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Abstract: The purpose of this paper is to present a methodology for analyzing the system performance of an industrial

system by utilizing uncertain data. Although there have been tremendous advances in the art and science of system

evaluation, yet it is very difficult to assess their performance with a very high accuracy or precision. For handling of these

uncertainties, fuzzy set theory has been used in the analysis while their corresponding membership functions are generated

by solving a nonlinear optimization problem with particle swarm optimization. For finding the critical component of the

system which affects the system performance mostly, a composite measure of reliability, availability and maintainability

(RAM) named as the RAM-index has been introduced which influences the effects of failure and repair rate parameters on

its performance. A time varying failure and repair rate parameters are used in the analysis instead of constant rate models.

Finally, the computed results are finally compared with existing methodologies. The suggested framework has been

illustrated with the help of a case.

Keywords: PSOBLT; Uncertain data; Industrial system; RAM-index; Particle swarm optimization; Lambda–tau

methodology

1. Introduction

Reliability, availability and maintainability (RAM) of the

equipment play an important role in controlling both the

quantity, and quality of the products. They aim at esti-

mating and predicting the probability of the failure, and

optimizing the operational management related to the

provision of the failures, i.e., maintenance policies. Factors

that affect RAM of an industrial system include machinery

operating conditions, maintenance conditions, infrastruc-

tural facilities, and so forth [1–3]. As the industrial systems

are growing complexity and hence it is difficult for the

system analyst for enhancing/maintaining the production or

productivity of the entire system in such as way that each

component/system of the entire production plant will run

failure free. However, failure is an inevitable phenomenon

in a system. Therefore, the system or components undergo

several failure–repair cycles that include logistic delays

while performing repair leads to the degradation of sys-

tems’ overall performance. Thus to improve the reliability

and availability of the system, a proper maintenance

strategy plays an important role. On the other hand, the

availability of the system can be improved by improving its

reliability and maintainability under the consume resources

such as cost, weight, volume etc. Thus, keeping all these

views, behavior of such systems can be studied in terms of

RAM. For this, a composite measure of all these indices

which influences the system performance directly has been

introduced, named as RAM-index, for measuring the per-

formance of the system.

Often, reliability of the component is not specific. This

is due to that the reliability of a component/system depends

on operational and environmental conditions. Moreover, in

the early design phase reliability of a system may be taken

into account and hence it is difficult to determine the

reliability specifically. Further, the causes may be age,

adverse operating conditions and the vagaries of manu-

facturing processes which affect each part/unit of the sys-

tem differently. Finally for measuring the performance of

the system, the data require are taken in the form of failure

rate and repair time from the historical or available records

which are usually out of date or representing the past
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behavior of the system but unable to predict the future

behavior of the system and thus subject to the issue of

uncertainty. Thus, the probabilistic approach to the con-

ventional reliability analysis is inadequate to account for

such built-in uncertainties in the data. For this reason and

to handling these issues, the concept of fuzzy set theory or

fuzzy reliability has been introduced because if the data are

used as such in the calculations, the results will be highly

uncertain.

Thus for computing the RAM parameters and conse-

quently their behavior, an approach gave by Knezevic and

Odoom [4] and Garg [5] may be used for computing their

parameters in terms of fuzzy membership functions. But it

has been analyzed from the study that their approach is

limited to a small size structure and hence not suitable for

the complex structured system due to various fuzzy arith-

metic operations used in the analysis. Therefore spread of

the reliability index must be optimized up to a desired

degree of accuracy so that plant personnel may use these

for improving the performance of the system. In that

direction, researchers [6–8] have attempted an approach for

computing the membership function of the reliability

indices by formulating a nonlinear optimization problem

and hence solve with the evolutionary algorithm like GA,

PSO etc. In the present study, particle swarm optimization

based lambda–tau (PSOBLT) technique is used [6, 7]. With

this technique, expression of the system parameters is

obtained by using a lambda–tau methodology while their

corresponding membership functions are generated by

formulating a nonlinear programming problem and then

solve with PSO. The major advantage of this technique is

that it gives the compressed search space for each com-

puted reliability index by utilizing available information

and uncertain data than other existing techniques. These

suggest that decision maker/ system analyst has smaller

and more sensitive region to make more sound and effec-

tive decision to improve the system performance in lesser

time.

In the framework of RAM analysis, some researcher pay

attention on that issue in which they analyze the perfor-

mance of the system by considering reliability, availability

or maintainability as an objective function. In their analysis

they adopt a suitable methodology for analyzing their

behavior and help the plant personnel to plan and adapt

suitable maintenance strategies for increasing the perfor-

mance and productivity of the system. For instance, Shar-

ma and Kumar [9] analyzed the performance of urea

fertilizer plant in terms of RAM parameters by applying

Markovian approach. Rajpal et al. [10] developed an arti-

ficial neural network (ANN) model for assessing the effect

of input parameters on RAM analysis of a repairable sys-

tem. In their analysis, historical data are used to train the

ANN. But there exists some obstacle during their analysis.

The major one is due to their static in nature as they used

the values of RAM parameter at specified times because in

real-life situation, the behavior of the industrial system

varies with time and hence it does not give the exact idea

about the behavior of the system. Also they used historical

data without quantifying their uncertainties in the analysis.

On the other hand, these limitations have been overcome

by the researchers [2, 8] by quantifying the uncertainties in

the form of triangular fuzzy numbers and then analyzed

their consequent RAM parameters in the form of fuzzy

membership function by using soft computing based

hybridized techniques. As most of the above researcher has

analyzed the performance of the system by considering the

constant failure and repair rates i.e., follow the exponential

distribution. Also it was assumed by the researchers that all

the components follow the same types of fuzzy numbers.

But in real-life situation, however, it is common to have a

system of components having different failure probability

density functions. As we know, the most popular reliability

distributions are Weibull and normal distributions. There-

fore, it seems that there is a need for a more generalized

methodology that can be applied for variable rates.

Thus the objective of the paper is to quantify the

uncertainty in the data during the evaluation of the RAM

parameters for a complex repairable industrial system.

For this composite measure of the RAM named as the

RAM-index has been analyzed for measuring the per-

formance of the system. The time varying failure rate

model which follows Weibull and normal distribution has

been taken instead of following the exponential distri-

bution for accessing the effect of failure and repair pat-

tern on to a system performs. The technique has been

demonstrated through a case study of the crankcase

manufacturing plant. The results may be helpful for plant

personnel for analyzing the system behavior and may

improve the system performance by adopting suitable

maintenance strategies.

2. Notations

The following are the notations that have been used in the

entire paper.

b, c Shape parameters of failure and repair rate of the

Weibull distribution respectively.

h, g Scale parameters of failure and repair rate of the

Weibull distribution respectively.

l, m Mean of the failure and repair rate parameters of

normal distribution respectively.
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r1, r2 Standard deviation of the failure and repair rate of

normal distribution respectively.

t Operating time.

Uð�Þ Distribution function of the standard normal

distribution.

k Failure rate of the system.

kr Repair rate of the system.

s Repair time of the system.

T Continuous random variable.

A Crisp set.
eA Fuzzy set.

l
eA

Membership function of the fuzzy set.

3. Basic Concepts of Fuzzy Set Theory

3.1. Classical Versus Fuzzy Set

A classical (crisp) set is normally defined as a collection of

elements or objects x [ X which can be finite, countable or

overcountable. Each single element can either belong to or

not belong to a set A. Such set is represented by using the

characteristic function, in which 1 indicated membership and

0 nonmembership. Most of our traditional tools for formal

modeling, reasoning, and computing are crisp, deterministic

and precise in character. Although the probability approach

has been applied successfully to many real world engineer-

ing reliability problems [11–13] but still there are some

complications arises during the modeling of the system. The

two major complications in modeling arise are [14]

(i) Real situations are very often not crisp and deter-

ministic and they cannot be prescribed precisely.

(ii) The complete description of a real system often

would require by far more detailed data than a human

being could ever recognize simultaneously, process it

and understand.

To overcome these difficulties, mathematical modeling

of fuzzy concepts (a generalization of crisp or classical set

approach) was presented by Zadeh [15] by allowing images

of elements to be in the interval [0,1] rather than being

restricted to the two-element set {0,1}. In other words, the

theory of fuzzy sets deals with a subset eA of the universe of

discourse X, where the transition between full membership

and no membership is gradual rather than abrupt. The

fuzzy subset has no well-defined boundaries whereas the

universe of discourse X covers a definite range of the

objects. Fuzzy set theory is a generalization of classical set

theory in which ambiguity and vagueness types of inex-

actness concepts are handled. Let X be a classic set of

objects, whose generic elements is denoted by x. A fuzzy

set eA defined on X is a mapping from X to the unit interval

[0, 1], is denoted by

eA ¼ fx; l
eA
ðxÞ j x 2 Xg ð1Þ

where l
eA
ðxÞ indicates the degree of membership of x in eA

and its value lies between zero and one.

3.2. a-Cuts

a-Cuts is one of the most significant and extensively used

concept in fuzzy set theory [16]. It is defined as all those

element x [ X such that its membership value be greater

than some threshold a [ [0, 1]. The ordinary set of ele-

ments is the a-cut A(a) of fuzzy set eA and is represented

mathematically as

AðaÞ ¼ fx 2 X j l
eA
ðxÞ� ag ð2Þ

For a fuzzy set eA,

AðaÞ ¼ fx 2 X j l
eA
ðxÞ[ ag; a 2 ½0; 1Þ ð3Þ

AðaÞ ¼ fx 2 X j l
eA
ðxÞ� ag; a 2 ð0; 1� ð4Þ

are called the strong a-cut and weak a-cut respectively. It the

membership function is continuous, the distinction between

strong and weak is not necessary due to the logical develop-

ment inherent in the cut. If the support set (i.e., the whole set X)

is a real number set and the membership function is continu-

ous, the weak cut of convex fuzzy set is a closed interval.

3.3. Fuzzy Number and Arithmetic Operations

By a fuzzy number, we mean a number that is character-

ized by a possibility distribution or is a fuzzy subset of real

numbers. In general, a fuzzy number is either a convex or

concave fuzzy subset of the real line. A special case of a

fuzzy number is an interval. Let eA be a fuzzy set then it is a

fuzzy number if and only if there exists a close interval

[a, b] = / such that

l
eA
ðxÞ ¼

lðxÞ; for x 2 ð�1; aÞ

1; for x 2 ½a; b�

rðxÞ; for x 2 ðb;1Þ

8

>

>

<

>

>

:

ð5Þ

where l is a function from (-?, a) to [0,1] that is mono-

tonic increasing, continuous from the right, and r is a

function from (b, ?) to [0,1] that is monotonic decreasing,

continuous from the left.

There is an infinite set of fuzzy numbers, but triangular

fuzzy numbers (TFNs) are more often used when fuzziness

exist on both sides of a single value/parameter. A TFN is

defined by the ordered triplet eA ¼ ða; b; cÞ representing,

respectively, the lower value, the modal value, and the

upper value of a triangular fuzzy membership function. Its

membership function l ~A : R �! ½0; 1�, is defined as:
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l
eA
ðxÞ ¼

x� a

b� a
; a� x� b

1; x ¼ b

c� x

c� b
; b� x� c

0; otherwise

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð6Þ

Alternately, TFN can be characterized by the interval of

confidence at a-cut level like.

Aa ¼ ½aðaÞ; cðaÞ� ¼ ½ðb� aÞaþ a;�ðc� bÞaþ c�
8 a 2 ½0; 1�

ð7Þ

The normal membership function with mean b and

standard deviation r is defined as

l ~AðxÞ ¼
e�ð

x�b
r Þ

2

if x� b

1 if x ¼ b

e�ð
b�x
r Þ

2

if b� x

8

>

<

>

:

ð8Þ

Viewed in this perspective, fuzzy arithmetic may be viewed

as a generalization of interval arithmetic. Thus the four main

arithmetic operations on two fuzzy sets eA and eB described by

the a-cuts are given below for the following intervals:

A(a) = [A1
(a), A3

(a)] and B(a) = [B1
(a), B3

(a)], a [ [0, 1]

(i) Addition: ~Aþ ~B ¼ ½AðaÞ1 þ B
ðaÞ
1 ;A

ðaÞ
3 þ B

ðaÞ
3 �

(ii) Subtraction: ~A� ~B ¼ ½AðaÞ1 � B
ðaÞ
3 ;A

ðaÞ
3 � B

ðaÞ
1 �

(iii) Multiplication: ~A � ~B ¼ ½HðaÞ;GðaÞ� where H(a) =

min(A1
(a)� B1

(a), A1
(a)� B3

(a), A3
(a)� B1

(a), A3
(a)� B3

(a)) and

G(a) = max(A1
(a)� B1

(a), A1
(a)� B3

(a), A3
(a)� B1

(a), A3
(a)� B3

(a))

(iv) Division : ~A� ~B ¼ ~A � 1
~B
, if 0 62 ~B

It is clear that the multiplication and division of two

TFNs is not again a TFN with linear sides but it is a new

fuzzy number with parabolic sides.

4. Reliability Aspects

This section introduce RAM concepts that are used for

deriving the composite measures of these parameters

named as RAM-index.

4.1. Reliability

Reliability is a characteristic of an item(component or

system), expressed by the probability that the item (com-

ponent/system) will perform its required function under

given conditions for a stated time interval [17]. From a

qualitative point of view, reliability can be defined as the

ability of the item to remain functional. Quantitatively,

reliability specifies the probability hat no operational

interruptions will occur during a stated time interval.

Mathematically, define continuous random variable T to be

the time to failure of the component/system; T C 0, then

the basic reliability function R(t) is defined for time to

failure of the system (or subsystem) as

RðtÞ ¼ PrðT [ tÞ ¼ 1�
Z

t

0

f ðuÞ du ð9Þ

where RðtÞ� 0; Rð0Þ ¼ 1, and lim
t!1

RðtÞ ¼ 0 and f(t) failure

probability density function. For Weibull and normal

distribution, reliability of the system is defined as

RðtÞ ¼ PrðT [ tÞ ¼ exp

�

�
�

t

h

�b�

ð10Þ

and

RðtÞ ¼ PrðT [ tÞ ¼ 1� U

�

t � l
r1

�

ð11Þ

for respective distributions.

The failure rate (k) function of the system is given by

kðtÞ ¼ f ðtÞ
RðtÞ

4.2. Maintainability

Maintainability refers to the measures taken during the

development, design, and installation of a manufactured

product that reduce required maintenance, manhours, tools,

logistic cost, skill levels, and facilities, and ensure that the

product meets the requirements for its intended use [1].

Thus, maintainability deals with duration of maintenance

outages or how long it takes to complete the (ease and

speed) maintenance actions. The key maintainability fig-

ures of merit are the MTTR and a limit for the maximum

repair time. To quantify the repair time, let T be the con-

tinuous random variable representing the time to repair a

failed unit, having a probability density function of

h(t), then the cumulative distribution function M(t) is

defined below [1]

ð12Þ

This equation is the probability that a repair will be

accomplished within time t. The MTTR is defined as:

MTTR ¼
Z

1

0

t hðtÞdt ¼
Z

1

0

ð1�MðtÞÞdt ð13Þ

For Weibull and normal distribution, maintainability of the

system is defined as
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MðtÞ ¼ PrðT\tÞ ¼ 1� exp

�

�
�

t

g

�c�

ð14Þ

MðtÞ ¼ PrðT\tÞ ¼ U

�

m� t

r2

�

ð15Þ

for respective distributions.

The repair rate (kr) function of the system is given by

krðtÞ ¼
hðtÞ
MðtÞ

4.3. Availability

Availability is the probability that a system or component is

performing its required function at a given point in time or

over a stated period of time when operated and maintained in a

prescribed manner [1]. Consider a system (device) which can

be in one of two states, namely ‘up’ and ‘down’ i.e., in other

words the system is still functioning and is not functioning

state; in the latter case it is being repaired or replaced,

depending on whether the system is repairable or not. Let the

state of the system be given by a binary variable:

XðtÞ ¼
1; if the system is up at time t

0; otherwise

(

ð16Þ

An important characteristic of a repairable system is

availability. Barlow and Proschan [18] define four

measures of availability performance: the availability

function, limiting availability, the average availability

function and limiting average availability. All of these

measures are based on the function X(t), which denotes the

status of a repairable system at time t. The instant

availability at time t (or point availability) is defined by:

AðtÞ ¼ PðXðtÞ ¼ 1Þ ð17Þ

This is the probability that the system is operational at time

t. Mathematically, it is represented through the differential

equation of first order as given below

d

dt
AðtÞ þ ½kðtÞ þ krðtÞ�AðtÞ ¼ krðtÞ;

Að0Þ ¼ e

R

ðkðtÞþkrðtÞÞ dt jt¼0

ð18Þ

and its corresponding solution is

AðtÞ ¼ e
�
R

ðkðtÞþkrðtÞÞ dt

� Z

krðtÞ e

R

ðkðtÞþkrðtÞÞ dt
dt þ c

�

ð19Þ

Because it is very difficult to obtain an explicit expression

for A(t), other measures of availability have been taken.

One of these measures is the steady system availability (or

steady state availability, or limiting availability) of a

system, which is defined by

A ¼ lim
t!1

AðtÞ ð20Þ

This quantity is the probability that the system will be

available after it has been run for a long time, and is a very

significant measure of performance of a repairable system.

4.4. RAM-Index

System reliability, maintainability and availability have

assumed great significance in recent years due to a com-

petitive environment and overall operating and production

costs. Performance of equipment depends on the reliability

and availability of the equipment used, operating envi-

ronment, maintenance efficiency, operation process and

technical expertise of operators, etc. When the reliability

and availability of systems are low, efforts are needed to

improve them by reducing the failure rate or increasing the

repair rate for each component or subsystem. Thus, RAM

are the important key features for keeping the production

and productivity of the system high. For maintaining this, a

composite measure of RAM parameters named as the

RAM-index has been analyzed by the researchers [8–10]

for increasing the performance of the system. But the

disadvantages of Sharma and Kumar [9] approach are that

they applied Markovian approach by utilizing historical

crisp data without quantification of involved uncertainties.

On the other hand, Rajpal et al. [10] developed an artificial

neural network (ANN) model for assessing the effect of

input parameters on system performance at specified times

i.e., its values does not change with time. But in real life

situations, industrial system behavior changes with time.

Thus it does not provide the actual trend of the system

behavior. Also it is unable to access and analyze the sen-

sitive component of the system. Komal et al. [8] extend

this idea by quantifying the uncertainty in the analysis. But

their approach is limited to a system whose components

follow the constant failure rate model i.e., following the

exponential distribution. Thus there is a need of a gen-

eralized index for a time varying component parameter for

measuring the performance of the system such that system

analyst may find the component on which more attention

should be given to save money, manpower and time.

Therefore, the proposed RAM-index is valid for a time

varying failure and repair rate (Weibull and normal dis-

tribution) instead of constant failure rate model (exponen-

tial distribution) and is given as below

RAMðtÞ ¼ w1 � RðtÞ þ w2 � AðtÞ þ w3 �MðtÞ ð21Þ

where wi [ (0,1) be the weights such that
P3

i¼1 wi ¼ 1 and

R(t), A(t) and M(t) are the systems RAM expression for a

given mission time t. The same value of weight set

w = [0.36, 0.30, 0.34], as used by the researchers [2, 8,

10], are used here for the analysis. The benefit of this index
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is that it simultaneously considers all the three key indices

which influence the system performance directly. Also

measure advantage of this index is that by varying indi-

vidual component’s failure rate and repair time parameters,

the impact onto the system’s performance by the change in

its behavior can be analyzed effectively to make the future

course of action.

5. Methodology for Analyzing the Behavior

5.1. Lambda–Tau Methodology

Traditionally in order to analyze the behavior of the

repairable systems, fault tree analysis has been used for

modeling the system while their system failure rates (ks)

and repair times (ss) associated with logical AND- and OR-

gates are obtained by using the basic expression of the

lambda–tau methodology which are summarized in

Table 1 [19]. But the disadvantage of this methodology is

that they do not consider the uncertainties which are

present in the data. Because most of the databases collected

from the various resources or records are represent the past

behavior of the data and hence unable to predict the future

behavior of the system. Moreover, if as such data are used

in the analysis then they have a high range of uncertainties

and hence do not give the accurate idea about the behavior

of the system. Knezevic and Odoom [4] highlighted this

idea and presented an approach named as fuzzy lambda–

tau (FLT) methodology for repairable industrial systems. In

their approach, the uncertainty in the data is handled with

the help of the defining their fuzzy membership functions

and system is modeled with the help of Petri nets instead of

fault tree. Triangular fuzzy numbers (TFNs) are used for

handling the uncertainties in the analysis. After obtaining

the input of all components in the form of TFNs, the

resultant fuzzy numbers for failure rate and repair time for

the top place of PN model, can be obtained using the

extension principle, coupled with a-cut and interval arith-

metic operations on conventional AND/OR-expression, as

listed in Table 1. The interval expression for the triangular

fuzzy number, for the failure rate ~k and repair time ~s, for

AND/OR-transitions are as follows:

Expressions for AND-Transitions

kðaÞ ¼
"

Y

n

i¼1

fðki2�ki1Þaþki1g �
X

n

j¼1

�

Y

n

i¼1
i6¼j

fðsi2� si1Þaþ si1g
�

;

Y

n

i¼1

f�ðki3�ki2Þaþki3g �
X

n

j¼1

�

Y

n

i¼1
i6¼j

fðsi3� si2Þaþ si3g
�

#

ð22Þ

sðaÞ ¼
"

Qn
i¼1fðsi2 � si1Þaþ si1g

Pn
j¼1½
Qn

i¼1
i 6¼j
f�ðsi3 � si2Þaþ si3g�

;

Qn
i¼1fðsi3 � si2Þaþ si3g

Pn
j¼1½
Qn

i¼1
i 6¼j
fðsi2 � si1Þaþ si1g�

# ð23Þ

Expressions for OR-Transitions

kðaÞ ¼
"

X

n

i¼1

fðki2 � ki1Þaþ ki1g;

X

n

i¼1

f�ðki3 � ki2Þaþ ki3g
# ð24Þ

sðaÞ ¼
"

Pn
i¼1½fðki2 � ki1Þaþ ki1g � fðsi2 � si1Þaþ si1g�

Pn
i¼1f�ðki3 � ki2Þaþ ki3g

;

Pn
i¼1½f�ðki3 � ki2Þaþ ki3g � f�ðsi3 � si2Þaþ si3g�

Pn
i¼1fðki2 � ki1Þaþ ki1g

#

ð25Þ

5.2. Shortcoming of the Existing Methodologies

The following shortcoming are observed during the analysis

of the repairable industrial system when FLT methodology

has been applied for computing the reliability parameters.

(a) They computed only defuzzified values of failure rates

and repair times and then used these values for obtaining

the defuzzified values of other reliability parameters.

(b) The fuzzy arithmetic operations have been used by

them for computing the systems’ parameters and

hence the method will not produce the actual trend of

values of these reliability parameters as per the

variations in uncertainties levels.

(c) Their approach is limited for small size structure i.e.,

for a large structured system or when system config-

uration is in complex then the computed parameters

have a wide range of uncertainties in the form of

spread due to various fuzzy arithmetic operations

involved in the analysis.

5.3. PSOBLT Methodology

PSOBLT technique is a novel technique [6, 7] for ana-

lyzing the behavior of an industrial system by utilizing

Table 1 Basic expressions of lambda–tau methodology

Gate kAND sAND kOR sOR

Expression
Q

n

j¼1

kj

"

P

n

i¼1

Q

n

j¼1
i 6¼j

sj

#

Qn

i¼1
si

Pn

j¼1

"

Qn
i¼1
i 6¼j

si

#

P

n

i¼1

ki

Pn

i¼1
kisi

Pn

i¼1
ki
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uncertain data up to a desired degree of accuracy. In this

technique, particle swarm optimization (PSO) and lambda–

tau methodology has been hybridized to each other. The

uncertainties in the data are handled with the help of

defining their corresponding fuzzy numbers. After obtain-

ing the basic events of the systems in the form of the fuzzy

numbers, the system reliability expression is obtained by

formulating the non-linear optimization problem instead of

fuzzy arithmetic operations at each cut level a. PSO has

been used for solving the optimization problem for con-

structing their fuzzy membership functions. The following

tools are adopted in the methodology for removing the

critical shortcoming of the existing methodologies, which

may give good results (close to real conditions):

(i) As Weibull and normal distribution are the most

important in the field of reliability so hence the instead

of considering the constant failure rate model, a time

varying data which follow the normal and Weibull

distribution has been taken in the analysis.

(ii) Triangular and normal fuzzy numbers are used for

handling the uncertainties in the data corresponding to

the Weibull and normal distribution respectively

instead of considering only triangular fuzzy numbers.

(iii) Sensitivity analysis on the system performance i.e., on

RAM-index has been analyzed for showing the effect

of individual components on its performance.

The detail of the strategies followed for the RAM ana-

lysis of an industrial system is explained as below:

The methodology starts with the information extraction

phase in which data related to failure and repair rates of the

constituent components are extracted from the historical

records, databases etc. and are integrated with the plant

personnel. Most of the data are collected or estimated from

the historical record which involves a large amount of

uncertainties because most of the databases on which

reliability analyzes depend are either out of date or col-

lected under different operating and environmental condi-

tions. So to handle the vagueness and uncertainties in the

analysis, fuzzy set theory is used in PSOBLT technique.

Triangular and normal fuzzy numbers are used for this

purpose with some known spread (support) suggested by

decision makers (DM), design maintenance expert, system

reliability analyst.

After quantifying the uncertainties in the data in the

form of fuzzy numbers, the expression of the system’s

parameters are obtained by using the results of lambda–tau

methodology i.e., by using Table 1 results. For a complex

or large structure system, the expression of these reliability

indices is highly nonlinear in nature and hence when fuzzy

arithmetic operations are used for computing their mem-

bership functions then the high level of uncertainties exit in

them. To overcome this problem, a nonlinear optimization

problem for each of the computed reliability indices has

been constructed by utilizing the quantified fuzzy data at

cut level a in the form of bounded interval as decision

variable. Once, the quantified input data at cut level a in the

form of bounded interval is substituted in the expression of

each obtained reliability index, the finally computed reli-

ability index at cut level a has a wide range of solutions

and it becomes smaller and smaller as the analysis pro-

gresses further i.e., cut level a increases from 0 to 1. Thus,

the lower and upper boundary values of reliability indices

are computed at cut level a by solving the optimization

problem (26)

Minimize=Maximize :

~Fðk1; k2; . . .; kn; s1; s2; . . .; smÞ
Subject to : lki

ðxÞ� a;

lsj
ðxÞ� a;

0� a� 1;

i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m:

ð26Þ

where ~Fðk1; k2; . . .; kn; s1; s2; . . .; smÞ are time dependent

fuzzy RAM indices parameter. The obtained minimum and

maximum value of F are denoted by Fmin and Fmax

respectively. The membership function values of F at Fmin

and Fmax are both a that is,

l ~FðFminÞ ¼ l ~FðFmaxÞ ¼ a

Since the problem is nonlinear in nature so it requires an

efficient technique to solve this problem. Out of existence

of a variety of traditional and non-traditional methods for

solving such types of problems, evolutionary algorithms

are found to be very promising global optimizers. PSO is

one of the most popular evolutionary algorithms [20, 21]

and has been applied effectively to many different prob-

lems like system reliability/availability/redundancy allo-

cation [6, 22–25]. Recently, Garg and Sharma [26] used

PSO to solve the reliability-redundancy allocation problem

under fuzzy environment by taking linear and nonlinear

membership functions for defining their fuzzy goals. Thus

in the light of applicability, this paper use PSO as a tool to

solve the optimization problem (26) in the process of

determining the fuzzy membership function of RAM

parameters. The objective function for maximization

problem and the reciprocal of the objective function for

minimization problem is taken as the fitness function. To

stop the optimization process maximum number of gener-

ations or order of relative error equal to 10-6, whichever is

achieved first.

Finally, as soon as the reliability parameters are obtained in

the form of membership functions then the system analyst or

decision makers make a decision based on their results. In

order to obtain a crisp result from fuzzy output, defuzzification

is carried out. In the literature various techniques for

Analysis of Industrial Systems Using PSO and Fuzzy Methodology 121

123



defuzzification such as centroid, bisector, middle of the max,

weighted average exists. The criterion’s for their selection are

disambiguated (result in unique value), plausibility (lie

approximately in the middle of the area) and computational

simplicity [27]. In the present study, the centroid method is

used for defuzzification as it gives mean value of the param-

eters. Mathematically centroid or center of gravity (COG)

method is represented as Eq. (27)

�x ¼
R

x
x � l ~BðxÞdx
R

x
l ~BðxÞdx

ð27Þ

where eB is the output fuzzy set, and l ~B is the membership

function.

5.4. PSO Algorithm Overview

Particle swarm optimization (PSO), first introduced by

Kennedy and Eberhart [20, 28], is an evolutionary com-

putation technique, developed for optimization of contin-

uous non linear, constrained and unconstrained, non

differentiable multimodal functions. It uses common evo-

lutionary computation techniques: (a) It is initialized with a

population of random solutions. (b) It searches for the

optimum by updating generations, and (c) population

evolution is based on the previous generations. PSO algo-

rithm works by initializing a flock of birds randomly over

the searching space, where every bird is called as a ‘‘par-

ticle’’ are flown through the problem space by following

the current optimal particles. The update of the particles is

accomplished by adjusting its velocity vector and the

influence of its best position (pbest) as well as the best

position of its neighbors (gbest). Suppose the dimension for

a searching space is D, the total number of particles is

n, the position of the ith particle can be expressed as vector

xi ¼ ½xi1; xi2; . . .; xiD� the best position of the ith particle is

denoted as pbesti ¼ ½pbesti1; pbesti2; . . .; pbestiD�, and the

best position of the total particle swarm is denoted as

vector gbest ¼ ½gbest1; gbest2; . . .; gbestD�, the velocity of

the ith particle is represented as vector vi ¼ ½vi1; vi2; . . .;
viD�. Then the position and velocity of the particle are

updated by the following relations [21, 29]

viðt þ 1Þ ¼ w 	 viðtÞ þ c1 	 r1 	 ðpbestiðtÞ � xiðtÞÞ
þ c2 	 r2 	 ðgbestðtÞ � xiðtÞÞ

ð28Þ

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ ð29Þ

where c1 and c2 are constants, r1 and r2 are random variable

with uniform distribution between 0 and 1, w is inertia

weight, which shows that the effect of previous velocity

vector on the new vector and provided improved perfor-

mance in a number of applications. The pseudo code of the

algorithm is described in Algorithm 1.

6. Illustrative Example

The above mentioned technique for RAM analysis of the

system is demonstrated through a case study of the

crankcase manufacturing plant of a repairable industrial

system [3]. The brief description of the system is given as

below.

6.1. System Description

The crank-case manufacturing plant consists of nine single

unit subsystems named as modulo machine-1, module SPM

widma-1, modulo machine-2, module SPM widma-2,

module machine-3, fine bores, horizontal milling machine,

tapping machine-1 and tapping machine-2. All these sub-

122 H. Garg

123



systems are single units subjected to revealed as well as

unrevealed failure. The first machine in the crank-case line

is the module machine-1, is used to drill on the sides of the

crank-case. Module SPM widma-1 machine is used to drill

on the face of the raw crank-case. The module machine-2 is

used for side tapping. The module SPM widma-2 is used for

tapping. Module machine-3 is used for further tapping. Fine

bores are drilled with the help of micro fine boring machine.

Milling is done with the help of horizontal milling machine.

Then tapping is done on tapping machine-1 and finally on

tapping machine-2. Undergoing all these processes serially,

we get a finished crank-case. The systematic diagram of the

system is shown in Fig. 1 [3].

7. Results and Discussions

7.1. Parametric Setting

In all algorithms, the values of the common parameters

such as population size and total evaluation number are

chosen to be the same. Population size and the maximum

evaluation number are taken as 20 9 D, where D is the

dimension of the problem and 1500 respectively for the

function. The method has been implemented in Matlab

(MathWorks) and in order to eliminate stochastic discrep-

ancy, 30 independent runs has been made that involves 30

different initial trial solutions. The termination criterion

has been set either limited to a maximum number of gen-

erations or to the order of relative error equal to 10-6,

whichever is achieved first. The other randomly specified

parameters of algorithms are given below:

GA Settings In our experiment, real coded genetic

algorithm, is utilized to find optimal values. The roulette

wheel selection criterion is employed to choose better fitted

chromosomes. One-point crossover with the rate of 0.9 and

random point mutation with the rate of 0.01 are used in the

present analysis for the reproduction of new solutions.

PSO Settings Except common parameters (population

number and maximum evaluation number), cognitive (c1)

and social (c2) components are constants that can be used

to change the weighting between personal and population

experience, respectively. In our experiments cognitive and

the social components were both set to 1.49. Inertia weight

(w), which determines how the previous velocity of the

particle influences the velocity in the next iteration, was

defined as the linearly decreases from initial weight

w1 = 0.9 to final weight w2 = 0.4 with the relation

w = w2 ? (itermax - iter)(w1 - w2)/itermax where itermax

is the maximum number of iterations and iter is used an

iteration number [21].

7.2. Computation of RAM Parameters

The analysis for computing the RAM parameters for the

above system is explained as below.

(i) Under the information extraction phase, the data

related to failure and repair rates of the main

components of the system are collected from the

records/textbooks etc. and are integrated with the plant

personnel given in Table 2 [3].

(ii) As the data given in Table 2 is collected from the

various historical records/textbooks/databases etc. and

hence it contains some sort of uncertainty. This is

because of the human error or various other practical

constraints that affect during the analysis of data.

Moreover, historical records represent the past behav-

ior but unable to predict the future behavior of the

system. Thus uncertainties in the collected data are

handled with the help of fuzzy set theory. For this,

crisp data are converted into triangular fuzzy numbers

corresponding to Weibull related parameters and

normal fuzzy number corresponding to normal distri-

bution parameters with ±15 % spreads on both sides

of the data.

(iii) After converting the input data into the fuzzy number,

an optimization problem (26) has been formulated for

the considered system for evaluating the RAM-

parameters at the mission time t = 10(h). The
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Fig. 1 Systematic flow diagram of the crank-case manufacturing system
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obtained problem has been solved with the evolu-

tionary techniques corresponding to their parametric

setting, given in Sect. 7.1, for obtaining their mem-

bership function at each a-cut level. The computed

fuzzy RAM of the system have been plotted and

shown in Fig. 2 along with crisp, FLT and genetic

algorithm based lambda–tau (GABLT) results. The

complete analysis of these plots is described as

follows.

(a) The results computed by the crisp or traditional

methodology are independent of the uncertainty

level a i.e., it remains constant at all values of a. It

shows that while obtaining the results by these

methods, attention has not been paid to the

uncertainties in the data. Thus this methodology

is not practically sound and hence their results will

be suitable only for a system with precise data.

(b) The results computed by the FLT approach

contains a wide range of uncertainties as

compared to other approaches. This is due to

the reason that the membership functions of the

reliability parameter are computed with the

help of fuzzy arithmetic operations and hence it

contains a wide spread or support during the

analysis. Thus these results are not so much

practical as it does not give the exact idea about

the behavior of the system.

(c) The results computed by evolutionary algo-

rithms (EAs) contains less range of uncertain-

ties as compared to FLT approach because EAs

provide a solution near to optimal solution. It

can be seen from the plots that the proposed

methodology have compressed range of uncer-

tainties as compared to other existing method-

ologies. Thus results computed by PSOBLT

technique have smaller spread at each cut level

a which leads to more sound and effective

decision for future course of actions in lesser

time.

In order to compute the decrease of uncertain-

ties or spread during the analysis by the

proposed approach over the existing

approaches, an analysis has been done in which

spread during the analysis has been computed

and given in Table 3. From the table it has been

clearly seen that availability and reliability are

the parameters corresponding to which the

largest and the smallest decrease in spreads

occur from FLT results while these decreases

correspond to maintainability and reliability

respectively from GABLT results when PSO-

BLT technique has been applied, which means

a prediction range of reliability indices

decreased. This analysis suggests that the

maintenance engineer or plant personnel may

preserve the particular parameter for increasing

the performance of the system and to achieve

the goals of maximum profit.

(iv) In order to make a decision in real-life situations, the

obtained fuzzified output should be converted into

crisp or single valued output. For this, the center of

gravity method has been taken and the crisp,

defuzzified values at different spreads (±15, ±25

and ±50 %) has been calculated and compared with

FLT and GABLT results through Table 4. It shows

that the crisp value does not change with the change

of spread while the defuzzified value changes with

the change of spread. From Table 4, it is evident that

defuzzified values obtained by PSOBLT technique

are in between crisp and the other technique results

i.e., PSOBLT technique acts as a bridge between

Markov process (crisp values) and other techniques.

Table 2 Data related to failure and repair rates of the system [3]

Time to failure (TTF) Time to repair (TTR)

Weibull Normal Weibull Normal

b h l r1 c g m r2

SS1 1.269257 615.631641 1.393213 4.124653

SS2 1.147810 617.797426 1.435590 5.301004

SS3 1.027162 773.999461 1.210741 4.440471

SS4 1.102055 503.559044 3.889670 2.547622

SS5 1.302467 775.607691 0.895625 3.544650

SS6 1027.633897 936.488245 6.478525 3.479029

SS7 1.186528 1326.397971 4.374661 2.718237

SS8 0.890709 2208.396911 1.425499 3.662014

SS9 1.228959 739.737319 1.343241 4.250127
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Also, the variations in the defuzzified values are

quite less as compared to other methodologies values

and trends (increase or decrease) achieved by FLT

Table 3 Decrease in the uncertainties level during analysis in RAM

parameters

Technique Range of spread of RAM parameters

Reliability Availability Maintainability

I 0.1351147 0.0113198 0.3193519

II 0.1201434 0.0048537 0.2106129

III 0.0498388 0.0017284 0.0682513

Decrease in spread in % from

I to III 63.1137100 84.73117899 78.6281841

II to III 58.5172385 64.39005294 67.5939602

I FLT, II GABLT, III PSOBLT

Table 4 Defuzzified values of the reliability parameters at different

spread

Spreads

(%)

Technique Defuzzified values at different spreads

Reliability Availability Maintainability

±0 Crisp 0.81233549 0.98517396 0.58868922

±15 FLT 0.80803046 0.98468950 0.58619259

GABLT 0.80900868 0.98502407 0.58940392

PSOBLT 0.81168471 0.98505321 0.58351145

±25 FLT 0.80054372 0.98376902 0.58236177

GABLT 0.80429775 0.98475191 0.58218078

PSOBLT 0.81150933 0.98478854 0.57091668

±50 FLT 0.76812286 0.97805054 0.56948301

GABLT 0.78126886 0.98335392 0.57679712

PSOBLT 0.80714613 0.98356279 0.53430212
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Fig. 2 Fuzzy RAM parameters plots
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and GABLT techniques are also preserved by

proposed technique. Thus, the discussed technique

is conservative in nature which may be more

beneficial for a system expert/analyst for future

course of action.

In order to improve the performance of the system,

current condition of the system should be changed

according to effective maintenance program. Thus plant

personnel should have to plan a suitable maintenance

program for enhancing the production and productivity of

the system. But it is difficult for them to find the par-

ticular component or the most sensitive components on

which more attention should be given to save money,

manpower and time. For overcoming this problem, RAM

analysis has been carried out by using the proposed

RAM-index.

7.3. RAM-Index Analysis

The RAM-index, given in Eq. (21), is a composite measure

of RAM of the system and are used for measuring the

performance of the system. The major advantage of using

this index is that system performance is analyzed by

varying their consequent component’s parameters individ-

ually or simultaneously. For analyzing their effects on

performance, first of all behavior of the RAM-index for a

mission time t = 10 h are analyzed, shown in Fig. 3a, in

the form of fuzzy membership function by the proposed

approach along with their FLT and GABLT techniques

result. It is evident from this figure that the proposed

technique performs consistently well as compared to other

in terms of reducing their uncertainty level during the

analysis. The effect of uncertainties ranging from 0 to 100

(in %) on RAM-index has been investigated and a plot

between spread and RAM-index at time t = 10 h is plotted
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and shown in Fig. 3b. This analyst suggests that for

achieving higher performance of the systems, involved

uncertainties should be minimized. For further analysis,

15 % uncertainties are taken into account suggested by

maintenance personnel and performance of the RAM-index

for a different time period ranging from 0 to 35 h are

depicted graphically in Fig. 3c. It shows that the behavior

of the index firstly increases from 0 to 18 h and attains its
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maximum in the range 0.8753603–0.9056689 at time t =

18 h and then decreases after that. This suggests for the

system analyst or plant personnel that necessary actions

should be given after time t = 18 h for increasing the

performance of the system.

Now in order to find the most critical components or

equipments on which more attention should be given for

saving money, power and time, sensitivity analysis has

been done on the performance of the system i.e., on RAM-

index by varying their corresponding components failure

and repair rates parameters and fixing the other component

parameters at the same time. The effects of individual

components on system performance have been notified and

are shown graphically in Fig. 4 while the variation of their

maximum and minimum values of the RAM-index during

analysis is tabulated in Table 5. It has been computed from

the results that for increasing the performance of the sys-

tem, failure and repair rate parameters of its constituent

components should be decreased. For instance, Fig. 4a

indicates for machine module machine-1 that when the

time between failures and time to repair changes from

485.724 to 657.156 h and from 3.197 to 4.326 h respec-

tively then the system index is decreased by 14.207 %.

Similarly for other component changes have been seen

from their respective figure. Moreover, it is evident from

the Fig. 4 and Table 5 that the largest and smallest

decrease (in %) in their index values occurs corresponding

to the fine boring machine and tapping machine-1 com-

ponent respectively. This suggests the fine boring machine

is the most critical component as compared to others and

hence suitable maintenance actions should be given to it for

increasing the productivity of the system. Hence, on the

basis of results tabulated, it is analyzed that to improve the

performance of the system, more attention should be given

to the components in order fine boring machine, modulo

SPM widma-1, modulo SPM widma-2, module machine-2,

module machine-1, tapping machine-2, Module machine-3,

horizontal milling machine and tapping machine-1. These

results of the system will help the concern managers to plan

and adapt suitable maintenance practices/strategies for

improving system performance and thereby reduce opera-

tional and maintenance costs.

8. Conclusion

This paper reports a RAM analysis of process industrial

system by utilizing uncertain, vague and limited data. A

crank-case manufacturing plant has been taken to demon-

strate the approach. The uncertainties in the data are han-

dled with the help of fuzzy approach in order to increase

the efficiency of the system and their membership func-

tions are computed by using PSOBLT technique. A time

varying failure and repair rate model has been used during

the analysis instead of constant failure rate model. The

results obtained are compared with the existing crisp, FLT

and GABLT techniques results and concluded that pro-

posed results have lesser range of uncertainties and hence

Table 5 Variation in system availability when the failure and repair rate parameters of each component vary simultaneously

Components Variation of MTBF

parameter (h)

Variation of MTTR

parameter (h)

System

RAM-index

Module machine-1 485.724386–657.156522 3.197869–4.326529 Min: 0.7353707

Max: 0.8398483

Module SPM widma-1 500.043273–676.529132 4.091290–5.535275 Min: 0.6459800

Max: 0.7844703

Module machine-2 650.732725–880.403099 3.542373–4.792622 Min: 0.7272731

Max: 0.8492938

Module SPM widma-2 412.753594–558.431334 3.306219–4.473120 Min: 0.7089131

Max: 0.8177396

Module machine-3 608.651271–823.469366 3.178685–4.300574 Min: 0.7590277

Max: 0.8636767

Fine boring machine 873.488812–1181.77898 5.506746–7.450303 Min: 0.6080322

Max: 0.7109176

Horizontal milling machine 1063.67354–1439.08773 3.718461–5.030860 Min: 0.7600253

Max: 0.8860237

Tapping machine-1 1986.46967–2687.57661 2.829223 –3.827772 Min: 0.8990500

Max: 0.9607453

Tapping machine-2 587.963412–795.479910 3.315709–4.485959 Min: 0.7411765

Max: 0.8528139
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predictions. Apart from that a conceptual model has been

suggested through which it is illustrated, how a suitable

performance analysis-based maintenance can be identified.

Components of all the subsystems/units of the manufac-

turing plant which have excessive failure rates, long repair

time or high degree of uncertainty associated with these

values, are identified and reported in preferential order.

Using these analyses and results tabulated in tables, it has

been concluded that more attention should be given in

preferential order to the components; fine boring machine,

modulo SPM widma-1, modulo SPM widma-2, module

machine-2, module machine-1, tapping machine-2, Module

machine-3, horizontal milling machine and tapping

machine-1 for improving the performance of the system.
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