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Abstract: Generating random numbers is prerequisite to any Monte Carlo method implemented in a computer program.

Therefore, identifying a good random number generator is important to guarantee the quality of the output of the Monte

Carlo method. However, sequences of numbers generated by means of algorithms are not truly random, but having certain

control on its randomness essentially makes them pseudo-random. What then matters the most is that the simulation of a

physical variable with a probability distribution, needs to have the same distribution generated by the algorithm itself. In

this perspective, considering the example of gauge block calibration given in ‘‘Evaluation of measurement data—Sup-

plement 1 to the ‘‘Guide to the expression of uncertainty in measurement’’—Propagation of distributions using a Monte

Carlo method’’, we explore the properties and output of three commonly used random number generators, namely the

linear congruential (LC) generator, Wichmann-Hill (WH) generator and the Mersenne-Twister (MT) generator. Extensive

testing shows that the performance of the MT algorithm transcends that of LC and WH generators, particularly in its time

of execution. Further, these generators were used to estimate the uncertainty in the measurement of the length, with input

variables having different probability distributions. While, in the conventional GUM approach the output distribution

appears to be Gaussian-like, we from our Monte-Carlo calculations find it to be a students’ t-distribution. Applying the

Welch-Satterthwaite equation to the result of the Monte Carlo simulation, we find the effective degrees of freedom to be

16. On the other hand, using a trial–error fitting method to determine the nature of the output PDF, we find that the resulting

distribution is a t-distribution with 46 degrees of freedom. Extending these results to calculate the expanded uncertainty, we

find that the Monte-Carlo results are consistent with the recently proposed mean/median-based unbiased estimators which

takes into account the artifact of transformation distortion.
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1. Introduction

In the realms of metrology, the Guide to the expression of

Uncertainty in Measurement (GUM) provides the basic

framework for uncertainty evaluation in measurement [1].

Although it is widely accepted by a large body of theo-

retical and experimental works, the basic assumption to the

use of the method is that all systematic errors are identified

and corrected at the very outset of the evaluation process.

At times, GUM requires sophisticated mathematical mod-

els to express uncertainty associated both with randomness

and systematic biases. In particular, GUM becomes quite

tedious in cases where model linearization and determi-

nation of partial derivatives become increasingly complex

[16].

An alternative method suggested in Supplement-1 of the

GUM documentation is the use of Monte Carlo (MC)

simulations [2]. In this procedure, pseudo-random numbers

are used to describe the probability distribution of the input

variables which with a known functional relationship

yields a single numerical value as output. The process is

repeated for large input data set so as to produce a set of

simulated results, and the statistical quantities such as

mean and standard deviation are determined which then

represent the estimates of the measurand and its

uncertainty.
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Evidently, generation of random numbers therefore

becomes a prerequisite to MC simulations. Here we note

that for the simulations to render valid statistical infer-

ences, it is important that the sample generated by the

random number generators are representative of the pop-

ulation itself. Thus, what remains as a challenge is how to

choose samples from a population, at random. In this

regard, several studies have tested the properties of various

random number generators built on a variety of computer

algorithms. However, such a generated sequence using

deterministic mathematical equations are strictly not truly

random and are often referred as pseudo-random generators

(PRNGs).

A myriad of PRNGs have been developed and are used

in several applications such as cryptography, gaming, sta-

tistical sampling, security applications and research where

unpredictability is desired [3]. Among these, the WH

generator [4] and the MT [3], 5 are found more popular due

to their brief algorithm, ease in implementation, simple

computation and large period. In fact, the WH generator

consists of three linear congruential generators, where an

LC generator yields a pseudorandom number sequence

which is calculated using a discontinuous linear equation

[6]. Below we briefly discuss the basic features of these

three PRNGs and perform various testing [7], 8, checking

its validity toward the problems in metrology. Furthermore,

we apply these PRNGs to an illustrative example as pro-

vided in the Supplement-1 of the GUM documentation [1].

Please note that several other efficient PRNGs such as

the Squares RNG, that has been developed very recently in

2020 as a modification of the Middle Square Weyl

Sequence PRNG, 64-bit MELG, Xoroshiro128 ? , Ran-

dom Cycle Bit Generator (RCB), have been developed

much more recently, in the past decade. Although devel-

oped several years before, MT, WH Generator and the LC

Generator remain the most widely used PRNGs in software

systems and platforms, such as Microsoft Excel, Python,

Java, R, etc. Moreover, they are computationally efficient

and quick in their execution. Their popularity and effi-

ciency provide the basis for them being chosen in this text.

The GUM assumes that the distribution obtained with a

large number of measurement model evaluations from a

Monte Carlo simulation process is essentially Gaussian,

however when these simulations were investigated for a

gauge block calibration and compared with corresponding

identical mean and standard deviation of a pure Gaussian

distribution, it was determined that the actual distribution

more closely corresponded with a Students t-distribution

with 46 degrees of freedom.

To calculate the effective degrees of freedom of the

distribution obtained through the Monte Carlo process, the

Welch-Satterthwaite equation [21], 22 was applied,

adhering to the analytical approach described in [21], 23.

The Welch-Satterthwaite equation is used to calculate an

approximation to the effective degrees of freedom for a

linear combination of independent components.

Further, due to the lengthy and complicated nature of the

calculations involved in the Welch-Satterthwaite equation

[24], the trials-and-errors method was used as an alternate

to determine the degrees of freedom associated with the

obtained distribution. The results given by this method

were found to be more suitable in our case study.

The paper is organized as follows. Section II describes

the details of the implementation of the PRNGs and com-

putation mentioning the specification of the hardware,

software versions and related information. In section III,

we describe the statistical test-results of the of three

PRNGs, namely the MT, WH generator and LC generators

for random numbers, followed by the use of random

numbers generated using the PRNGs to carry out the

Monte Carlo Simulations, to determine the uncertainty of

the measured length of an end gauge (Illustrative example

H.1 as provided in the Supplement-1 of the GUM docu-

mentation) and further compare the resulting distribution to

the one mentioned in the GUM. The final section of this

paper, Section IV, lists the conclusions derived from the

previous sections.

2. The Prng Methods and Computational Details

2.1. Pseudorandom Number Generators

2.1.1. Linear Congruential Generator

LC Generators are one of the oldest and most well-known

PRNG. It is easy to implement and is faster when compared

to many other generators. Moreover, its memory require-

ments are quite less. The values are generated by repeat-

edly applying the seed value with a recurrence relation of

the form given in (1).

Xn þ 1 ¼ a Xn þ cð Þ � mod mð Þ ð1Þ

where the multiplier (a), modulus (m) and the increment

(c) are constants. The output sequence of LC generator

sensitively depends on the choice of all three constants that

constitute the generating function. Thus, the property of the

random sequence can be duplicated, provided the initial

values are known. Thus, it has both merits and demerits,

depending on the application. For instance, LC generators

are seldom a choice of preferences when it comes to

cryptography. A cryptographically secure PRNG

(CSPRNG) apart from being able to produce seemingly

random values, should also guarantee unpredictability in its

sequences. Since they are associated with cryptography and

cybersecurity, any malicious attacker should not be able to
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predict the entire sequence, even when given access to the

initial state. Thus, CRPRNGs require higher entropy or

randomness than usual PRNGs, such as the LC Generator.

Therefore, every CSPRNG is a PRNG but not vice-versa.

Besides, the period of LC generators depends on the

modulus ‘m’ and increases as ‘m’ is increased. The faster

computation and memory advantage make LC generators

favourable for small and simple applications.

The algorithm for LC generator is:

1. Start with a seed value. In the present work, we have

used the seed value as 0.

2. Choose appropriate values for coefficients a, m and c.

The value of m should be preferably high to avoid

repetition in the generated sequence.

3. Apply the recurrence relation 1.

4. Divide the acquired value by m to scale it in the range

of 0 to 1.

5. Repeat steps (3) and (4) till the required number of

values are generated.

2.1.2. Wichmann–Hill Generator

The WH Generator is an extension of the LC generator, as

it uses three linear congruential equations with different

values of the moduli of the form Eq. 1, i.e.,

Xi
nþ1 ¼ ai � Xi

n

� �
� mod mi

� �
; for i ¼ 1; 2; 3 ð2Þ

Here Xi
0; (i = 1, 2 and 3) are the three seed values. The

values generated by each of these equations are summed,

and their modulo with 1 is taken to get the final value

between 0 and 1. The period of the WHG is determined by

the three moduli m1, m2 and m3 and, is equal to their

lowest common multiple (LCM). Common values chosen

for m1, m2 and m3 are 30,268, 30,307 and 30,323,

respectively, which provides the generated sequence a

period of 6.95E12 [4].

The algorithm for WH generator is as follows:

1. Start with three seed values and choose appropriate

values for coefficients ai and mi (i = 1, 2 and 3). In the

present work, we have used Xi
0 as 0, 1 and 2 for i = 1,

2 and 3, respectively.

2. Apply the recurrence relations given in Eq. 2.

3. Sum the three acquired values and take their modulus

with 1.

4. Repeat steps (3) and (4) till the required number of

values are generated.

2.1.3. Mersenne Twister

Mersenne Twister is by far the most widely used general-

purpose PRNG. It is named after the fact that its period of

repetition i.e., the number of values after which the gen-

erated numbers start reoccurring, is a Mersenne prime.

A Mersenne prime is a prime number, which is one less

than a power of 2, and is thus represented as 2n -1. It has a

large period of typically 219937–1 and generates a statisti-

cally uniform distribution of values. It has evolved from

the feedback shift register class of generators [3] [5].

It is used as the ‘‘default’’ PRNG in many popular

software systems and platforms, including Python, Ruby,

MATLAB, Octave and R [7]. Its popularity arises because

of its large period and much faster generation as compared

to hardware-implemented random number generators. It

passes various statistical tests for randomness and is con-

sidered one of the best PRNGs for non-cryptographic

purposes.

The algorithm of its implementation is shown below:

1. Start with a seed value. In the present work, we used

the seed value as 0.

2. Initialize the seed value into a state i.e., the first state

3. Transform the state with a one-way function, called

twist, into another state

4. Then apply another function, say g, to the state to

generate a list of 624 random numbers

5. To generate further numbers, twist the state again and

repeat steps 3 and 4.

MT differs from other PRNGs as it generates 624 ran-

dom numbers from one state instead of just one, and the

first state is not used to generate any numbers. Since the

transforming function g is not a one-way function, it can be

inverted. Thus, it is not a cryptographically secure PRNG.

2.1.3.1. Computational Details All the computations and

tests were performed on a system with Intel� Core i5-

8250U CPU with 8 Gigabytes of RAM. The operating

system used is Microsoft Windows 10 (64 bit). The

implementation of all the generators and statistical tests

were carried out locally using Python version 3.7. The IDE

used was Jupyter Notebooks and random, numpy, statistics,

time, matplotlib, pandas and scipy were the Python

libraries used.

3. Results and Discussion

3.1. Testing the PRNGs

Although, a computer generated sequence of numbers

cannot be strictly random, a generating function or a

recurrence relation can yield statistically random numbers

provided that it contains no observable regularities or

patterns. A wide range of randomness test suites have been

proposed, and it is necessary though not sufficient that the

Comparison of Pseudorandom Number Gener-ators and their Application for Uncertainty Es-timation… 483

123



PRNGs must pass these tests to be categorized as useful

and efficient for applications. In this regard, the following

test suites are adopted:

(i) Check for uniformity,

(ii) Independence

(iii) Test for Correlations

(iv) Runs Test for Randomness

(v) Value Distribution Analysis

(vi) Time of Execution

3.1.1. Check for Uniformity

Uniformity is an important property of a random number

sequence. The generated random values must be evenly

distributed over the whole range considered, so as to val-

idate the basic postulate of probability theory that all

events across the range are equally likely to happen.

Unequivocally, this implies that skewed or modulated

distributions pose bias and hence can be summarily rejec-

ted for the given set of input parameters. To check for

uniformity, the generated sequence of random numbers is

divided into several sub-intervals with equal bin size (h).

Ideally, if uniform, it is expected that the frequency of

values in each of the sub-interval must be equal. In other

words, if ‘N’ random samples are divided into ‘K’ sub-

intervals, then each of the ‘K’ sub-intervals has approxi-

mately ‘N/K’ values. To observe this trend, the value of

N should be fairly large. Further, the v2-test is employed. It

is widely used to analyse categorical data distribution and

check for a notable difference between two statistical data

sets, one containing the observed frequencies and the other

containing the expected frequencies of occurrence. The

implementation of the v2-test includes the following steps:

1. Formulate the null (H0) and alternate (H1) hypothesis:

(i) H0: the observations have a uniform distribution

and (ii) H1: the observations do not have a uniform

distribution.

2. Tabulate the random numbers with appropriate bin size

(h). Note that since the v2-test is valid only for

categorical values, the sequence must be first divided

into bins. The frequency of values in each bin can then

be considered as categorical. The value of the expected

frequency (mex) is calculated as the ratio of ‘‘number of

random numbers’’ to that of the ‘‘number of bins’’.

3. The v2-test is evaluated by means of the equation

(v2 ¼ R mobs�mexð Þ2

mex
, where mobs is the observed frequency.

4. The calculated v2 value is compared against the critical

value obtained from the v2-distribution table. If the

value is greater than the critical value for a given

confidence level, the null hypothesis of uniformity is

rejected, else accepted.

A quick visual representation for uniformity of the

generated random numbers can be usually expressed in the

form of histogram plots. In Fig. 1, we show the histogram

plots representing the random numbers generated using the

LC, WH and MT random number generators for different

sample sizes. The bin size is 0.1 for all plots. We find that

the property of uniformity is achieved when the sample

size is considerably large. As evident, for low sample sizes,

Fig. 1a, b, none of the three generators tends to show the

basic feature of uniformity of the random number distri-

bution. However, the sample size increases (see Fig. 1c, d),

the LC, WH and MT generators show not only increasing

uniformity but also become more or less indistinguishable.

In Table 1, we show the calculated v2 values for dif-

ferent sample and bin sizes on the random number

sequence generated by LC, WH and MT generators. In

majority of the sample configurations, we find that the

generated random distribution pass the v2-test. While the

MT generators tend to pass over all chosen configurations,

LC fails when for a sample size of 100 random numbers

with 100 bins. On the other hand, the behavior of WH

generator, on the basis of sample size and bin size appear

non-systematic. For intermediate sample sizes considered,

i.e., N = 103 and 104, with bin size 100, the WH generator

fail the v2-test. This shows that for moderately sized

samples, too small a bin size could fail the uniformity test.

Hence it becomes very elementary that an appropriate

sample size must be guaranteed. In this study, we find that

as the sample size increases from 102 to 105, all the three

generators, i.e., LC, WH and MT, show increasing uni-

formity. This is also evident from Fig. 1.

3.1.2. Test for Independence and Auto-Correlation

The property of independence of random numbers states

that any value of the random sequence must be independent

of its previous values, i.e., a random number generated is

independent to the previously generated values [9]. Gen-

erally, the auto-correlation test is used to test for inde-

pendence. Auto-correlation is the degree of correlation in

the same set of data, in different intervals. In other words, a

random number sequence is said to be auto-correlated, if

due to the presence of a pattern, the succeeding values can

be predicted using the preceding values. The test checks for

correlation for every ‘m’ values, also called the ‘lag’ value,

starting from a specified initial index [10]. In general, the

following steps are adopted in applying the auto-correla-

tion test.

1. Formulate the null (H0) and alternate (H1) Hypothesis,

where H0 is accepted when the sequence is indepen-

dent and H1 when the sequence is dependent.
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2. Receive a sequence of N random numbers, the lag

value (m) and the initial index (i).

3. Determine all the values starting from index i to N,

having a lag of m, i.e., for Ri, Ri ? m, Ri ? 2 m,…,

Ri ? (M ? 1)m; where M is the total number of such

terms given by i ? (M ? 1) m B N.

4. Calculate the distribution using the expression:

q ¼ 1

M þ 1

XM

k¼0
Riþkm � R kþ1ð Þm

h i
� 0:25

5. Calculate the standard deviation using:

rq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13M þ 7

p

12 M þ 1ð Þ

6. Calculate the test statistic, . Z ¼ q
rq

7.Compare the above calculated Z with the critical value of

Z for a certain confidence level , 1.96 for a = 95%. The

null hypothesis of independence is accepted if the condi-

tion is satisfied. a�Za
2
� Z � Za

2

For the critical value of Z, a confidence value of 95% is

taken, which implies that if the calculated Z value lies in

the interval [- 0.98, 0.98], the null hypothesis for the

independence of values holds valid. Table 2 shows the

result of the auto-correlation tests for all the three gener-

ators with sample size N = 104 and 105. Irrespective of the

sample size, the MT and LC generators pass the auto-

correlation test, while WH generator fails the test for

N = 104. From these results, we infer that MT and LC

generated random numbers set are independent of sample

dimensions while, WH generator requires larger sample

size to avoid auto-correlation with a given set of random

number sequence.

3.1.3. Test for Correlation

Correlation is a single number metric that is used to define

the degree to which two sets of data are linked or inter-

connected i.e., when a change in one set is accompanied by

a change in the other set, they are said to be correlated. It

measures the strength and direction of the association. It is

very important that the values generated by any PRNG

have diminutive or no correlation, as it would make the

sequence predictable. Correlated data have a particular

trend or direction that the points follow, which makes them

prone to patterns.

The correlation coefficient varies between 1 and -1,

with 1 indicating a very strong positive correlation and -1

indicating a very strong negative correlation. The correla-

tion between the two datasets becomes weaker as the

correlation coefficient approaches 0. When the coefficient

is 0, it indicates that there is no connection between the two

sets of data. Pearson r correlation is the most commonly

Fig. 1 Figures comparing the uniformity of the three generators with bin size of 0.1 and (a) one hundred, (b) one thousand, (c) ten thousand and

(d) one hundred thousand values, respectively

Table 1 Table showing the v2-test results for the three PRNGs

adopted in the work

Sample size v2 value

Bin size MT LC WH

100 10 4.00 9.00 11.80

20 9.12 20.80 16.40

100 84.00 128.00 102.00

1000 10 25.7 11.46 12.08

20 41.40 28.24 26.92

100 110.40 120.40 138.80

10,000 10 6.65 4.60 8.60

20 13.68 13.10 24.68

100 92.18 91.50 127.74

100,000 10 3.78 8.97 6.98

20 10.43 18.78 20.47

100 116.41 74.46 87.63

LC Linear Congruential), WH Wichmann–Hill, MT Mersenne Twister

generators. For a confidence interval of 95%, the critical value (v2
c)

from the v2-table are also shown. The ‘‘h’’ values represent the bin

size. Accordingly, uniformity is granted when the calculated v2[ v2
c.

The v2
c for Table 1 are 16.92 for 10 bins, 30.14 for 20 bins and 123.23

for 100 bins
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used correlation statistic, and it measures the degree of

relationship between linearly related variables and is given

as [7]:

rxy ¼
nRxiyi � RxiRyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nRx2
i � Rxið Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nRy2

i � Ryið Þ2
q ð3Þ

In Eq. 3, rxy represents the correlation coefficient, xi is

the ith value of the first set of values, yi is the ith value of

the second set of values, and ‘n’ is the number of values in

both sets. Random sequences have almost zero correlation,

and hence a good PRNG should also have rxy � 0.

In Table 2, we show the correlation values for the ran-

dom number sequences generated by the LC, WH and MT

for a sample size of 105 and 106. The results show that all

values of correlation calculated using Pearson’s method are

close to zero, although LC generator with 104 random

numbers in a sample looks relatively more correlated

compared to WH and MT PRNGs.

3.1.4. Runs Test for Randomness

If a sequence shows long runs of one category of values,

the chances of the next value also falling in that particular

category becomes high. Similarly, if the runs are too short

or too frequent, it becomes easy to predict the category of

the next value. This takes away from the randomness of the

sequence. So, a sequence must pass the Runs Test to be

free of patterns and be less predictable [19].

In fact, The Runs Test is a statistical test that uses ‘runs’

of data to determine whether the sequence is random or

follows a pattern. A run is defined as a series of increasing

or decreasing values, and the number of these values is

called the length of the run. Several methods can be used to

define a run, but each of them must be able to divide the

data into two distinct categories, such as odd or even, heads

or tails, positive or negative and so on. This test counts the

total number of runs relative to the number of values falling

into each of the two categories.

The sequence is less likely to be random if the number

of runs is too high or too low, as this would suggest that the

data are falling into a pattern. In our case, we will take the

values greater than or equal to the median of the given

sequence as positive and the other values as negative. A

new run starts when a positive value is followed by a

negative value or vice-versa [7], 11.

The algorithm used to implement the Runs Test and to

calculate the test statistic, Z has been thoroughly explained

in [20].

Compare the above calculated Z with the critical value

of ZC for a certain confidence level a, i.e., 1.96 for

a = 95%. The null hypothesis of randomness is accepted if

the condition �Za
2
� Z � Za

2
is satisfied.

In Table 2, we show the results of the Runs Test for all

three generators with sample size N = 104 and 105. The

MT and WHG pass the test for both sample dimensions,

whereas LC appears to fail for smaller sample size

dimensions.

3.1.5. Value Distribution Analysis

This property of Value Distribution Analysis states that for

more than one independent sequences of random values

generated, the distribution of the sum of the sequences is

triangular for two sequences and tends to become expo-

nential as the number increases [12]. For all generated

values lying in between 0 and 1, the mean of the sequences

generated should be approximately half the number of

sequences (n), and the range should be between 0 and n.

In Fig. 2, we show the distribution for values for n = 2

to 5 for LC, WH and MT random number generators. The

number of values is taken to be 105 in each case, and the

values are divided into 100 bins, with the x-axis repre-

senting the bins, and the y-axis representing the frequency

of occurrence for each bin. For n = 2, the distributions are

more or less triangular for all the three generators. As the

value of n increases, the distributions tend to gain an

exponential shape. It is evident that the MT generator

display the value distribution property quite well in com-

parison to the LC and WH generated random number

distribution. It is also observed that LC generators lag in

displaying the evolution in the sum of the distribution from

triangular to exponential with increasing n.

The mean value and the standard deviation obtained

from the analysis are tabulated in Table 3 that shows the

expected and actual values of the means in all considered

Table 2 The comparison of the Autocorrelation, Correlation and Runs Test for the random number sequences generated by the three PRNGs, for

given sample sizes of 104 and 105

RNG Autocorrelation Correlation Runs test

104 105 104 105 104 105

MT 0.081 -0.674 0.01 0.002 0.740 -1.068

LC 0.271 -0.693 -0.008 0.002 -1.740 -0.854

WH 1.085 0.570 -0.003 0.004 0.180 -0.132
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cases. The values of the standard deviation for any number

of sequences (n) are almost identical for all the generators.

3.1.6. Time of Execution

The time taken in the generation of values for the three

PRNGs, in generating 102–105 values was calculated and

plotted as shown in Fig. 3. For smaller sample sizes

(N\ 104), the execution time was almost identical for all

the three PRNGs. However, with increasing sample sizes,

the execution time differs exponentially.

The MT algorithm shows to be the fastest random

number generator, followed by LC and WH generators. For

generating 106 numbers MT algorithm took 0.18 s, while

LC took 0.32 s, and WH generator took approximately

0.51 s. Alternatively, MT takes approximately 30%, and

LC takes approximately 64% of the time taken by the

WHG to generate 106 random numbers, respectively. The

fact that WH generators takes more time is evident from its

algorithm that it is based on three linearized recursion

formulae.

Based on these tests, it appears that MT generators are

fast and reliable PRNGs and can efficiently facilitate

Monte Carlo simulation for uncertainty estimation [15].

Fig. 2 Comparison of Value Distribution Analysis for the random number distributions generated by the PRNGs, for the given sample size of

105

Table 3 Comparison of expected mean (XE) and actual mean (XA) values and standard deviation (r) following the value distribution analysis on

the PRNGs with sample size N = 105

PRNG n XE XA r

MT 2 1 1.001 0.408

3 1.5 1.502 0.499

4 2 2.001 0.576

5 2.5 2.498 0.647

LC 2 1 0.999 0.408

3 1.5 1.499 0.499

4 2 1.999 0.577

5 2.5 2.499 0.645

WH 2 1 1.001 0.408

3 1.5 1.500 0.500

4 2 1.999 0.579

5 2.5 2.499 0.648

Fig. 3 Comparison of execution time for the three PRNGs
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4. Illustration of PRNGs in Uncertainty Estimation

in Using Monte Carlo Simulation

Monte Carlo Simulation is a statistical technique that is

used to ascertain uncertainty in a measurement, by calcu-

lating the same quantity repeatedly with random values, in

order to get all the possible outcomes [18]. With a large

enough number of iterations, Monte Carlo Simulation is

able to provide all outcomes that might occur, with their

probabilities of occurrence. In this paper, we use the Monte

Carlo Simulation to determine the uncertainty in the

measurement of a nominally 50 mm. end gauge, by com-

paring it with a known standard of the same nominal

length, as described in the JCGM’s Guide to Uncertainty

Measurement (GUM)—101. The MT and WHG were used

to generate and sample the distributions required for its

implementation and were also checked for their suitability

in simulation tasks simultaneously.

The difference in lengths of the 2 end gauges (d) is

given using Eq. (4) [1].

d ¼ L 1 þ a:hð Þ�Ls 1 þ as:hsð Þ ð4Þ

where L is the length measured at 20 �C, Ls is the standard

length at 20 degree Celsius given in the calibration cer-

tificate, a and as are the coefficients of thermal expansion,

and h and hs are the deviations from specified temperature.

From the above expression, the value of L can be

derived as shown in Eq. (5), which can be approximated to

Eq. (6) for practical use.

L ¼ Ls 1 þ ashsð Þ þ d

1 þ ah
ð5Þ

L ¼ Ls þ d � Ls ashs � ahð Þ ð6Þ

If we consider d = D ? d1 ? d2, dh = h - hs and

da = a – as, the Eq. (6) can be rewritten as the final Eq. (7).

dL ¼ Ls þ D þ d1 þ d2 � Ls da h0 þ Dð Þ þ asdh½ � � Lnom

ð7Þ

Equation (7) is used to calculate the difference in

measured length with up to 10 million trials, each using a

random value from the specified distribution of the factors,

specified in GUM 101, upon which the length (L) depends.

4.1. Distributions of All Factors Involved

This subsection specifies the procedures used to generate

the specified distributions and then sample random values

from them, for all factors which are used in Eq. (7) to

calculate the difference in measured length. Both the MT

and WHG are used to generate these distributions. The

sampling process remains the same for both the PRNGs.

The sampled values are then input in the Eq. (7) for 106

trials of the Monte Carlo Simulation, and consequently 106

values of difference in length are received. In the end, a

frequency distribution of all the acquired values is gener-

ated, specifying the likelihood of their occurrence.

According to the GUM, this distribution should be a Stu-

dents t-distribution which may only reasonably be

approximated as a normal/Gaussian distribution in the

special case where the model exhibits a large number of

degrees of freedom.

All the following values and parameters are specified in

the Sect. 9.5.2 of the GUM 101 [1]. The parameters, dis-

tributions and the procedures used to generate them have

been explained briefly below for better more completeness.

4.1.1. Standard Length (Ls)

The Standard Length forms a scaled and shifted T-Distri-

bution, with mean (l) = 50,000,623 nm., standard devia-

tion (r) = 25 nm and degrees of freedom (m) = 18.

The following steps were used to generate this

distribution:

1. Make a draw (t) from the central t-distribution with 18

degrees of freedom.

2. Required value (E) is acquired by applying Eq. (8)

with the t value sampled above.

E ¼ lþ r
ffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p t ð8Þ

Figure 4a shows the distribution generated by the above

process.

4.1.2. Average Length Difference (D)

The Average Length Difference forms a scaled and shifted

T-Distribution, with mean (l) = 215 nm., standard devia-

tion (r) = 6 nm and degrees of freedom (m) = 24.

Figure 4b shows the distribution generated for D.

4.1.3. Random Effect of Comparator (d1)

The Random Effect of Comparator forms a scaled and

shifted T-Distribution, with mean (l) = 0 nm., standard

deviation (r) = 4 nm and degrees of freedom (m) = 5.

Figure 4c shows the distribution generated for d1.

4.1.4. Systematic Effect of Comparator (d2)

The Systematic Effect of Comparator forms a scaled and

shifted T-Distribution, with mean (l) = 0 nm., standard

deviation (r) = 7 nm and degrees of freedom (m) = 8.

Figure 4(d) shows the distribution generated for d2.

488 K. Malik et al.

123



4.1.5. Thermal Expansion Coefficient (as)

The Thermal Expansion Coefficient is to be assigned a

rectangular distribution with limits a = 9.5 * 10–6 �C-1

and b = 13.5 * 10–6 �C-1.

The following steps were used to generate the rectan-

gular distribution:

1. Make a random draw (r) from the standard rectangular

distribution, with limits a = 0 and b = 1.

2. Required value (E) is calculated by using the ‘r’ value

as input to Eq. (9).

E ¼ a þ b � að Þr ð9Þ

Figure 4e shows the distribution generated for a s.

4.1.6. Average Temperature Deviation (h0)

The average temperature deviation is assigned a Normal/

Gaussian distribution with l= -0.1 �C and r= 0.2 �C.

The following steps were used to generate the normal

distribution:

1. Make a draw (z) from the standard normal distribution

with mean = 0 and standard deviation = 1.

2. Required value (E) is calculated by using the ‘z’ value

as input to Eq. (10).

E ¼ lþ r:z ð10Þ

Figure 4f shows the distribution generated for h0.

4.1.7. Effect of Cyclic Temperature Variation (D)

The effect of cyclic temperature is assigned an Arcsine (U

distribution) with limits a = -0.5 �C and b = 0.5 �C.

The following steps were used to generate the Arcsine

distribution:

1. Make a draw (r) from the standard rectangular

distribution with a = 0 and b = 1.

2. Required value (E) is calculated by using the ‘r’ value

as input to Eq. (11).

Fig. 4 The distributions generated for the input parameters using the Mersenne Twister PRNG, for a sample size 106
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E ¼ a þ b

2
þ b � a

2
sin 2prð Þ ð11Þ

Figure 4g shows the distribution generated for D

4.1.8. Difference in Expansion Coefficients (da)

The Difference in Expansion Coefficients is assigned a

CTrap distribution with parameters:

a = -1 * 10–6 �C-1, b = 1 * 10–6 �C-1 and d = 0.1 *

10–6 �C-1.

The following steps were used to generate the CTrap

distribution:

1. Make 2 draws (r1 and r2) independently, from the

standard rectangular distribution with a = 0 and b = 1.

2. Calculate the values as and bs, using Eq. (12).

as ¼ a � dð Þ þ 2dr1; bs ¼ a þ bð Þ � as ð12Þ

Required value (E) is calculated by using the above

calculated values as inputs to Eq. (13)

E ¼ as þ ðbs � asÞr2 ð13Þ

Figure 4(h) shows the distribution generated for da.

4.1.9. Difference in Temperatures (d h)

The Difference in Temperatures is assigned a CTrap dis-

tribution with parameters a = -0.050 �C, b = 0.050 �C
and d = 0.025 �C.

Figure 4i shows the distribution generated for dh.

The total execution time for 103 values in each distri-

bution, was 0.053 s for the MT and 0.039 s for the WHG

whereas for 106 values, it was 7.241 s for the MT and

27.04 s for the WHG. Since the time taken by WHG is

much higher than MT with almost identical results, we can

further establish on the fact that MT is the most suit-

able PRNG for simulations.

4.2. Application of Monte Carlo Simulation

Values randomly sampled from the generated distributions

were used along with Eq. (7) to conduct trials of the Monte

Carlo Simulation. Each distribution used for sampling had

106 generated values.

The Fig. 5 represents the probability distribution of all

the possible values of difference in length acquired through

Eq. (7), with N random trials of the Monte Carlo Simula-

tion, where N = 102–106, respectively, using the Mersenne

Twister.

Table 4 compares the time taken by the MT and WH

generators for generation of the distributions, for number of

values N =103 and 106.

As shown in Fig. 5, when the number trials are low,

Monte Carlo Simulation is unable to cover all possible

outcomes, and thus an irregular and ill-defined distribution

is obtained, like in Fig. 5, b. To overcome this issue, the

Adaptive Monte Carlo Simulation can be used. The

Adaptive Monte Carlo procedure involves carrying out an

increasing number of trials while checking the results for

statistical stability after each complete iteration. On the

other hand, the Adaptive procedure leads to significant

increase in the complexity of the underlying code used for

implementation.

As the number of trials approaches 104 and 105 in

Fig. 5c, d, the distribution becomes more thorough and

starts to gradually smoothen and take the desired bell-

shape. When the number trials performed is 106, as shown

in Fig. 5e, the distribution becomes very well defined and

appears to be almost perfectly normal, thus for this task,

106 trials are considered to be ideal to efficiently estimate

uncertainty. The distributions generated by the WHG were

identical to that produced by the MT and hence have not

been shown. The mean and standard deviation values cal-

culated for MT and WHG have been compared to the

standard result in JCGM GUM 101 in Table 5.

Table 5 contains the mean and standard deviation values

for 106 trials of Monte Carlo Simulation, for MT as well as

WHG, along with the result mentioned in the JCGM GUM

101. The value for the GUM (GUF) has been adopted from

the JCGM 101, Experiment 9.5. Both the mean as well as

standard deviation produced by the PRNGs are very close

to the expected values [17], hence we can conclude the

trials were conducted successfully.

The JCGM GUM 101 specifies that if the only available

information of a random variable is an expected value

x and an associated standard uncertainty u(x) then

according to the principle of maximum entropy, the best

available estimate of the probability density function f(x) is

a Gaussian probability distribution such that f(x) is

approximately equal to N(x, u^2(x)) unless more detailed

information is obtained from a Monte Carlo simulation. If

this were to be true, the probability distribution generated

should be identical to a normal distribution having the

same mean and standard deviation value as the acquired

distribution. This comparison is done in Fig. 6, where we

generated a normal distribution with mean = 838.028 nm

and standard deviation = 35.832 nm (from Table 5), and

compared it to the distribution received from the

simulation.

As it is evident from Fig. 6, the two distributions are in

fact not identical. Thus, the probability distribution gen-

erated by the Monte Carlo trials is not normal, contrary to

as illustrated by the GUM, but appears to depend on some

other parameter apart from the mean and standard

deviation.
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Fig. 5 Monte Carlo Simulation for estimation of uncertainty in length measurement using Mersenne Twister, with number of trials, N equal to

102, 103, 104, 105 and 106, respectively

Table 4 Comparing the execution time for MT and WHG for N number of generated values

Parameter Dist N MT (sec) WHG (sec)

Ls t-dist (l = 50,000,623 nm

r= 25 nm, z = 18)

103 0.019 0.020

106 1.389 4.791

D t-dist

(l = 215 nm

r= 6 nm, z = 24)

103 0.005 0.003

106 1.429 4.888

d1 t-dist

(l = 0 nm,

r= 4 nm, z = 5)

103 0.005 0.004

106 1.394 4.187

d2 t-dist

(l = 0 nm

r= 7 nm, z = 8)

103 0.007 0.004

106 1.417 4.277

as Uniform

(a = 9.5*10–6 �C-1 b = 13.5*10–6 �C-1.)

103 0.001 0.001

106 0.249 0.645

h0 Normal

( l= -0.1 �C,

r= 0.2 �C.)

103 0.001 0.002

106 0.031 2.221

D Arcsine

(a = -0.5 �C,

b = 0.5 �C)

103 0.001 0.001

106 0.461 0.726

da CTrap

(a = -1*10–6 �C-1, b = 1*10–6 �C-1,

d = 0.1*10–6 �C-1)

103 0.013 0.002

106 0.433 2.515

dh CTrap

(a = -0.050 �C, b = 0.050 �C, d = 0.025 �C.)

103 0.001 0.002

106 0.438 2.790
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We assume the resultant distribution to be a t-distribu-

tion, with the aforementioned values for mean and standard

deviation, and an unknown number of degrees of freedom.

To calculate the degrees of freedom of the obtained curve,

we use two methods, the Welch-Satterthwaite formula and

the trials-and-errors method.

4.2.1. Welch–Satterthwaite Method

The Welch-Satterthwaite equation is used to calculate the

effective degrees of freedom for a linear combination of

independent variances. The effective degrees of freedom (m

eff) calculated by this equation is valid only if the involved

factors are completely independent. Welch-Satterthwaite is

the recommended formula in the JCGM GUM 100 to

calculate the effective degrees of freedom for any linear

problem. The formula is shown in Eq. (14).

meff ¼
u4

c yð Þ
PN

i¼1

u4
i yð Þ
mi

ð14Þ

where uc yð Þ is the combined standard uncertainty, ui yð Þ is

the product of the sensitivity coefficient, and standard

uncertainty of the individual components in the linear

equation and mi are the degrees of freedom associated with

the components, where the number of components is N.

u2
c yð Þ can be calculated as the sum of squares of the

standard uncertainties of all the individual components as

shown in Eq. (15).

u2
c yð Þ ¼ u2

0 yð Þ þ u2
1 yð Þ þ :::þ u2

N yð Þ ð15Þ

For application of Welch–Satterthwaite in gauge

uncertainty estimation, the associated standard

uncertainty components as well as the degrees of

freedom to be used, are present in the JCGM GUM 100

and have also been shown in Table 6 for convenience. In

case no degrees of freedom are associated with a variance

component, for example the components h and a s in

Table 6, the value of mi can be taken as infinity.

Since d = D ? d1 ? d2, as shown in Eqs. (6) and (7),

the standard uncertainty for d can be calculated using the

Welch–Satterthwaite formula as shown in Eq. (14). The

value of u2
c dð Þ can be calculated using Eq. (15). Thus,

using the Table 6 and Eqs. (14) and (15), the effective

degrees of freedom for d comes out to be 25.6.

The value of u2
c dLð Þ to be used in the equation can be

calculated with Eq. (15), using the values of ui(l) listed in

Table 6. After the application, u2
c dLð Þ comes out to be

1002 nm2, therefore the value of uc dLð Þ is approximately

equal to 32 nm.

Using the uc dLð Þ calculated above and the uncertainties

and degrees of freedom listed in Table 6, we applied the

Welch–Satterthwaite equation, as shown in Eq. (16).

meff ¼
324

254

18
þ 9:74

25:6 þ 2:94

50
þ 16:64

2

¼ 16:7 � 16 ð16Þ

Therefore, the effective degrees of freedom calculated

using the Welch–Satterthwaite equation for the gauge

length uncertainty estimation is 16.

Figure 7, compares a normal distribution with mean =

838.028 nm and standard deviation = 35.832 nm (from

Table 5), the distribution obtained from the Monte Carlo

Simulation and a Students t-distribution with the afore-

mentioned mean and standard deviation and degrees of

freedom equal to 16.

As it is clearly evident from the Fig. 7, 16 is not the apt

value for degrees of freedom in this case, as the students t-

distribution with meff=16 is not identical to the distribution

obtained from the Monte Carlo Simulation.

Table 5 Comparing Mean and Standard Deviation given in the JCGM GUM 101, with those generated by the MT and WHG

Source Mean (nm) Standard deviation (nm)

GUM (GUF) 838 32

GUM (MCM) 838 36

MT 838.028 35.832

WHG 838.174 35.841

Fig. 6 Comparing the distribution generated by the Monte Carlo

trials to a normal distribution with identical mean and standard

deviation
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4.2.2. Trial and Error Method

As the result of the Welch–Satterthwaite equation was not

accurate, we tried the trials and error method to determine

the degrees of freedom of the Monte Carlo distribution, and

determined that the acquired result was indeed a t-distri-

bution with 46 degrees of freedom. Figure 8a compares the

distributions for varying numbers of degrees of freedom,

and Fig. 8b shows the Monte Carlo Distribution along with

the final result i.e., when number of degrees of free-

dom, = m46 and the result of the WS-z approach discussed

later, with degrees of freedom, = m16.

4.2.3. Beyond t-Interval Method for Uncertainty

Estimation

It has been previously illustrated by Huang [25]26 that for

small sample size, the conventional uncertainty estimation

using the t-interval method gives rise to paradoxes such as

the Du-Yang paradox [28], the Ballico paradox [27] and

the uncertainty paradox [28]. The t-based uncertainty has

large precision as well as bias errors when the number of

observations is small [29]. As a solution to the problem,

Table 6 Standard uncertainty and degrees of freedom for all components of gauge uncertainty estimation

Standard uncertainty component Value of standard uncertainty ci ui(l) (nm) Degrees of freedom

Ls 25 nm 1 25 18

d

D

d1

d2

9.7 nm

5.8 nm

3.9 nm

6.7 nm

1 9.7 25.6

24

5

8

a s 1.2E-6 �C-1 0 0 –

h

h0

D

0.41 oC

0.2 �C
0.35 �C

0 0 –

da 0.58E-6 �C-1 -ls h 2.9 50

d h 0.029 �C -lsas 16.6 2

Fig. 7 Comparing a normal distribution, a students t-distribution with

degrees of freedom = 16 and the Monte Carlo distribution, having the

same mean and standard deviation

Fig. 8 Comparing the distribution generated by Monte Carlo

Simulation to t-distributions with varying degrees of freedom and

the result of the WS-t formula
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Huang [25] proposed uncertainty estimation using a mean-

unbiased estimator, now known as the WS-z method.

According to the WS-t approach, the expanded uncer-

tainty (Ut) is calculated using the Eq. (17).

Ut ¼ t95;v:uc ð17Þ

where t95;v is the t-value for 95% coverage with v degrees

of freedom, and uc is the standard uncertainty. On the other

hand, in the proposed WS-z approach, the expanded

uncertainty is corrected by an unbiased estimator which

can be accomplished using two different methods, namely

(i) the Median-Unbiased and (ii) the Mean-Unbiased

methods. According to the Median-Unbiased approach,

the expanded uncertainty is given using Eq. (18).

UZmed ¼ z95:Cmed:uc ð18Þ

where z95 is the z-value for 95% coverage, uc is the

standard uncertainty, and Cmed is Median-Unbiased

estimator calculated using Eq. (19).

Cmed ¼ 1 � 0:0167e�0:9 v�1ð Þ
� ��1

: 1 � 2

9:v

� ��1:5

ð19Þ

In the Mean-Unbiased approach, the expanded

uncertainty is given using Eq. (20).

Uzmean ¼ z95

c4;v
:uc ð20Þ

where z95 is the z-value for 95% coverage, uc is the

standard uncertainty, and C4,v is bias correction factor for

uc calculated using Eq. (21).

c4;y ¼
ffiffiffi
2

v

r

� C v þ 1

2

� �
=C

v

2

� �
ð21Þ

where v is the degrees of freedom, and C is the gamma

function.

Following these set of equations, we calculated the

expanded uncertainty for the above-mentioned length

uncertainty problem. With degrees of freedom estimated as

16, from the WS equation, the WS-t approach yielded the

Ut as 55.87 nm, while the WS-z approach using the median

and mean unbiased schemes yielded 63.47 nm and

63.71 nm, respectively. The resulting distribution gener-

ated with degrees of freedom equal to 16 i.e., the result of

the WS-z approach, has also been plotted on Fig. 8b for

comparison with the distribution obtained from the Monte

Carlo procedure and the one obtained as a result of the

trial-and-error method. The trial-and-error method still

remains to be the most accurate for this case study.

Interestingly, the Ut obtained from the Monte Carlo with

degrees of freedom being estimated as 46 was found to be

60.16 nm. The latter result being much consistent with the

WS-z approach indicates that much of the bias is inherently

corrected by the Monte Carlo method. Partly, this may

be due to the large number of model measurements one can

accomplish by the MC method, thereby tending closer to

the z-statistical description of the measurement data.

However, not be complacent of the results, it certainly

requires detailed investigation to check whether a simple

estimate of DOF using a probabilistic fit would suffice

sufficient information on the uncertainty associated with

the measurements.

5. Summary and Conclusion

In this paper, we tested three of the most widely used

PRNGs for non-cryptographic purposes, Mersenne Twister,

Linear Congruential Generator and Wichmann–Hill Gen-

erator. As observed, Mersenne Twister stood out as the

most efficient of the three, passing all the tests comfortably.

It is preferred over the LC generator and WH generator

as:

1. MT is the fastest for the generation of a large number

of values [3], 15

2. It is the most uniform of all the considered PRNGs, as

it was the only one able to pass all the test cases of the

Chi-Square Test for Uniformity [5]

3. The values produced were almost completely free of

correlation as each of the coefficient of correlation was

very close to zero [13].

4. The generated sequence was independent and free of

intra-sequence dependencies as the MT comfortably

passed the Autocorrelation-Test, whereas WH gener-

ator failed one of the test cases.

5. MT generated values that were not prone to patterns,

as portrayed by its excellent performance in the Runs

Test. The LC generator was unable to pass all the test

cases for this test [6], whereas the WH generator

performed well.

6. MT was the only PRNG that was able to achieve the

expected Frequency Distribution of Values, in the

Value Distribution Analysis. Both the LC generator

and the WH generator showed irregularities and abrupt

changes in their respective graphs, but as the value of

‘n’ was increased, Mersenne Twister showed a distri-

bution increasingly resembling that of a Normal

Distribution [12]

Thus, Mersenne Twister is the favoured PRNG for use

in simulations and other related tasks, conforming to the

conclusions made in [3], 14.

Further, the Mersenne Twister and Wichmann-Hill

Generator were used to generate random values for the

application of Monte Carlo Simulation to determine the

uncertainty in the measurement of the length of an end
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gauge. It was observed that for 1 million random trials of

the Monte Carlo Simulation, a very thorough frequency

distribution, spanning through all the possible values of

length was achieved, thus enabling us to efficiently quan-

tify the uncertainty associated with this particular mea-

surement. Note that the WH generator also produced

comparable results but was rendered unfeasible due to its

higher execution time.

The case study of evaluation of uncertainty in mea-

surement of length of an end gauge, yielded a probability

distribution with mean of 838.028 nm and standard devi-

ation of 35.832 nm, aligning with the values mentioned in

the GUM 101 documentation. The alternate uncertainty

estimation approach, the GUM approach, gives a similar

result, but requires calculation of partial derivatives and

effective degrees of freedom, which makes it unsuitable for

some tasks.

The distribution acquired as a result of 106 trials of the

Monte Carlo Simulation was assumed to be normal, but

this assumption proved inconsistent when compared with a

normal distribution generated using the same mean and

standard deviation. A third parameter, namely the degrees

of freedom was assumed to be of significance. Using the

Welch–Satterthwaite equation, the effective degrees of

freedom were calculated to be 16. Apart from the process

required for the application of the Welch–Satterthwaite

formula being cumbersome when the number of involved

components are relatively high, the result obtained i.e., 16

effective degrees of freedom were not an adequate fit for

gauge block calibration. As an alternative to the Welch–

Satterthwaite equation, we applied the more convenient

and a simple method based on trial and error. With

extensive fit procedures checking, it was found that the

curve resulting from the Monte Carlo Simulation was in

fact a t-distribution with 46 degrees of freedom for this

particular case study.

However, as pointed out in literature, the use of t-in-

tervals to account for the paradoxes in uncertainty mea-

surements, calculations were extended to techniques that

accounts for the corrections. One such method is that of z-

intervals-based corrections, originally proposed by Huang.

Using the WS-z method, it was found that the expanded

uncertainty amounts to 63.47 (63.71) nm in the median

(mean) unbiased method, respectively, contrary to the

value 55.87 estimated using the WS-t method. Interest-

ingly, we find that the WS-z method agrees well with the

estimated t-distribution with 46 degrees of freedom

obtained using the Monte Carlo method. The latter value

was found to be 60.162 nm. Although, the results obtained

from the WS-z and Monte Carlo methods appear consis-

tent, further investigations are needed to ascertain the

validity of our findings with more examples and detailed

investigations. The work is, moreover, an indication that

the nature of the output PDF obtained using the Monte-

Carlo methods may be aptly estimated using trial and error

fit to determine the expanded uncertainty in the quantifi-

cation of measurement uncertainty.
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