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Abstract: In the present study, trace gases (NH3, NOx, CO and SO2), PM2.5 and meteorological parameters were carried

out at 5 different monitoring sites [CSIR-National Physical Laboratory, New Delhi and other 4 air quality measurements

(AQMS) sites (Anand Vihar, Mandir Marg, Punjabi Bagh and R.K. Puram) of Delhi Pollution Control Committee (DPCC)]

of megacity Delhi, India, from January 2013 to December 2015 to estimate the spatio-temporal variation of pollutants over

Delhi. The results showed large spatial and seasonal variations in mixing ratios of ambient trace gases and PM2.5

concentration over Delhi. The average mixing ratios of NH3, NO, NO2, CO and SO2 were 53.4 ± 14.9 ppb,

42.0 ± 14.6 ppb, 39.6 ± 13.0 ppb, 1.9 ± 0.4 ppm and 4.3 ± 1.0 ppb, respectively, whereas average concentration of

PM2.5 was 136.2 ± 49.6 lg m-3 during the entire study period. All the trace gases and PM2.5 showed maxima during

winter season followed by summer and monsoon seasons at all the sites. The 24-h average mixing ratios of the trace gases

(NH3, NO, NO2, CO and SO2) and PM2.5 were recorded higher when compared with other sites of the country. The

concentration of PM2.5 is breaching the prescribed standard limit of National Ambient Air Quality Standards (NAAQS) of

India.
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1. Introduction

Air pollution is rapidly increasing in India, due to various

anthropogenic factors such as economic rise, population

growth, huge consumption of fossil fuels, urbanization and

increase in traffic flow [1]. As a consequence, atmospheric

trace gases and particulate matter (PM) remain a nation-

wide problem and result in regional photochemical smog

and haze formation [2]. The ambient NH3, SO2 and NOx

are primary precursor gases for the formation of fine par-

ticulate matter (PM2.5) by gas to particle conversion pro-

cess [3]. The ambient NH3 as a dominant base plays an

important role in atmospheric chemistry as well as ambient

air quality [4]. NH3 once emitted reacts with atmospheric

acidic gases such as H2SO4 and HNO3 which are oxidation

products of SO2 and NO2, respectively, to form secondary

particulate matter in the form of (NH4)2SO4, NH4HSO4 and

NH4NO3 [5–7]. Due to shorter residence time (1–3 days),

NH3 readily undergoes these reactions close to the source

and contributes to increase in concentration of urban PM

[8]. The fine particle NH4
? salts have impact on human

health, visibility, ambient acidity, biodiversity of ecosys-

tem and have implications for global radiation budget and

transboundary air pollution [9, 10].

The major sources of ambient NH3 are livestock waste

and fertilizer application in the agricultural fields [11]. But,

recent evidence suggests that human activities, industrial

process, municipal waste and internal combustion in traffic

are also major sources of ambient NH3 at urban areas
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[12, 13]. There is a need to control NH3, other trace gases

(NOx, SO2) and PM2.5 emission especially in urban areas

where a complex mixture of harmful gases and particles of

varying chemical composition are increasing and effecting

the environment and human health [14]. Although the

traffic contribution was thought to be small, several studies

have reported a strong link between NH3 emission and

traffic [13, 15–17]. The introduction of three-way catalyst

to reduce NOx emission in gasoline vehicles in 1980 s and

1990 s increased vehicular NH3 emission [18] in urban

areas. NH3 is now the dominant reactive nitrogen species

emitted from vehicles after introduction of selective cat-

alytic reduction (SCR) system in diesel vehicles [19]. The

introduction of catalyst had increased the traffic source of

NH3 from 2 to 15% of total emitted NH3 in Los Angeles

area as reported in a roadway tunnel study [20]. Pierson

and Brachaczek, [20], Fraser and Cass, [21], Moeckli et al.

[22] suggested that on road vehicle NH3 emissions

increased significantly after the introduction of three-way

catalytic converters. NH3 mixing ratio in urban areas is

comparable or even higher than that of rural areas as

reported in various studies worldwide [23]. The ambient

NH3 is not routinely measured as compared to SO2 and

NOx which have been regulated and going to decrease even

further in many countries in coming years [24]. The vehicle

emission standard to regulate NH3 was also absent world-

wide. It is a necessity to control emission of NH3 with NOx

and SO2 to reduce PM2.5 concentration [24]. Pinder et al.

[25] found that the NH3 control technologies were most

cost-effective as compared to SO2 and NOx. Wang et al.

[26] reported that benefit of SO2 reduction would be

completely offset if NH3 emission was allowed to keep

their recent growth in order to reduce PM2.5 concentration.

Delhi is the capital city of India and represents typical

urban characteristics. The rapid urbanization and industri-

alization caused an increase in number of petrol and diesel

vehicles which are added annually into Delhi; it is to be

noted that the total number of registered vehicles in the city

was of the order of 9.7 million in 2015–16 [27]. The

condition worsens every winter as the city suffered by

burning of crop residue in neighboring states and it records

higher levels of air pollution [28]. Although a number of

studies have been conducted on characteristics of aerosol,

however, a limited attention has been paid to the factors

which are responsible for the formation of secondary

inorganic aerosols. A limited study has been done on the

diurnal, seasonal and temporal variability of ambient NH3

and its role in the formation of secondary inor-

ganic aerosols at different parts of the India for limited

period and at single monitoring station [13, 29–35]. In the

present study, we report the mixing ratios of ambient NH3

and other gases (NOx, CO, SO2) and PM2.5 concentration at

5 different sites in Delhi from January 2013 to December

2015. Diurnal, seasonal and temporal variations of these

trace gases and PM2.5 were also reported and correlated

with meteorological parameters (temperature, relative

humidity, wind direction and wind speed) of all the

observational sites.

2. Methodology

2.1. Description of Observational Sites

The measurements of trace gases (NH3, NO, NO2, CO and

SO2) and PM2.5 were carried out at 5 different locations

(Fig. 1) in Delhi, India, from January 2013 to December

2015. The detailed description of Delhi is available in our

previous publication and reference therein [13]. Out of 5

observational sites CSIR-National Physical Laboratory

(CSIR-NPL), New Delhi, is considered as a reference site

and other 4 sites (AQMS: Anand Vihar, Mandir Marg,

Punjabi Bagh and R.K. Puram) are operational under the

DPCC, New Delhi, India. The diurnal, seasonal and tem-

poral variations of ambient NH3, NO, NO2 and CO at

CSIR-NPL (from January 2010 to December 2015) are

already reported in our previous paper and reference

therein [13, 36]. We have used these datasets (from January

2013 to December 2015) to compare the pollutants col-

lected at 4 AQMS sites of DPCC, New Delhi. A brief

description of these observational sites is given below:

1. CSIR-NPL (28�630N, 77�170E): is an urban/traffic site

surrounded by agricultural fields of Indian Agricultural

Research Institute (IARI) in W and SW direction and

is under the influence of vehicular emission in SW,

NW, NE and SE direction [13]. The site is encircled

with roadside traffic and nearby road in N direction.

2. Anand Vihar (288380N, 778180E): site is near the Inter-
State Bus Terminus (ISBT), which caters to the states

of Uttar Pradesh, Uttarakhand and Himachal Pradesh,

as shown in Fig. 1. Anand Vihar is a posh residential

area and a fast developing commercial center in East

Delhi. Sahibabad and Patparganj industrial areas are in

close proximity. The study site may be defined as

industrial-cum-commercial zone with less residential

activities. However, due to proximity to ISBT, move-

ment of traffic is relatively higher.

3. Mandir Marg (288370N, 778120E): site is located at NP

Boys Senior Secondary School at Mandir Marg in

Central Delhi. The observational site is surrounded by

mainly ridge forest area and residential colony.

4. Punjabi Bagh (288400N, 77870E): monitoring site is

located in Sarvodaya Kanya Vidyalaya No. 2 in

Punjabi Bagh in West Delhi. This location is sur-

rounded by major roadside traffic. The two major
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opposite roads with heavy traffic are located at 500 m

away from the monitoring site.

5. R.K. Puram (288330N, 778110E): site is located at

Kendriya Vidyalaya, Sector 2, R.K. Puram in South

Delhi near outer ring road with high traffic density.

2.2. Measurement Techniques

Measurements of mixing ratios of trace gases (NH3, NO,

NO2, CO and SO2) and PM2.5 have been performed using

USEPA-approved respective trace gas analyzers.

A brief information about the instruments used, make,

principle of operation and lower detection limit (LDL),

etc., of all the instruments are listed in Table S1 (in sup-

plementary information). The calibration of zero check

(baseline calibration) of all the analyzers was performed

using Pure Air Generator (PAG; accuracy ± 0.05 ppb).

The measurement ranges of all the analyzers were cali-

brated (span calibration) periodically using respective

traceable certified reference gases (NMI traceable). Cali-

bration procedures (as well as traceability of standards

used) of these analyzers are discussed in detail in our

previous paper Sharma et al. [34]. Sampling inlets of all the

analyzers were also placed at * 10 m height (above the

ground) at all the observational sites. These instruments

were operated continuously (24 h) with uninterrupted and

steady power supplies for more than 15–20 days in a

month. The mixing ratios of NH3, NO, NO2, CO and SO2

were measured at every 1-min interval by respective ana-

lyzers and calculated by hourly average values (the

reported datasets have been used after omitting frequently

detected sudden spikes and long gaps in the observations)

for the entire sampling period.

Meteorological parameters were recorded by automatic

weather station (AWS) at all the observational sites. The

meteorological parameters such as temperature (�C), rela-
tive humidity (RH, %), wind speed (ms-1) and wind

direction (degree) were recorded simultaneously during the

observational period [34]. The daily average visibility and

rainfall data were downloaded from Weather Underground

(http://www.wunderground.com).

3. Results and Discussion

3.1. Mixing Ratios of Trace Gases and Concentration

of PM2.5

Diurnal, seasonal and annual variations in mixing ratios of

trace gases (NH3, NO, NO2, CO and SO2) and concentra-

tion of PM2.5 were analyzed and reported for 5 different

observational sites in Delhi, India, during January 2013 to

December 2015 (Table 1, 2). The annual average and

seasonal variations in mixing ratios of all the trace gases,

PM2.5 concentration and meteorological parameters over

Delhi are summarized in Table 1 and 2 (Fig S1 in sup-

plementary information). The annual average mixing ratio

of NH3 varied from 16.1 ± 3.3 ppb (minima) at CSIR-

NPL in 2013 to 71.0 ± 19.8 ppb (maxima) at Punjabi

Bagh in 2014. The highest NH3 mixing ratio was observed

at Punjabi Bagh with annual average of 68.0 ± 18.9 ppb

followed by 64.2 ± 20.8, 60.1 ± 16.0, 55.0 ± 15.4,

19.6 ± 3.5 ppb at Anand Vihar, Mandir Marg and R.K.

Puram, NPL, respectively (Table 1). The overall annual

average mixing ratio of ambient NH3 was recorded as

53.4 ± 14.9 ppb over Delhi ranging from 19.8 ppb to

114.6 ppb. The average mixing ratio of ambient NH3 was

observed relatively higher in present case as compared to

other cities of India and the world. Behera and Sharma [30]

reported mixing ratio of ambient NH3 as 38 ± 8 ppb at

Kanpur, India; Tsai et al. [37] reported 45 ± 23 ppb at

Kaohsiung, Taiwan, and Biswas et al. [38] reported

71 ± 24 ppb at Lahore, Pakistan. The annual mixing ratio

of NO was recorded as 20.4 ± 6.2 ppb, 49.4 ± 17.1 ppb,

44.7 ± 15.4 ppb, 45.3 ± 15.3 ppb and 50.3 ± 19.5 ppb,

at CSIR-NPL, Anand Vihar, Mandir Marg, Punjabi Bagh

and R.K. Puram, respectively. The highest annual average

mixing ratio of NO was recorded as 50.3 ± 19.5 ppb at

R.K. Puram. The annual average mixing ratio of NO2 and

CO was varied from 13.4 ± 3.9 ppb in 2013 at NPL and

1.4 ± 0.4 ppm in 2015 at Mandir Marg to

51.4 ± 16.5 ppb at Punjabi Bagh in 2013 and

2.7 ± 0.6 ppm in 2015 at CSIR-NPL. The annual average

mixing ratios of NO2 and CO were recorded as

39.6 ± 13.0 ppb and 1.9 ± 0.4 ppm with nonsignificant

spatial variability over Delhi. The time series and monthly

average in mixing ratios of ambient NH3, NO, NO2, CO

and SO2 along with concentration of PM2.5 are depicted in

Figs. S2–S8 (in supplementary information).

The mixing ratios of NO and NO2 were also observed

higher in the present study as compared to other previous

study at Delhi and other sites in the world [13, 32, 39]. The

annual average mass concentration of PM2.5 was reported

highest (171.6 ± 63.1) lg m-3 at Anand Vihar and lowest

as 105.6 ± 42.9 lg m-3 at NPL with overall annual

average as 134.0 ± 49.6 lg m-3 over Delhi during the

study period. The annual average concentration of PM2.5

vary spatially over Delhi due to different anthropogenic

sources strength and meteorological condition.

3.2. Diurnal Variation

Diurnal variation in mixing ratios of ambient NH3, other

trace gases and PM2.5 concentration during winter, summer

and monsoon seasons at various locations in Delhi are
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depicted in Fig. 2. The ambient NH3 reaches maximum

during traffic hours and minimum during midday

(1500–1600 h). We observe the NH3 peak around

7:00–11:00 h in the morning and at around 17:00–20:00 h

in the evening (Fig. 2). The increase in NH3 mixing ratio

during traffic hours (7:00–11:00) indicates traffic source at

the observational sites of Delhi. Kirchner et al. [16] and Li

et al. [40] also observed bimodal diurnal variation in NH3

mixing ratio occurring during peak traffic hours which

indicate vehicles as a significant source of NH3. Meng

et al. [41] and Zhao et al. [42] also observed the similar

diurnal variation pattern of NH3 mixing ratios at Beijing.

The NO and NO2 levels are generally high during traffic

hours with some values higher than 80 ppb. The photo-

chemical process, emission–dilution balance of NOx and O3

and increased emissions of motor vehicles during morning

Table 2 The average mixing ratios of ambient NH3, NO, NO2, CO, SO2 along with PM2.5 concentration during winter, summer and monsoon

seasons at NPL, Anand Vihar, Mandir Marg, Punjabi Bagh and R.K. Puram in Delhi (values in parentheses are ranges)

Parameters NPL Anand Vihar Mandir Marg Punjabi Bagh R.K. Puram

Species Season Average ±

SD

D/N Average ±

SD

D/N Average ±

SD

D/N Average ±

SD

D/N Average ±

SD

D/N

NH3 (ppb) Winter 25.3 ± 4.6 0.93 89.2 ± 24.7 0.91 85.1 ± 20.6 0.95 87.9 ± 23.1 0.95 76.1 ± 21.4 0.81

(4.2–56.4) (0.31–156.8) (0.87–145.6) (0.22–149.9) (0.52–157.0)

Summer 19.6 ± 3.9 1.01 60.9 ± 19.0 0.9 52.2 ± 14.6 0.98 64.2 ± 17.5 1.02 46.4 ± 12.3 0.81

(1.7–53.7) (0.35–156.5) (2.06–145.7) (0.30–149.5) (0.17–149.7)

Monsoon 13.8 ± 1.9 0.98 41.9 ± 18.0 0.93 40.3 ± 12.0 0.96 48.6 ± 15.0 1.31 39.8 ± 10.4 0.9

(2.80–40.6) (0.41–155.9) (3.37–143.9) (2.20–149.9) (4.09–143.4)

NO (ppb) Winter 21.4 ± 7.2 0.88 72.8 ± 24.1 0.71 58.4 ± 19.6 0.67 59.7 ± 20.6 0.66 67.4 ± 23.8 0.71

(1.4–64.2) (0.15–247.8) (0.32–245.7) (0.13–252.0) (0.13–249.1)

Summer 19.2 ± 5.9 0.87 46.6 ± 25.9 0.75 40.3 ± 15.4 0.68 41.2 ± 13.5 0.8 44.6 ± 19.2 0.62

(2.1–77.7) (0.13–247.9) (0.21–12.3) (0.13–240.2) (0.13–249.6)

Monsoon 20.5 ± 5.5 0.79 40.5 ± 17.4 0.79 33.1 ± 10.2 0.76 32.2 ± 10.2 1.18 36.5 ± 15.0 0.77

(1.5–58.6) (0.16–247.0) (0.21–243.9) (0.13–132.9) (0.13–249.0)

NO2 (ppb) Winter 20.8 ± 5.9 0.98 61.3 ± 21.0 0.88 60.6 ± 19.9 0.7 66.3 ± 22.4 0.82 60.4 ± 17.0 0.66

(3.0–58.6) (0.12–236.6) (0.32–250.7) (0.97–255.5) (0.24–239.8)

Summer 19.9 ± 5.6 0.9 42.3 ± 17.4 0.89 41.6 ± 14.5 0.7 44.9 ± 12.7 0.76 37.4 ± 11.0 0.72

(2.6–63.2) (0.16–195.2) (1.29–213.7) (0.13–189.6) (0.10–178.4)

Monsoon 18.6 ± 4.4 0.98 32.2 ± 9.9 1.05 31.7 ± 11.1 0.72 33.6 ± 10.7 1.23 30.5 ± 7.4 0.74

(3.2–53.6) (0.13–220.2) (0.11–239.5) (0.16–203.1) (0.30–107.9)

CO (ppm) Winter 2.2 ± 0.5 0.86 2.5 ± 0.4 0.83 2.5 ± 0.6 1.08 3.1 ± 0.6 0.92 2.4 ± 0.6 0.77

(0–20–4.34) (0.11–5.0) (0.10–5.0) (0.11–5.0) (0.10–5.0)

Summer 2.0 ± 0.6 0.88 1.5 ± 0.4 1.25 1.2 ± 0.4 1.87 1.8 ± 0.5 0.92 1.3 ± 0.4 1.12

(0.23–3.56) (0.11–5.00) (0.10–4.93) (0.11–5.0) (0.10–4.96)

Monsoon 2.0 ± 0.4 0.92 1.4 ± 0.3 0.91 0.8 ± 0.2 1.04 1.3 ± 0.2 2.08 1.1 ± 0.3 0.75

(0.22–3.99) (0.11–4.98) (0.10–4.80) (0.13–4.94) (0.11–5.0)

SO2 (ppb) Winter 1.9 ± 0.5 0.95 5.3 ± 1.2 1.11 5.0 ± 1.3 1.17 5.2 ± 1.6 1.03 5.1 ± 1.1 1.03

(0.6–4.2) (0.14 –10.44) (0.20–10.4) (0.13–10.4) (0.20–10.8)

Summer 1.6 ± 0.5 0.98 4.7 ± 1.2 0.96 4.9 ± 1.3 0.94 4.9 ± 1.3 1.03 4.8 ± 1.1 0.88

(0.5–4.0) (0.13–10.4) (0.20–10.4) (0.13–10.4) (0.20–10.8)

Monsoon 1.7 ± 0.5 0.99 5.1 ± 1.0 1.01 4.0 ± 0.8 0.97 5.2 ± 1.0 0.9 3.4 ± 0.7 0.88

(0.7–4.1) (0.14–10.4) (0.20–10.4) (0.13–10.4) (0.10–10.8)

PM2.5 (lg
m-3)

Winter 190.2 ± 67.3 – 266.0 ± 91.1 0.75 193.1 ± 66.7 0.84 212.3 ± 73.4 0.79 217.5 ± 75.0 0.75

(55.7–421.0) (1.0–798.0) (1.0–696.0) (4.0–828.0) (1.0–985.0)

Summer 67.8 ± 27.9 – 136.0 ± 52.1 0.77 81.9 ± 28.2 0.89 111.6 ± 37.8 0.96 138.1 ± 47.3 0.83

(16.7–153.0) (1.0–795.0) (1.0–520.0) (1.0–680.0) (1.0–779.0)

Monsoon 54.5 ± 34.3 – 84.9 ± 27.5 0.96 55.2 ± 16.9 0.92 62.9 ± 21.6 1.62 65.2 ± 25.8 0.95

(8.84–251.8) (1.0–792.0) (1–591.0) (1.0–396.0) (1.0–578.0)
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rush hour result in increase in early morning hour NOx

concentrations [43–45]. Varotsos et al. [46] also observed

traffic rush-hour peak in NOx concentration at Pattison an

urban site of Greece. CO mixing ratio also shows double

diurnal peak rather than single. The morning peak in CO

mixing ratio was observed around 7:00–11:00 h and minima

in the afternoon and again gradually increase after 5 h and

reached maximum in the night. At all the 5 locations CO and

NOxmixing ratio also shows diurnal peak which may be due

to the vehicular emissions [47]. The diurnal profile of NOx

(NO?NO2) and CO shows clear signature of vehicular

traffic [48–50] (as shown in the bimodal peak matching the

traffic rush hour). The similar diurnal variations in mixing

ratios of NOx, CO were also observed at many urban sites in

India and around the world [47, 51–55]. The diurnal varia-

tion of SO2 with maxima during traffic hours was observed

in winter due to lower boundary layer and less efficient

oxidation to sulfate as compared to summer with distinct

diurnal pattern and monsoon with no diurnal pattern. The

diurnal peak in the mixing ratio of NH3, NO, NO2 and CO

was not only due to the vehicular source but also partially

due to meteorological parameters (boundary layer, wind

speed) and also due to photochemical formation of ozone

from its precursors (NOx and CO) [7, 53, 56–58].

During the study, both temperature and wind speed

showed similar diurnal pattern characterized by high value

during daytime and low values during nighttime in all the

three seasons (Table S2; in supplementary information). As

the midday wind speed is higher which results in dilution

of pollutants as compared to morning and evening [59]. In

the evening, the stability of atmospheric conditions starts

increasing as wind speed and mixing height start decreas-

ing which results in the increase in pollutants concentra-

tions [39, 60]. Boundary layer height and wind speed were

highest at noontime and increased the dilution of pollutants

which results in lower concentrations [60]. The gradual

increase of these gases and PM in the night can be attrib-

uted to the formation of nocturnal inversion layer [61, 62].

Fig. 1 Map of sampling locations
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3.3. Seasonal Variation

We have analyzed the data according to three seasons,

winter (November–February), summer (March–June) and

monsoon (July–September) to observe the influence of

meteorology on the mixing ratios of trace gases and PM2.5

concentration. Table 2 and Table S1 (in supplementary

information) show seasonal averaged values for all the

parameters during the measurement period at the four

sampling sites. Figure 3 also presents the mixing ratios of

NH3, other trace gases and PM2.5 concentration at all the

sampling sites in Delhi in different season. Figure S8 (in

supplementary information) shows the monthly statistics of

NH3, NO, NO2, CO, SO2 and PM2.5 mixing ratio averaged

over the 3-year period, measured at NPL and other four

AQMS sites. The average mixing ratio of ambient NH3

was 72.7 ± 19.0 ppb in winter followed by summer

(48.7 ± 13.5 ppb) and monsoon (37.0 ± 11.5 ppb). The

residue burning activities within Delhi and in surrounding

agricultural area result in higher mixing ratio of NH3 in

winter season followed by summer and monsoon season

[23, 29, 41, 63, 64]. The frequent temperature inversion in

Fig. 2 Averaged diurnal variations in mixing ratios of ambient NH3, NO, NO2, CO, SO2 and PM2.5 concentration during winter, summer and

monsoon seasons at Anand Vihar, Mandir Marg, Punjabi Bagh and R.K. Puram at Delhi
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winter results in lower boundary layer which trapped the

pollutants emitted from various anthropogenic and natural

sources, while in the summer month, the greater photo-

chemical reactions due to higher solar radiation and higher

mixing height results in lower concentration

[57, 58, 65, 66]. The frequent rainfall activity in the

monsoon results in the lower concentrations of pollutant at

the study site [45]. The concentration of PM2.5 was also

highest in winter (215.8 ± 74.9 lg m-3) followed by

summer (107.1 ± 38.7 lg m-3) and monsoon

(64.5 ± 25.2 lg m-3) seasons. The concentration of PM2.5

is exceeding the NAAQS (24 h average: 60 lg m-3; annual

average: 40 lg m-3) in all seasons. It can be observed that

the values of NH3 and all other trace gases were higher in

winter as compared to summer and monsoon. During the

winter season, low wind speed and formation of lower

stable boundary layer played an important role in slower

dispersion of pollutants and localized emissions also

increased due to enhanced biomass burning [23, 42, 67].

The variability in meteorological condition and different

emission sources leads to large seasonal variability in

mixing ratio of NH3 and other trace gases and concentra-

tion of PM2.5.

3.4. Temporal Variation of Trace Gases and PM2.5

The monthly average plots of NH3, other trace gases and

PM2.5 along with meteorological parameters were shown to

understand their temporal variation at different timescales

(Fig. 4). Figures S2–S7 (in supplementary information)

show the temporal variation in the mixing ratio of NH3 and

other trace gases, i.e., NO, NO2, CO, SO2, and PM2.5 over

Delhi during the measurement period (January 2013 to

December 2015). The daily and monthly mean values of

NH3 varied from 19.8–114.6 ppb and 30.0–82.6 ppb,

respectively with their annual mean 53.4 ± 14.9 ppb for

the entire study period. The mixing ratio of NH3 exhibited

a similar trend, i.e., gradual increase from October to

December, January and then gradual decrease from April to

July, August at CSIR-NPL and other 4 AQMS sites

of Delhi. The NH3 mixing ratio reached maximum in

December (114.6 ppb) and were minimum in July

(21.5 ppb) over Delhi. NH3 mixing ratio observed in this

study was higher than of 14–91 ppb with annual average of

42 ppb observed by Singh and Kulshrestha [31] JNU (ur-

ban site), Delhi, and comparable to the annual average

value of 59 ppb at Okhla, Delhi, reported by Singh and

Kulshrestha [68].

The temporal variation of NH3 coincided with NO, NO2

and CO indicating similar sources of traffic emission. The

spikes in time series of NH3 that correlate with spikes in

CO time series were also observed by Li et al. [40] which

indicate the emission of NH3 from nearby vehicles. The

overall time series shows that the local air circulations and

changing meteorological conditions result in significant

day-to-day variations in all the trace gases during the

measurement period.

Fig. 3 Seasonal variations of mixing ratios NH3, NO, NO2, CO, SO2 and concentration of PM2.5 during January 2013 to December 2015 over

Delhi
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4. Relationship Among Trace Gases and PM2.5

4.1. Bivariate Correlation Analysis

The ambient NH3 is only primary alkaline gas present in

the atmosphere that reacts with acidic gases and act as a

precursor for secondary aerosol. The main source of

ambient NH3 is agriculture, but at urban area other sources

include industries, landfills, waste burning and motor

vehicles [15, 69]. Since the introduction of three-way cat-

alyst in the vehicles, transport sector is believed to be the

largest contributor in influencing NH3 in the urban

area [69–72]. A correlation analysis was employed to

analyze the relationship of NH3 with traffic-related

Fig. 4 Relationship between monthly a NH3, wind speed and rainfall b temperature and relative humidity c PM2.5 and visibility during January

2013 to December 2015 at Delhi
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pollutant in different seasons (Table S3; in supplementary

information). A study in Beijing found vehicular emission

contributes to 74% of the ground NOx, while power plants

and industrial sources contributed only 2% and 13%,

respectively. In case of CO, vehicles contribution was

estimated to be more than 80% in Beijing and Guangzhou

[73]. The bivariate correlation analysis was performed

using hourly measured data from January 2013 to

December 2015 over Delhi. The mixing ratio of NH3

shows good correlation with all the traffic-related pollutant

in all the seasons (Table S3; in supplementary informa-

tion). It supports the hypothesis of contribution of traffic to

the NH3 mixing ratio at the urban area [17, 18, 74]. In the

summer season, NH3 shows weaker correlation with traffic-

related pollutant as compare to winter which suggests other

NH3 sources not link to traffic are also significant

(Table S3; in supplementary information). The correlation

of NH3 with SO2 in summer and monsoon seasons also

indicates non-traffic sources. The higher temperature in

summer and monsoon increased NH3 emission from soil

and human waste and increased wind speed result in long-

range transport sources [7, 75]. The increased temperature

dissociates the particulate ammonium nitrate and results in

volatilization of NH3 from aerosol phase which mask

correlation of NH3 with traffic-related pollutants [76].

4.2. Meteorological Effects on Trace Gases and PM2.5

The meteorological parameters recorded during the mea-

surement period (January 2013–December 2015) at 4

AQMS sites of DPCC and CSIR-NPL in Delhi are sum-

marized in Table 1. The variations in local meteorological

condition such as temperature, relative humidity (RH),

wind speed, wind direction and rainfall play an important

role in formation of air pollutant, dispersion, transport and

dilution which can affect the temporal, diurnal and sea-

sonal variations in gaseous pollutants (NH3, NOx, CO,

SO2) and PM2.5 [77]. The local and regional causes of

particulate pollution can be understood by analyzing the

influence of meteorology on trace gases concentration and

PM. The monthly average mixing ratios of ambient NH3,

other trace gases and PM2.5 determined within selected

range of meteorological parameters, i.e., temperature, RH,

wind speed, rainfall and visibility over Delhi, are depicted

in Fig. 4 and Table S5 (in supplementary information).

The highest average mixing ratio of NH3 with a value of

91.6 ppb occurs at temperature less than 10 �C (B 10 �C).
At higher temperature, i.e., greater than 30 �C, the mixing

ratio of NH3 is 45.4 ppb. This shows that the mixing

ratio of NH3 decreased with the increase in temperature.

The negative correlation of NH3 with temperature from

June to December, January and also for the yearly value

explained the decrease of NH3 with increase in temperature

(Table S4, in supplementary information). The other trace

gases and PM2.5 also show decreasing trend with the

increase in temperature. All other trace gases also show

negative correlation with temperature in the months of

winter season except NO2 and SO2 which shows positive

correlation with temperature in January (Table S4, in

supplementary information). The lowering of boundary

layer in the winter season is the main reason for the trap-

ping of pollutants emitted from anthropogenic activities

and formed by gas to particles conversion which results in

their higher concentration [78]. PM2.5 shows positive cor-

relation with temperature from months of March to

September which indicates the photochemical formation of

PM2.5 species, i.e., SO4
2- and NO3

- from their precursor

gases SO2 and NOx [79, 80].

RH plays important role in photochemical reaction and

in the production of wet aerosols [81]. The average mixing

ratio of NH3 increased with increasing RH. Mixing ratio of

NH3 is 50.0 ppb at RH equal to or below 40% and

increased to 62.9 ppb at RH greater than 80%. All other

trace gases (NOx and CO) also show same increasing trend.

The concentration of PM2.5 and SO2 mixing ratio increases

with the RH range rising from \ 40% to 60–80%; then

their concentration drops slightly when RH is higher than

80%. The positive relationship of PM2.5 with RH in month

of November and December is the result of favorable

condition of higher RH and lower temperature in this

season for the formation of PM2.5 from its precursor gases

(NH3, NOx and SO2) [82]. The higher RH is observed on

windless, cloudy and hot days which are favorable for

accumulation and chemical reactions of pollutants [83, 84].

The mixing ratio of ambient NH3 decreases steadily

when wind speed increases from B 1 to 3.1–4.0 ms-1. The

mixing ratio of NH3 is 68.1 ppb when wind speed is

B 1 ms-1 and decreases to 45.2 ppb when wind speed

range is between 3.1–4.0 ms-1. The other trace gases and

PM2.5 also show the same decreasing trend with increasing

wind speed. Ambient NH3, other trace gases and

PM2.5 show significant negative correlation with wind

speed for every month and yearly value [85]. The signifi-

cant negative correlation of ambient NH3 and other trace

gases with wind speed indicates decrease in mixing ratio

with increasing wind speed because the pollutants are

drifted vertically as well as horizontally through turbulent

transfer mechanism under high wind speed and results in

reduction in their concentration in the atmosphere [8]. The

gaseous pollutants and fine particles tend to remain over

the region of origin under low wind speed and results in

Fig. 5 Seasonal distribution of wind speed (m s-1) with wind

direction during winter, summer and monsoon season at a NPL,

b Anand Vihar, c Mandir Marg, d Punjabi Bagh and e R.K. Puram in

Delhi

b
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increase in concentration of pollutants [79]. In the winter

season, the average wind speeds were lower at all the

sampling sites as compared to summer and monsoon. This

suggests local sources of emission of trace gases as

stronger wind increase the dispersion of local air pollutants

[39].

The daily average mixing ratio of NH3 was higher, i.e.,

59.8 ppb when there is no rainfall, and decreases to

38.3 ppb when daily average precipitation is greater than

50 mm (Table S5, in supplementary information). Results

also show the lower monthly average concentration of

ambient NH3 when monthly rainfall was higher and vice

versa. The other trace gases (NO, NO2, CO, SO2) and

PM2.5 concentration were also observed higher (45.0 ppb,

44.0 ppb, 1.9 ppm, 4.5 ppb) and 161.6 lg/m3, respec-

tively at\ 0.1 mm precipitation and decrease to (33.8 ppb,

31.7 ppb, 1.3 ppm, 4.4 ppb) and 54.1 lg/m3, respectively,

at rainfall [ 50 mm (Table S5, in supplementary infor-

mation). The influence of precipitation on pollutants con-

centration can be observed by comparing the

concentrations of monsoon season with winter and sum-

mer. The concentration of all pollutants (NH3, NO, NO2,

CO, SO2 and PM2.5) was also calculated on precipitation

(the amount of daily precipitation[ 0.1) and non-precipi-

tation days (Figure S9, in supplementary information) and

decrease in mixing ratio from non-precipitation days to

precipitation days was shown. All the observed pollutants

show negative correlation with rainfall for most of the

months and yearly value (Table S4, in supplementary

information). It indicates the decrease in concentration of

pollutant with increase in rainfall.

The average values of all the pollutants (NH3, NO,

NO2, CO, SO2 and PM2.5) were also determined within

selected range of visibility. The observed daily average

concentrations of the pollutants were higher at visibility

B 0 km and lower when visibility was greater than 3 km.

The concentration of PM2.5 was 328.5 lg m-3 at visi-

bility B 0 and decreases to 81.7 lg m-3 when visibility

was higher than 3 km. Ambient NH3 and other trace

gases also shows the same trend. We have observed that

when concentration of PM2.5 was higher then visibility is

lower and vice versa. The trace gases NH3, NOx and SO2

are the precursor gases for the PM2.5. PM2.5 is

also showing significant negative correlation with visi-

bility during the study period.

The distributions of average surface wind speed with the

wind direction at CSIR-NPL and other 4 AQMS of Delhi

are depicted in Fig. 5. In winter season, the wind mainly

comes from the NW to SW direction across all the sites.

The prevailing wind directions in summer were NW, NE,

SW and SE. In monsoon season, wind mainly comes from

the SE direction.

5. Conclusions

The ambient air quality of 5 different monitoring sites of

megacity Delhi was examined using continuous observa-

tions of trace gases (NH3, NO, NO2, CO and SO2), PM2.5

and meteorological parameters (temperature, RH, wind

speed and wind directions etc.,) from January 2013 to

December 2015. All the observed parameters showed

seasonal variation with higher peaks in the winter season

due to increase in fuel burning, stagnant air conditions and

less photochemical activity. The diurnal variation in

ambient NH3 and other trace gases shows a bimodal pattern

characterized by higher mixing ratios during traffic hours

and night and lower mixing ratios during noon and after-

noon. The correlation of NH3 with traffic-related pollutants

(NOx, CO) and bimodal diurnal cycle of NH3 synchronized

with traffic rush hour indicate the traffic emission as a

significant source of NH3 mixing ratio at the study sites.

The photochemical reactions and air pollutants dispersion

were influenced by diurnal variation in boundary layer

stability and other meteorological parameters. This study

can contribute to better understanding of particulate pol-

lution in relation to trace gases at highly populated and

urbanized megacity Delhi. The tremendous growth in Delhi

and surrounding areas results in increased emission of

primary pollutants, particulate matter and production of

secondary pollutants, which cause further deterioration in

the air quality of Delhi. The higher concentration of air

pollutant affects human health and environment signifi-

cantly over Delhi. These results suggest that more strict

reductions in emissions of pollutant will be needed in order

to significantly improve the air quality.
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