovibrational

AMr generates a full set of rovibrational energies {EgM’}

from a subset of accurate experimental rovibrational

. ¢
energies [Ei;‘p

quantum effects and rovibrational information for each
vibrational band, and does not use any mathematical
approximation and physical model in solving Eq (11)., the

] which contains nearly all important

AMr vibrational energies {E{;M’} satisfy all convergence

criteria described in Eqgs. (13), (14) and (15). The results in

Table 2 clearly demonstrate that every AMr energy E,M”

has agree with the corresponding experimental value. For
all known rovibrational bands, the maximum percentage
error is only 0.1993, and it’s difference energy is

0.7207 cm™" (=|EgT; — EgY%|) in v =0, J = 13 state. All

Table 1 Molecular rotational constants for different vibrational states v’s of the X 12; electronic state of N, molecule (unit: cm™ 1)

B, D,-10° D,-10° H, 102 H, 107 L,- 101 P, - 10" 0, - 10'° S, - 10"
v Ref [19] AMr Ref AMr Ref [19] AMr AMr AMr AMr AMr
[19]

0 1.9895776  2.01991  5.74137 39.4024 4.843 19.1315 —47.2062 6.10772 —38.7103 9.09998
1 1.9722073 196112  5.75094  —12.1756 4.621 —5.61496 12.0278 —1.33106 7.19910  —1.45307
2 1.9547829  1.94187 5.76152  —12.7032 4.400 —4.53016 4.94991 0.277110 —7.71940 2.88397
3 1.9373049  1.93220 5.77310 —2.51292  4.179 0.182260 —4.15701 0.890651 —6.83302 1.60633
4 1.9197723 191233  5.78569 —6.22785  3.957 —1.81731 0.501357 0.274265 —2.64617 0.614686
5 1.9021831  1.90177  5.79929 1.68652  3.736 1.69768 —7.06797 1.19704 —8.32929 1.87754
6 1.8845346  1.88129  5.81390 1.83874  3.515 1.96419 —6.22298 0.826569 —4.76301 0.926887
7 1.8668233  1.86926  5.82951 4.25499  3.293 2.53531 —8.51988 1.29975 —8.48177 1.83360
8 1.8490454  1.85186  5.84612 473640  3.072 2.43350 —6.73175 0.910250 —5.57073 1.15080
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Table 2 Rovibrational energies of different vibrational states v’s of the X! Z; state of N, relative to v =0, J =0 (in cm™ ")

J v=20 v=1 V=2

Eﬁ;—(pta ng]Mrb Error_j %* Es;‘l’” E@M’ Error_j% Es;‘f" E,’)’}M r Error_j%
0 0.25 2329.95 2329.9500 0.000E+00 4631.19 4631.1900 0.000E+00
1 4.2883 2333.91 2333.8727 1.597E—03 4635.16 4635.0743 1.850E—03
2 12.3557 2341.75 2341.7210 1.240E—03 4642.85 4642.8457 9.227E—-05
3 24.4354 2353.50 2353.5000 0.000E+00 4654.51 4654.5100 0.000E+-00
4 40.5051 2369.27 2369.2168 2.247E—-03 4670.22 4670.0747 3.110E—-03
5 60.5406 2389.03 2388.8789 6.325E—03 4689.78 4689.5487 4.932E-03
6 84.5189 2412.68 2412.4937 7.722E—03 4713.26 4712.9408 6.773E—03
7 112.4220 2440.27 2440.0669 8.322E—03 4740.56 4740.2587 6.355E—03
8 144.2393 2471.77 2471.6019 6.800E—03 4771.82 4771.5081 6.537E—03
9 179.9692 2507.31 2507.0989 8.419E—03 4807.04 4806.6910 7.260E—03
10 219.6191 2546.77 2546.5548 8.452E—03 4846.06 4845.8058 5.245E—-03
11 263.2043 2590.15 2589.9631 7.215E—-03 4889.04 4888.8463 3.963E—03
12 310.7446 2637.43 2637.3151 4.355E—-03 4935.94 4935.8021 2.793E—03
13 361.54 362.2607 1.993E—01 2688.64 2688.6005 1.468E—03 4986.66 4986.6600 0.000E+00
14 417.77 417.7700 2.278E—14 2743.79 2743.8088 6.855E—04 5041.36 5041.4049 8.915E—04
15 477.32 477.2829 7.772E—-03 2802.92 2802.9308 3.859E—04 5099.91 5100.0228 2.211E—03
16 540.80 540.8000 5.280E—14 2865.96 2865.9600 0.000E+00 5162.43 5162.5027 1.407E—03
17 608.37 608.3118 9.573E—03 2932.78 2932.8934 3.866E—03 5228.84 5228.8400 2.913E—14
18 679.71 679.8005 1.332E—02 3003.70 3003.7319 1.061E—03 5299.04 5299.0383 3.145E—05
19 754.91 755.2451 4.439E—02 3078.48 3078.4800 1.237E—14 5373.11 5373.1100 7.086E—14
20 834.66 834.6276 3.888E—03 3157.14 3157.1445 1.439E—04 5451.07 5451.0740 7.405E—05
21 917.94 917.9400 3.940E—13 3239.84 3239.7327 3.313E—03 5532.95 5532.9500 1.927E—13
22 1005.19 1005.1900 5.871E—13 3326.27 3326.2495 6.152E—04 5618.79 5618.7461 7.812E—04
23 1096.40 1096.4000 8.508E—13 3416.81 3416.6958 3.342E—-03 5708.44 5708.4400 4.802E—13
24 1191.52 1191.5970 6.461E—03 3511.02 3511.0663 1.318E—03 5801.99 5801.9506 6.790E—04
25 1290.54 1290.7870 1.914E—-02 3609.35 3609.3500 1.055E—13 5899.10 5899.1000 1.136E—12
26 1393.91 1393.9100 2.117E—12 3711.58 3711.5338 1.245E—-03 5999.5651
27 1500.77 1500.7700 2.791E—12 3817.61 3817.6100 1.795E—13 6102.8206
28 1610.9410 3927.59 3927.5900 2.326E—13 6208.0770
29 1723.6509 4041.5244 6314.2204
30 1837.6553 4159.53 4159.5300 4.027E—13 6419.7681
31 1951.1259 4281.8231 6522.8569
32 2061.5932 4408.7554 6621.2940
33 2166.0096 4540.8473 6712.7104
34 2261.0302 4678.8093 6794.8726
35 2343.6522 4823.5346 6866.2280
36 2412.4110 4976.0423 6926.7846
37 2469.3997 5137.3377 6979.4568
38 2523.4732 5308.1449 7032.0451
39 2595.1075 5488.4536 7100.0676
40 2723.5266 5676.7972 7210.7143
J v=3 v=4 v=>5

Ei; " E{?/'Mr Error_j% Es,)'(pl Eﬁ}Mr Error_j % Ei}‘pt E@M’ Error_j%

0 6903.78 6903.7800 0.000E+4-00 9147.61 9147.6100 0.000E+00 11362.55 11362.550 0.000E+-00
6907.60 6907.6445 6.441E—-04 9151.42 9151.4349 1.628E—04 11366.38 11366.353 2.333E-04
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Table 2 continued
J v=3 v=4 v=>5
EE;‘P‘ E::’].M r Error_j% E;’.‘p‘ E;?].M r Error_j% Eij’.‘p‘ Ef;.M r Error_j%

2 6915.24 6915.3741 1.939E-03 9158.98 9159.0862 1.159E-03 11373.95 11373.960 8.860E—05
3 6926.97 6926.9700 0.000E+00 9170.48 9170.5666 9.441E—-04 11385.33 11385.369 3.439E—-04
4 6942.46 6942.4341 3.736E—04 9185.88 9185.8800 0.000E+4-00 11400.58 11400.580 0.000E+00
5 6961.79 6961.7687 3.061E—04 9205.05 9205.0310 2.065E—04 11419.63 11419.592 3.318E-04
6 6985.04 6984.9768 9.055E—04 9228.12 9228.0243 1.037E—03 11442.50 11442.405 8.274E—04
7 7012.18 7012.0614 1.691E—03 9254.96 9254.8643 1.034E—03 11469.02 11469.020 0.000E+00
8 7043.15 7043.0257 1.765E—03 9285.64 9285.5544 9.220E—-04 11499.52 11499.437 7.223E—-04
9 7078.02 7077.8722 2.089E—03 9320.20 9320.0961 1.114E-03 11533.69 11533.657 2.848E—04
10 7116.76 7116.6022 2.217E-03 9358.54 9358.4889 5.458E—04 11571.73 11571.681 4.193E—04
11 7159.26 7159.2157 6.188E—04 9400.81 9400.7291 8.601E—04 11613.51 11613.510 0.000E+00
12 7205.71 7205.7100 0.000E+00 9446.81 9446.8100 0.000E+4-00 11659.19 11659.141 4.170E—04
13 7256.08 7256.0800 0.000E+00 9496.76 9496.7214 4.069E—04 11708.52 11708.572 4.471E—-04
14 7310.22 7310.3178 1.338E—03 9550.45 9550.4500 0.000E+-00 11761.73 11761.797 5.733E—-04
15 7368.35 7368.4133 8.597E—04 9607.94 9607.9804 4.201E—04 11818.73 11818.809 6.686E—04
16 7430.20 7430.3550 2.086E—03 9669.31 9669.2957 1.475E—-04 11879.46 11879.598 1.163E—03
17 7495.86 7496.1315 3.623E-03 9734.38 9734.3800 0.000E+4-00 11944.06 11944.156 8.051E—04
18 7565.53 7565.7341 2.698E—03 9803.36 9803.2198 1.430E—-03 12012.37 12012.477 8.876E—04
19 7638.88 7639.1590 3.652E—03 9876.21 9875.8073 4.077E-03 12084.53 12084.559 2.372E—-04
20 7716.41 7716.4100 1.974E—14 9952.77 9952.1427 6.303E—03 12160.41 12160.410 6.262E—14
21 7797.46 7797.5006 5.210E—-04 10033.17 10032.237 9.300E—03 12240.05 12240.050 9.954E—14
22 7882.50 7882.4545 5.770E—-04 10117.43 10116.114 1.301E-02 12323.51 12323.511 1.193E—-05
23 7971.26 7971.3033 5.428E—04 10205.37 10203.809 1.530E—-02 12410.84 12410.840 2.454E—13
24 8064.08 8064.0800 9.443E—14 10297.14 10295.372 1.717E-02 12501.76 12502.089 2.634E—03
25 8160.45 8160.8071 4.376E—03 10392.87 10390.856 1.938E—02 12596.74 12597.310 4.527E—03
26 8260.49 8261.4759 1.194E—02 10492.29 10490.313 1.884E—02 12694.95 12696.532 1.247E—-02
27 8365.17 8366.0174 1.013E—02 10595.36 10593.781 1.491E—02 12797.12 12799.735 2.043E—-02
28 8472.96 8474.2606 1.535E—02 10702.56 10701.255 1.219E—02 12902.74 12906.805 3.150E—02
29 8585.88 8585.8800 7.272E—13 10813.12 10812.669 4.173E-03 13013.16 13017.481 3.321E-02
30 8700.33 8700.3300 1.050E—12 10927.85 10927.850 1.533E—12 13126.59 13131.290 3.581E—-02
31 8816.7706 11046.48 11046.480 2.192E—12 13243.66 13247.461 2.870E—-02
32 8933.9880 11168.04 11168.040 3.123E—12 13364.84 13364.840 8.854E—12
33 9050.3187 11291.754 13481.811
34 9163.5937 11416.531 13596.224
35 9271.1216 11540.913 13705.378
36 9369.7440 11663.039 13806.066
37 9456.0058 11780.640 13894.760
38 9526.4994 11891.086 13967.971
39 9578.4627 11991.515 14022.897
40 9610.7317 12079.072 14058.459
J v==6 v=17 v=2_8

Ei}‘P‘ Ef?er Error_j% EE;‘p‘ E;}M’ Error_j% Eij’.‘P‘ E{?JM" Error_j%
0 13548.74 13548.740 0.000E+00 15706.08 15706.080 0.000E+00 17834.49 17834.490 0.000E+00
1 13552.64 13552.503 1014E 1.014E-03 15709.88 15709.818 3.925E—-04 17838.27 17838.194 4.287E—04
2 13560.04 13560.027 9481E 9.481E—-05 15717.35 15717.294 3.559E—-04 17845.67 17845.599 3.952E—-04
3 13571.34 13571.313 1.974E—04 15728.49 15728.505 9.771E-05 17856.75 17856.706 2.473E—-04
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Table 2 continued
J v==6 v=17 v=2_8

Efy?‘p‘ Eﬁ_‘iMr Error_j% E;’,‘P‘ Ef;‘].M r Error_j % Eij’.‘p‘ E{?/Mr Error_j%
4 13586.36 13586.360 0.000E+00 15743.45 15743.450 0.000E+00 17871.51 17871.510 0.000E+00
5 13605.33 13605.167 1.197E—03 15762.19 15762.126 4.087E—-04 17890.06 17890.009 2.847E—04
6 13627.94 13627.735 1.507E—03 15784.53 15784.530  0.000E+4-00 17912.21 17912200  5.349E—05
7 13654.26 13654.064 1.438E—03 15810.62 15810.662 2.640E—04 17938.13 17938.082  2.678E—04
8 13684.47 13684.156 2.295E—03 15840.52 15840.520  0.000E+00 17967.67 17967.652 9.761E—05
9 13718.27 13718.015 1.862E—03 15874.10 15874.105 2.874E—05 18000.96 18000.912 2.687E—04
10 13755.99 13755.643 2.525E—03 15911.41 15911.416 3.459E—05 18037.86 18037.860 0.000E+00
11 13797.49 13797.044 3.233E—03 15952.44 15952.453 7.905E-05 18078.58 18078.499 4.505E—-04
12 13842.63 13842.221 2.953E—03 15997.26 15997.215 2.833E-04 18122.87 18122.828 2.303E—04
13 13891.62 13891.176 3.195E—03 16045.72 16045.699 1.323E—-04 18170.90 18170.849 2.780E—04
14 13944.28 13943.908 2.667E—03 16097.90 16097.900 1.628E—06 18222.62 18222.561 3.218E—04
15 14000.72 14000.414 2.189E—03 16153.81 16153.810 0.000E+00 18278.01 18277.961 2.663E—04
16 14060.90 14060.686 1.522E—03 16213.42 16213.420 0.000E+00 18337.08 18337.045 1.903E—04
17 14124.88 14124.716 1.162E—03 16276.83 16276.719 6.795E—04 18399.80 18399.807 3.706E—05
18 14192.59 14192.491 6.942E—04 16343.90 16343.699 1.229E—03 18466.24 18466.240 1.649E—14
19 14264.00 14264.000 0.000E+00 16414.62 16414.354 1.618E—03 18536.35 18536.339 6.025E—05
20 14339.23 14339.230 0.000E+00 16489.12 16488.688 2.621E-03 18610.10 18610.100 1.637E—14
21 14418.15 14418.174 1.648E—04 16567.24 16566.713 3.180E—03 18687.50 18687.525 1.319E-04
22 14500.83 14500.830 0.000E+4-00 16649.17 16648.458 4.274E—-03 18768.62 18768.620  3.246E—14
23 14587.25 14587.206 2.999E—04 16734.78 16733.966  4.866E—03 18853.40 18853.400  4.847E—14
24 14677.32 14677.320 2.075E—14 16824.13 16823.290 4.995E-03 18941.84 18941.884 2.318E—04
25 14771.17 14771.198 1.870E—04 16917.15 16916.489 3.908E—03 19033.87 19034.092 1.165E—03
26 14868.87 14868.870 2.048E—14 17013.61 17013.610 1.432E—13 19129.62 19130.035 2.168E—03
27 14970.26 14970.363 6.885E—04 17113.98 17114.663 3.991E—03 19229.02 19229.701 3.540E—03
28 15075.16 15075.682 3.463E—03 17218.04 17219.583 8.962E—03 19332.08 19333.029  4911E-03
29 15183.91 15184.788 5.780E—03 17325.72 17328.180 1.420E—02 19438.67 19439.881 6.230E—03
30 15296.27 15297.563 8.453E—-03 17436.97 17440.071 1.778E—02 19548.95 19549.994 5.339E-03
31 15412.53 15413.771 8.049E—03 17552.26 17554.605 1.336E—02 19662.93 19662.930 1.239E—13
32 15533.00 15533.000 2.157E—13 17670.77 17670.770 9.256E—12 19778.017
33 15654.607 17787.107 19894.280
34 15777.649 17901.628 20010.380
35 15900.826 18011.773 20124.564
36 16022.431 18114.422 20234.646
37 16140.340 18206.022 20338.046
38 16252.052 18282.872 20431.915
39 16354.819 18341.661 20513.405
40 16445.921 18380.358 20580.130

? Experimental rovibrational energies from Ref [20]
® Calculated using the algebraic method (AMr)
¢ The percent error Error_j % in Eq. (15)

AMr energies in each band satisfy the requirement in Eq.
(14).

Since Table 2 shows that the measured data and the
theoretical energies agree with each other perfectly, the
predicted unknown or high-lying rovibrational energies (up
to j = 40) bear the true physical nature of the band. For

example, the rotational states of j = 0-12 in v = 0 are not
available experimentally, but the AMr predicts that these
energies. If, under the same conditions as those in [21], the
energies are measured, the relative percentage error
Error_j % should be less than 0.03 unless there are notable
errors in the experimental energies used to predict the Eg}M’.
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Table 2 also indicates that there are 7 energies with
underline in every rovibrational band, the fact is that these
energies are the best set which would be good to list
important quantum effects and rovibrational information
for calculating the best solution {B,, D,, H,, L,, P,,
0Oy, Sy}. Since there are no mathematical approximation
and physical model used in the algebraic approach, the
AMr study not only can reproduces accurate experimental
energies but also may gives accurate energies of high
rovibrational states which might be difficult to obtain
experimentally or theoretically. Table 2 clearly shows that
the AMr energies have excellent agreement with the known
experimental rovibrational energies, and gives the high-
lying rovibrational energies for each vibrational band.

4. Conclusions

In this study, an algebraic approach (AMr) is proposed to
study diatomic molecular rotational constants and rovi-
brational energies based on a set of reliable physical cri-
terion and a subset of accurate limited experimental/
theoretical rovibrational energies which contain important
quantum effects and rovibrational information for a given
rovibrational band of a diatomic system. The accuracy of
the AMr constants and energies is uniquely dependent on
the quality of the literature experimental/theoretical data.
The AMr generates accurate rotational constants and
energies using a standard algebraic approach, and it not
only reproduces the input energies but also generates high-
lying rovibrational energies. The study of the ground state
X IZ; of N, molecule shows that the AMr low-order con-

stants have excellent agreement with limited experimental
constants, and the AMr study can give the correct high-
lying rovibrational spectrum which, in addition to repro-
ducing all input data, includes those energies of more
excited rotational states that may not be easily determined
experimentally or theoretically. Therefore, as long as a
subset of accurate rovibrational energies of a given rovi-
brational band can be obtained using modern experimental
technique or popular quantum method, one may easily
generate reliable corresponding constants and spectrum by
using the AMr approach as a quick and simple method. The

AMr approach can be taken as a useful alternative to
evaluate reliable rovibrational energies particularly for
those of high excited rotational states which may be diffi-
cult to obtain experimentally or theoretically.
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