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Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mito-
chondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like 
metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochon-
drial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative 
diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involve-
ment of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of 
somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders 
including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and Amyotrophic Lateral Sclerosis. Therapies 
therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial 
biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality con-
trol, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most 
efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, 
this review serves the scientific community engaged in translational medical science by focusing on the establishment of 
novel, mitochondria-targeted treatment strategies.
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Introduction

Neurodegenerative diseases are diverse group of devastat-
ing, and incurable condition, defined by the gradual dete-
rioration and death of cells in the central nervous system. 
These pathological conditions, such as Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), Huntington disease 

(HD), and amyotrophic lateral sclerosis (ALS), are dis-
tinguished by the gradual loss of neuron cells, impaired 
motor or cognitive functions, and abnormal accumulation 
aggregated proteins. An increasing amount of research on 
NDD shows changes to the brain’s reduction–oxidation 
(redox) equilibrium as well as bioenergetics deficits (Yap 
et al. 2009).
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The clinical manifestations of neurodegenerative dis-
eases can be widely defined, with pyramidal and extrapy-
ramidal movement abnormalities and cognitive processing 
impairments is perhaps the most frequent (Amor et al. 2010; 
Lyman et al. 2014). Few people have homogeneous syn-
dromes, with the majority having a combination of clinical 
features. Diagnostic precision is crucial because it allows for 
more accurate prognosis and frequently informs particular 
care and treatment. But though particular protein accumu-
lates in significant amounts and morphologic vulnerabil-
ity are closely correlated with neurodegenerative diseases 
(NDD). Several more underlying principles characterized by 
a progressive neurological malfunction, such as proteotoxic 
stress in the ubiquitin and lysosomal systems, reactive oxy-
gen species (ROS), apoptosis, and inflammation, are shared 
by neurodegenerative diseases (Cenini et al. 2019; Umare 
et al. 2021).

The cytosolic organelles “mitochondria” is crucial for 
birth as well as death. Abundant evidence from preclinical 
and clinical research shows that mitochondria are important 
in aging, cancer, hyperglycemia, and neurological diseases 
like Alzheimer’s, Huntington’s, and Parkinson’s disease (Lin 
and Beal 2006). Mitochondrial malfunction supposed to be 
a key in the ROS generation, is the fundamental cause of 
several forms of neurodegenerative illnesses. In neurodegen-
erative disorders, many evidences suggesting altered mito-
chondrial architecture and functions, including structure, 
size, location, and mobility, have appeared recently (Chen 
et al. 2012; Onyango et al. 2010). Besides looking at neuro-
degenerative disorders in general, a complete knowledge of 
mitochondrial activity and their involvement in degeneration 
might open up new avenues for the management of progres-
sive neurodegenerative diseases. Mitochondria have been 
identified as critical organelles in the complicated interac-
tion among neurodegeneration since they are both a genera-
tor of innate immune signals.

Mitochondrial defensive agents offer a possible novel 
approach to developing drug compounds that can alter 
the pathophysiology of neurodegeneration (Moreira et al. 
2010). The new finding that mitochondrial dysfunction is 
at the root of several NDD has given rise to new targeted 
therapies aimed at preserving/improving mitochondrial 
function (Missiroli et al. 2020; Umare et al. 2021). Exces-
sive generation of oxygen species by mitochondria, both 
actively and as a secondary result of all other malfunctions, 
alteration in energy metabolism, mitochondrial dynamics 
as well as transport and mutation, are substantial sources 
of problems in well almost all scenarios in which mito-
chondrial dysfunction makes a significant contribution to 
disease. The new revelation that mitochondria seem to be at 
the crossroads of a cell’s death and life, especially through 
the engagement of mitochondrial dysfunction in plethora 
of diseases, has created mitochondria an exciting target for 

new drugs as well as treatment strategies (Blesa et al. 2015; 
Picca et al. 2021).

Healthy Mitochondria

Mitochondria are versatile organelles which are already 
inherited from the mother and form clusters in several 
cells that keeps the intricate balance of fusion, fission, 
mitochondrial generation, and mitophagy (Ma et  al. 
2020). Even though mitochondria are primarily known 
for producing and storing energy from the oxidation of 
complex molecules under aerobic conditions via oxy-
gen consumption, their numerous anabolic features are 
largely neglected (Giorgi et al. 2012; Herst et al. 2017). 
Cellular energy is primarily produced through oxidative 
phosphorylation inside mitochondria that are essential 
organelles for many biological processes such as meta-
bolic activities, lipid biogenesis, calcium homeostasis, 
and programmed cell death (Guzy and Schumacker 2006). 
Due to the general significant level of ATP production 
required to maintain neuronal energy demands, oxida-
tion of glucose is the vital energy source in the central 
nervous system. Since ATP could not be preserved, the 
mitochondria should produce large quantities of ATP con-
tinuously, takes about 25% of the overall volume of the 
cell (Mergenthaler et al. 2013).

The fundamental mitochondrial function is to transform 
the byproducts of glucose, polypeptide, and fat oxidation to 
carbon dioxide and water by employing the electron trans-
port chain’s (ETC) essential enzymes of complexes I to IV. 
Ions (H+) are pushed out from matrix to the inter-cristae 
region during such events, forming a gradient of protons. 
Through complex V, protons moving back along this gradi-
ent start to produce ATP. This process of generating ATP 
with substrate oxidation in the mitochondria is called as oxi-
dative phosphorylation, and is vital for the health of many 
body tissues (Hall et al. 2012). Because the onset of meta-
bolic complications is usually characterized by a disturbance 
in mitochondrial activity, malfunction of above complexes of 
mitochondria could also display an integral role throughout 
the development of several chronic illnesses (Giorgi et al. 
2012; Upaganlawar et al. 2021).

Mitochondria significantly influence several biochemi-
cal cell signaling pathways. It can decode a wide range of 
extracellular inputs into various intracellular responses, 
spanning from energy generation to cell mortality. The 
careful regulation of mitochondrial calcium (Ca2+) bal-
ance is critical in several activities involving this orga-
nelle. Based on the tissues engaged, numerous pathogenic 
diseases might emerge when mitochondrial Ca2+ equi-
librium is disrupted. Recent research has given insight 
on the chemical identities of the key proteins that are 
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involved in mitochondrial Ca2+ trafficking (Calì et al. 
2012; Erustes et al. 2021; Giorgi et al. 2012; Loncke et al. 
2021; Mitochondrial Ca et al. 2022).

In addition to fulfilling the traditional function of pro-
viding the cell with energy, mitochondria actively control 
innate immune responses to sterile insults and infectious 
agents (Banoth and Cassel 2018; Missiroli et al. 2020). 
This can happen in two means: firstly, by direct stimu-
lating the production the immune system response, and 
subsequently, by modifying a reaction. Direct stimulation 
is frequently associated with mitochondrial injury or dys-
function, although modulation can be found as a conse-
quence of healthy mitochondrial processes and activities 
(Banoth and Cassel 2018).

Mitochondria perform important part in cell’s apop-
totic process activation (Wang and Youle 2009). The 
stimulation of caspases results in fragmentation and 
destruction of various cellular components, which is cru-
cial to apoptosis control. Members of Bcl-2 family gov-
ern the discharge of proteins from the space between the 
mitochondrial inner and outer membrane that, once in the 
cytosol, stimulate caspase proteases which de-stabilize 
cells and signal effective phagocytosis of cell corpses 
(Picca et  al. 2021; Tsujimoto 1998). Hence, caspase 
expression must be and is strictly regulated. In humans, 
mitochondrial pathway has been considered as one of 
the primary apoptotic routes. It is an important site for 
the interaction of both antiapoptotic and proapoptotic 
enzymes which determines cell’s fate. Moreover, it is 
the source of signals that initiate caspase activation via 
multiple processes and are stimulated by cytotoxic stress 
(Fulda and Debatin 2006; Vringer and Tait 2019).

What Goes Wrong in Neurodegenerative 
Disorders

Abundance of reports supports that significance of 
mitochondrial affliction in the pathological development of 
neurodegenerative disorders (Chen et al. 2012; Lin and Beal 
2006). Parkinson’s disease (PD), Alzheimer’s disease (AD), 
Amyotrophic Lateral Sclerosis (ALS), and Huntington’s 
disease (HD) are some of the most common of these 
disorders, and they are all delineated by marked neuronal 
cells loss, impaired cognitive and motor functions, and an 
abnormal aggregated proteins accumulation [3,30]. The 
key risk factor for many human illnesses, including NDD, 
is aging (Akbar et al. 2016; Balaban et al. 2005; Cadenas 
and Davies 2000; Umare et al. 2021). A plethora of evidence 
supports impairments in bioenergetics along with brain’s 
reduction–oxidation (redox) homeostasis alterations with the 
increasing of the age (Fig. 1). The overall “mitochondrial 
theory of aging” supports the association of mitochondria 
in aging and associated disorders like NDD (Cobley et al. 
2018; Gandhi and Abramov 2012; Trivedi 2021).

Oxidative Stress

Reactive oxygen species (ROS) production are of biologi-
cal significance in variety of physiological settings which 
involves cellular adaptation to hypoxia, immune response, 
repair processes, synaptic plasticity, differentiation, learn-
ing, and memory and cellular survival via mitophagy (Apel 
and Hirt 2004; Chen et al. 2012). As the brain particularly 
susceptible to oxidative stress induce injury, overproduc-
tion of ROS coupled with reduced antioxidants can aid to 

Fig. 1   Mitochondrial dysfunc-
tion and associated imbalance in 
neurodegenerative disorders
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neuronal loss in neurodegeneration (Andersen 2004). ROS-
induced damage first target mitochondrial structures, which 
undergo severe oxidative changes (Marde et al. 2022; Umare 
et al. 2022; Valko et al. 2007). Oxidative stress can alter 
the mitochondrial function in many different ways including 
mtDNA mutations, depressing the functions of the respira-
tory chain, varying mitochondrial membrane permeability; 
calcium homeostasis disturbances, and damage antioxidant 
system, altered mitochondrial permeability eventually caus-
ing apoptosis.

Nitrogen and reactive oxygen species are primarily pro-
duced by mitochondrial monoamine oxidase (MAO) B and 
complexes I and III, which are found inside the mitochon-
dria. In PD and AD, a region-dependent modulation of MAO 
has been observed (Tong et al. 2017). Reduced mitochon-
drial complex I and III activities have been reported in post-
mortem AD brain (Cardoso et al. 2004). In PD, deficiency 
of NADH dehydrogenase and mitochondrial complex I in 
substantia nigra region has been reported (Gatt et al. 2016). 
As PD has multifactorial origin, environmental toxicants 
also play important role in pathologic mechanisms, which 
includes increased ROS in nigral dopaminergic neurons, 
oxidative phosphorylation inhibition leading to reduce ATP 
production, alteration in membrane potential and activation 
of mitochondrial cytochrome C (Agnihotri and Aruoma 
2019). HD mainly involves dysfunctional striatum and cor-
tex, and a decrease in activity of mitochondrial complex 
II has been reported in patients having HD as well as with 
injection of 3-nitropropionic acid, an animal models for HD 
implicating the role of striatal mitochondria in HD (Uddin 
et  al. 2020). According to numerous studies disrupted 
Ca2 + homeostasis in striatal mitochondria was observed in 
HD mice. Though the involvement of oxidative stress in HD 
is unclear, the mutant HTT (mHTT) interaction with mito-
chondria thought to generate ROS mainly through disruption 
in Ca2 + homeostasis, which triggers the mitochondrial per-
meability transition pore (mPTP), leading to distorted ATP 
level and aids the release of cytochrome c, thereby further 
elevating ROS production (Zheng et al. 2018a). Substantial 
evidence indicates that an excess ROS production in ALS 
to be associated with an impaired antioxidant defense attrib-
uting mitochondrial dysfunction as important pathological 
feature associated with neurodegeneration in ALS (Cunha-
Oliveira et al. 2020).

Mitochondrial Bioenergetics

In the brain, flexibility of metabolic functions rely on the 
interplay between mitochondrial oxidative phosphorylation 
systems (OXPHOS) and glycolytic pathways. The mitochon-
drial OXPHOS uses amino acids, fatty acids, and glucose 
as substrates to generate reducing equivalents, which are 
then converted to ATP. On the other hand, elevated levels 

of H2O2 are thought to mediate the negative consequences 
connected to mitochondrial dysfunction in NDD since they 
have been linked to redox alterations in the mitochondria 
and macromolecule oxidation throughout aging. Glutathione 
(GSH) or thioredoxin (Trx)-driven enzymes in the brain 
mitochondria mostly remove H2O2 and rely on NADPH 
as the final electron donor. With regard to NDD, including 
PD, AD, HD, and ALS, there is overwhelming proof that 
OXPHOS is altered as a result of the accumulation of mis-
folded proteins brought on by gene mutations or abnormal 
protein homeostasis (Kawamata and Manfredi 2018; Marde 
et al. 2021; Wankhede et al. 2022).

Mitochondrial dysfunction due to failure in bioenerget-
ics has been well reported in AD. The positron emission 
tomography (PET) confirms altered glucose uptake has been 
linked with the cognitive impairment in AD. Additional, 
brain atrophy in AD has been associated with impaired mito-
chondrial transport (Cunnane et al. 2020). Mutation in AD 
affects mitochondrial Ca2 + signaling and reduces OXPHOS 
function thereby reducing the further ATP deficit, increased 
ROS, altered cellular Ca2 + homeostasis and reduced protein 
synthesis (Dematteis et al. 2020). The PET studies of PD 
brain reported mitochondrial dysfunction in dopaminergic 
neurons along with reduced glycolysis and mitochondrial 
complex I activity (Zambon et al. 2019). Additionally, aber-
rant pyruvate and glucose metabolism has been reported in 
AD and PD. The accumulation of mtDNA with subsequent 
reductions in OXPHOS are thought to responsible for neu-
rodegeneration in AD and PD (Area-Gomez et al. 2019). In 
HD, the mutant Htt impairs axonal transport in the motor 
neurons and also affects glucose uptake altering the ATP 
generation, reduced mitochondrial function and oxidative 
phosphorylation in HD neurons (Cunnane et  al. 2020). 
Numerus studies reported reduction in glycolysis as well as 
mitochondrial function, impaired pentose phosphate path-
way in ALS. Moreover, impaired mitochondrial energetics 
and in astrocytes has been linked with ALS (Allen et al. 
2019; Delic et al. 2018; Tefera et al. 2019).

Mitochondrial Damage and Mutation

Mitochondrial dysfunction, a causal factor of aging, is char-
acterized by abnormal cellular redox generation and excess 
mitochondrial DNA accumulation (mtDNA). The strong 
relation between mtDNA mutation as well as the produc-
tion of ROS is, however, still debatable. The mtDNA is 
more prone to oxidative damage as compared to nuclear 
DNA, thus in weak antioxidant defense it gets easily dam-
aged by excess generation of ROS. Also, the mutant mtDNA 
accumulation may reduce the ETC capabilities, resulting in 
lower adenosine triphosphate generation and higher ROS 
production (Cha et al. 2015; Xia et al. 2009). Oxidative dam-
age to mtDNA in the brain changes with increased age and 



712	 Neurotoxicity Research (2023) 41:708–729

1 3

can result in multiple point mutations. Numerous somatic 
mtDNA mutations caused by ROS or other processes may 
aggregate in the nervous system with age and hence have a 
contribution in aging and NDD, although being uncommon 
at any one place (Simon et al. 2004).

Mitochondrial genetic malfunction has also been linked 
to Alzheimer’s disease pathogenesis. Damaged DNA lesions 
caused by ROS are substantially more common in AD tis-
sues. Degraded mtDNA and associated proteins have also 
been discovered in the brain of AD patients, and the base 
excision repair (BER) mechanism has been reported to be 
faulty (Canugovi et al. 2014; Krishnan et al. 2012). Similarly 
in AD, tends to be characterized by mitochondrial malfunc-
tion. Microscopy of AD brain tissues demonstrates structural 
abnormalities in mitochondria. These alterations are often 
linked with the overproduction of ROS, a reduction in ATP 
levels, and increased release of cytochrome c oxidase along 
with mtDNA into the cytosol, which together aggravate neu-
rotoxicity (Zheng et al. 2018b; Zorov et al. 2014).

Individuals having high levels of mtDNA mutations 
frequently exhibit significant neurological dysfunction, also 
with extent of neurodegeneration varied largely depending 
on the kind of mutation and the mtDNA mutation 
burden across the brain. The research for mitochondrial 
malfunction and mtDNA mutations being involved in PD 
is arguably greatest. The discovery of family versions of 
the illness reveals that a variety of genetic alterations are 
related with mitochondria and have roles in ROS damage 
(Taylor and Turnbull 2005; Upaganlawar et  al. 2021). 
Numerous factors have been associated with dopaminergic 
neurons degeneration which includes, excess ROS, mtDNA 
mutations, and mitochondrial mechanisms malfunction. 
Furthermore, ETC deficit in dopaminergic neurons causes 
mitochondrial disruption and a reduction in the delivery of 
new mitochondria to dopaminergic neuron endings in the 
striatum (Ciccone et al. 2013). Mitochondrial dysfunction 
has also been linked with the pathogenesis of Huntington’s 
disease (HD), with mitochondrial biochemical deficiencies 
and impaired mitochondrial enzyme activity being observed 
in HD patients. Huntingtin mHtt or polyQ segments 
can also cause mitochondrial malfunction. Moreover, 
investigations have shown that mutated Htt associated ROS 
targets mtDNA predominantly, which might contribute 
to mitochondrial change. Also, studies suggested APE1, 
an BER enzyme is a key target in the preservation of 
mitochondrial function in HD (Choo et al. 2004; Jimenez-
Sanchez et al. 2017; Walker 2007). Also, it has already 
been postulated that somatic mtDNA mutations might 
perform a part in the development of a range of distinct 
neurological illnesses. Elevated concentrations of mutations 
have been associated with amyotrophic lateral sclerosis, 
multiple sclerosis, and even neurodevelopmental disorders 
(Campbell and MacQueen 2006; Simon et al. 2004).

Mitochondrial Quality Control

The cell has mitochondrial quality control (MQC) system 
responsible for overcoming the defects in the mitochon-
dria. It includes processes such as mitochondrial biogenesis, 
mitochondrial proteostasis mitochondrial dynamics as well 
as mitophagy (Fig. 2) (Anzell et al. 2017). MQC represents 
the equilibrium between the rate of biogenesis and degra-
dation (Dominy and Puigserver 2013). The combination 
of these mechanisms demonstrates mitochondrial quality 
control, particularly crucial in cellular illnesses ranging 
from basic mitochondrial hereditary defects to secondary 
mitochondrial diseases such as neurodegenerative, inflam-
matory diseases (Chang et al. 2020; Criscuolo et al. 2021; 
Suliman and Piantadosi 2015). MQC processes play a cru-
cial part in regulating mitochondrial structure and activity. 
MQC is made up of three primary components: the mito-
chondrial dynamics, ubiquitin–proteasome system (UPS), 
and mitophagy. The UPS system has the ability to modu-
late the levels of proteins associated with mitochondrial 
dynamics and death receptors. The UPS is broadly active 
during perkin-dependent mitophagy and plays crucial roles. 
Mitophagy is heavily influenced by mitochondrial dynamics 
(Palikaras and Tavernarakis 2012; Suen et al. 2008; Wei 
et al. 2015). Thus, abnormal MQC can be important mecha-
nism pathogenesis of the origination and progression of 
neurodegenerative diseases, making it an important thera-
peutic target (Wang et al. 2021b; Yan et al. 2020).

Impaired Mitochondrial Biogenesis

Cell triggers mitochondrial biogenesis as a result of increased 
demand and is regulated via several signaling pathways in 
response to stimulus. The peroxisome proliferator-activated 
receptor–gamma coactivator 1 alpha (PGC-1α) regulates the 
mitochondrial biogenesis; along with numerus transcription 
factors, includes nuclear respiratory factor (NRF-1/2) and 
peroxisome proliferator activated receptors (PPARs). The 
activation of NRF-1/2 pathway via PGC-1α stimulates 
transcription factor A (TFAM) and other proteins expression 
[31–32]. The activation of PGC-1α is also associated 
with high energy consumption and uptake. Another 
protein AMPK, AMP-activated protein kinase deals with 
mitochondrial biogenesis. Oxidative stress affects activation 
of AMPK thereby disturbing mitochondrial biogenesis. 
AMPK activation also stimulates PGC- 1α pathway, thereby 
improves biogenesis through PGC-1α-NRF-2 pathway 
(Fig. 2) (Elfawy and Das 2019). Thus, the proteins involved 
in mitochondrial biogenesis can also act as therapeutic 
targets for neurodegenerative diseases. Potential role of 
PPARγ-PGC1α-NRF2 in the initiation and maintenance 
of mitochondrial biogenesis makes it a potential target and 
strategies targeting PPARγ-PGC1α-NRF2 signaling plays 
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promising role in developing newer treatment for NDD 
(Jamwal et al. 2021).

Number of studies reported reduced level of PGC-1 
in neurodegenerative conditions like AD, PD, and HD, 
whereas overexpression of molecule was found to exert 
neuroprotection in disease models, some conflicting reports 
also suggested deleterious effect associated with PGC-1 
overexpression in dopaminergic neurons (Ciron et al. 2012; 
Jones et al. 2012). The relative number of mitochondria 
was found to reduce in HD brains, along with PGC-1 and 
TFAM (Kim et al. 2010). Furthermore, neurodegenerative 
lesions in the striatum was seen in PGC-1 null mice model 
of HD (Lin et al. 2004; Oliveira 2010). In AD patients, the 
low number of mitochondria along with reduced expression 
of PGC-1, NRF1, NRF2, and TFAM (Calkins et al. 2011; 
Hirai et al. 2001; Sheng et al. 2012). Both the levels of 
PGC-1 and NRF-1 were declined in brain region associated 
with PD. Additionally, PGC-1 polymorphisms have been 
associated with PD and HD (Che et al. 2011; Clark et al. 
2011; Shin et al. 2011; Weydt et al. 2009). In PD, reduced 
neurogenesis has been associated with the loss of PARKIN, 

which directly linked with the downregulation of expression 
of PGC-1 in basal ganglia (Wang et al. 2021b).

Impaired Mitochondrial Dynamics

Mitochondria are structured in a dynamically changing 
matrix that undergoes continual fusion and fission in neces-
sary to undertake their activities in the most efficient manner 
continuously. The processes of fission and fusion of mito-
chondria are crucial in the formation of new as well as the 
removal of defective mitochondria. Mitochondria create a 
densely linked tubular network all across the cell, which 
encompasses mitochondrial segments constantly breaking 
away and fusing (Walker et al. 2020; Youle and van der 
Bliek 2012a, b) (Fig. 2).

The process of fission results in the mitochondrial frag-
mentation followed by its elimination via mitophagy. (Burman 
et al. 2017; Frank et al. 2012; Scott and Youle 2010). Several 
mitochondrial proteins are involved in fission process including 
mitochondrial fission protein and factor (Fis1 & Mff), GTPase  
dynamin-related protein 1 (Drp1) and mitochondrial dynamics 

Fig. 2   Mitochondrial quality control (MQC) system. (AMPK) AMP-
activated protein kinase, (PGC1α) Peroxisome proliferator-activated 
receptor–gamma coactivator 1 alpha; (NRF-1/2) nuclear respira-
tory factor ½; (ERR-α) estrogen-related receptor-alpha; (PPAR-γ) 
peroxisome proliferator activated receptors; (TFAM) transcription 
factor A; (mtDNA) mitochondrial DNA, (MPC) mitochondrial pyru-
vate carrier, (OXPHOS) oxidative phosphorylation system, (Fis1) 
mitochondrial fission protein 1, dynamin-related protein 1( Drp1), 
optic atrophy protein 1(OPA1), (MFN2) mitofusin 2, (LC3) micro-

tubule-associated proteins 1A/1B light chain 3. MQC system ensures 
the mitochondrial homeostasis via biogenesis of mitochondria, its 
dynamics and mitophagy. Through the appropriate stimuli or AMPK 
triggers the different transcription factors such as PGC1α and TFAM 
via PGC1α-ERR-α or PPAR-γ-PGC1α-NRF1/2 pathway. TFAM 
reaches MTDNA through mitochondrial import machinery and 
upregulates expression of different genes involved in mitochondrial 
biogenesis and dynamics. Mitochondrial components are ultimately 
recycled through a specialized pathway, mitophagy
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of 51 kDa protein (MiD51) (Youle and Van Der Bliek 2012a, 
b; Zhang et al. 2016). Fis1, is an OMM protein which act as 
receptor for Drp1. Normally Drp1 binds to Fis1 at tetratrico-
peptide repeat (TPR) present on cytosolic side leads to con-
striction of mitochondrial outer membrane resembling like 
ring (Gomes and Scorrano 2008; Panchal and Tiwari 2019; 
Youle and Van Der Bliek 2012a, b). Oligomerization of Drp1 
and subsequent binding with GTP hydrolysis is necessary step 
in mitochondrial fission. Thus, hyperactivation of Drp1 may 
lead to mitochondrial fragmentation leading to neuronal death 
(Feng et al. 2020; Manor et al. 2015). The high rate of fission 
can hinders the elimination rate of impaired mitochondria; 
thus, it gets accumulated affecting ETC activity and thereby 
energy production (Twig et al. 2008). In fusion mitochondria 
merged to each other in order to preserve mitochondrion for 
survival and growth during embryonic development (Chen 
2011). Different proteins that carry out mitochondrial fusion 
process are Mitofusin 1, 2 (Mfn1&2), on OMM and Optic 
Atrophy (Opa1) protein, IMM (Panchal and Tiwari 2019). 
Numerous studies have stated that altered Mfn2 and Drp1 
expression are involved in different NDs pathologies (Fig. 3) 
(Chen et al. 2003; Gao et al. 2017).

Disrupted mitochondrial fusion and fission have been 
implicated as major pathogenic components supporting a 
variety of neurodegenerative diseases pediatric and older 
people. Because mitochondrial activities are vital, severe 
mitochondrial fission causes brain malfunction. The buildup 
of alpha-synuclein and tau in the brains of individuals suf-
fering from neurodegenerative illnesses has also been 

associated to the impaired mitochondrial fission function. 
Numerous studies have reported upregulation of fission-
related genes such as Drp1 and Fis1, which interact with 
amyloid-β and tau protein results in fragmentation of mito-
chondrial in AD (Kandimalla and Reddy 2016).

Increased ROS production one of the target for ROS is 
regulators of fission proteins thus hampers mitochondrial 
dynamics in AD (Wang et al. 2008). The Appl gene reported 
to enhance the fusion process thereby indirectly affecting 
axonal transport resulting in neuronal loss in AD. Addition-
ally, tau has also been associated with mitochondrial dynam-
ics by interacting with Drp1 (DuBoff et al. 2012; Manczak 
and Reddy 2012). The mitochondrial dynamics are also 
controlled by LRRK2 thus its overexpression can lead to 
increase expression of fission protein resulting in mitochon-
drial fragmentation (Westermann 2012; Yang et al. 2014). 
Another ALS gene, TAF15 expression can affect the mito-
chondrial dynamics, enhancing mitochondrial fragmentation 
(Altanbyek et al. 2016).

Mitophagy

Mitophagy was initially presented in the research world in 
2005 to define a cellular complex process that involves selec-
tive sequestering and destruction of old or damaged mito-
chondria. Under body’s normal settings, mitochondria use 
mitophagy to supply critical macromolecular components 
for cells and defend against both neurodegeneration and the 
buildup of defective mitochondria (Chen and Chan 2009; 

Fig. 3   Imbalance in mito-
chondrial dynamics leading to 
mitochondrial fragmentation
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Palikaras and Tavernarakis 2012; Rodolfo et al. 2018). The 
aggregation of defective and malfunctioning mitochondria 
has also been described as an early sign that contributes 
to various neurodegenerative diseases. Under physiologi-
cal setting the dysfunctional mitochondria has been selected 
through fission for fragmentation, then degraded in lys-
osomes. Mitophagy declines with age which further results 
in an accumulation of dysfunctional mitochondria (Wang 
et al. 2019).

Mitochondrial malfunction in these disorders generates 
bioenergetic shortage, cellular calcium disequilibrium, 
and excessive ROS production, worsening the effects of 
Amyloid and tau abnormalities and contributing to synap-
tic dysfunction, cognitive deficits, and impaired memory 
(Chakravorty et al. 2019). Reduced function and efficiency 
of mitochondria in CNS, especially in the hippocampus, 
are linked to aging process and a variety of neurodegenera-
tive illnesses that impair cognition. Moreover, synaptic and 
intellectual impairment are heterogeneous, accumulating 
evidences shows that mitochondria are crucial in all these 
pathways but also that preserving mitochondrial activity 
may help to avoid age-related and neuronal changes (Guo 
et al. 2017).

Defective mitophagy has been found in the neurode-
generative patients, which has been mainly linked with the 
disease-related genes (Wang et al. 2021a). Several path-
ways are involved in mitochondria targeted degradation 
via autophagosome, among which PTEN-induced putative 
kinase protein 1 (PINK1)/cytosolic E3 ubiquitin ligase PAR-
KIN has been the most explored pathway for mitochondrial 
homeostasis in neurodegenerative diseases. Similarly, their 
dysfunction has been involved in the development of various 
disorders. Previous research has concentrated on the inter-
action between genes such as PINK1, Parkin, α-synuclein, 
LRRK2, and DJ-1 with mitophagy. The mitophagy has 
been directly or indirectly linked with PD, as it controls 
the calcium imbalance, oxidative stress and cell apoptosis 
via different mechanism (Wang et al. 2022a, 2021a). PD is 
frequently caused by mutations in the cytoprotective PINK-
Parkin pathway. Furthermore, through collaborating with 
PINK-Parkin pathway, Drp1 is transported to the OMM, 
resulting in mitochondrial disruption and thereby increas-
ing mitophagy (Ma et al. 2020; Picca et al. 2021). Also, 
the Drp1 defect has been associated upstream membrane 
depolarization and ROS production, thereby impairing 
mitophagy in PD (Feng et al. 2020). A higher rate of apop-
tosis has been associated with α-synuclein and its mutant 
forms, A53T α-synuclein, which suggests its involvement 
in mitochondrial apoptotic pathway. Another protein par-
kin is associated with the mitochondria, which prevents cell 
death by inhibiting cytochrome c release and caspase. Also, 
patients with parkin mutations shows selective impairment 
in mitochondrial complex I activity (Federico et al. 2012).

A growing body of evidences shows the involvement 
of α-synuclein in mitochondrial dynamics and mitophagy. 
In native form the α-synuclein promotes the fission while 
inhibits mitochondrial fusion, via interactive with Mfn 1/2 
and Opa1. Under the pathological state, aggregation of 
α-synuclein in mitochondrial reduces activity of complex1 
while promotes ROS production and impairs mitophagy 
(Feng et al. 2021a; Risiglione et al. 2021).

Though involvement of autophagy in HD is poorly under-
stood, the impairment in fission/fusion has been reported in 
few studies. The Huntington protein Htt has been linked with 
mitophagy as it link the UNC-51-like kinase-1 (ULK1) and 
sequestosome 1 (SQSTM1/p62), supporting the mutation 
in Htt may lead to degeneration (Rui et al. 2015). In ALS, 
the localization of mSOD1 in the mitochondria activation 
cytochrome c with subsequent release of caspase and may 
contribute to apoptotic death (Takeuchi et al. 2016).

Mitochondrial Transport within Axons

Mitochondria have several important functions in adult 
neurogenesis. Their complicated neuronal movement 
patterns are distinguished by repeated directional changes. 
The movement can be anterograde or retrograde between 
cell body and axon in the direction of microtubules and is 
mediated by certain proteins which includes, kinesin motor 
protein, dynein motor protein, mitochondrial Rho GTPase 
(Miro) and Gamma-aminobutyric acid receptor-interacting 
factor-1/Trafficking kinesin-binding protein-2 (GRIF-1/
TRAK2) (Mishra and Chan 2014). Moving mitochondria can 
be fixed or stall in places with significant metabolism, then 
move quickly again in accordance to metabolic responses. 
For the mitochondrial transport Miro attaches to the motor 
proteins through GRIF-1/TRAK2, followed by kinesin motor 
protein and dynein helps in the linking mitochondria and 
microtubule for the transport. Miro is important part of 
the axonal transport as it maintenance the mitochondrial 
motility at physiological Ca2 + concentration. Thus, the 
onset of neurodegenerative conditions can be due to energy 
deficiency at synapses because of improper transport between 
mitochondria and microtubules (Panchal and Tiwari 2019). 
Impairment in mitochondrial mobility have been associated 
with numerous major neurological conditions (Sheng and Cai 
2012). During persistent neuronal excitability, mitochondria 
are frequently preserved in presynaptic terminals and 
postsynaptic dendritic spines(Li et al. 2004). Axonal transport 
abnormalities were identified as an initial pathogenic 
characteristic in a number of neurodegenerative disorders. 
Dynein-mediated alteration and ultimately affecting axonal 
transport in neurodegenerative diseases is correlated with 
dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) and 
dynactin-1 (DCTN1) mutations. In AD, hyperphosphorylated 
of tau results in its detachment from microtubule resulting in 
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microtubule destabilization and thus impairs axonal transport 
(Cunha-Oliveira et al. 2020). Amyloid precursor protein 
(Appl gene) in AD binds with kinesin protein and dynein 
motor protein which are associated with mitochondrial 
transport (Lin et  al. 2017). Thus its overexpression can 
affect mitochondrial transport directly by reducing function 
of kinesin heavy chain (KHC) or indirectly via Tau protein 
(Wang et al. 2020). Other genes that are associated with the 
axonal transport include PINK 1 and Parkin. Evidences has 
revealed that PINK1 and Parkin-mediated phosphorylation 
of Miro protein arrest the process of axonal transport process 
(Lin et al. 2017). Additionally, α-synuclein and LRRK2 gene 
mutaion found to affect the mitochondrial axonal transport 
by altering microtubule stability (Melo et al. 2018; Sleigh 
et al. 2019). In HD, mutant Htt overexpression has been also 
associated with impaired mitochondrial axonal transport 
and mislocalization (Yang et al. 2021). Axonal transport 
disease linked to microtubules and neurofilaments is seen 
in a wide range of neurodegenerative conditions. Mutations 
in SOD1, one of several genes responsible for ALS, produce 
neurofilament phosphorylation as well as aggregation and an 
absence of motor complex formation in early cortical neurons 
(Guo et al. 2020). Furthermore, mutant TDP-43 expression in 
ALS impairs the axonal transport (Yang et al. 2021).

Targets for Developing Mitochondrial Medicine

Although some of the underlying processes for the neuro-
degenerative illnesses are unique to each one and eventu-
ally result in the degeneration of a particular subgroup of 
neurons, they all have similar degenerative characteristics, 
such as mitochondrial dysfunction(Gao et al. 2017). When 
mitochondrial homeostasis is negatively affected, patholo-
gies like NDD arise which is a result of secondary mitochon-
drial dysfunctions (SMD). Defects in mitochondrial energy 
metabolism, dynamics, biogenesis, quality control etc. are 
major cause of SMD in NDD. There are only palliative treat-
ments available for NDs right now (Table 1). More research 
is being done to develop medicines that specifically target 
mitochondria. There have been extensive efforts made in the 
creation of pharmacological techniques to reinstate mito-
chondrial integrity because of the wide range of disorders 
associated with mitochondrial dysfunction. This section will 
provide the most promising therapeutic targets (Umare et al. 
2021; Upaganlawar et al. 2022).

Targeting Free‑Radical Generation

For the normal functioning of the CNS, chemical integrity 
of brain is utmost important. Due to high oxygen require-
ment and lipid content, make the brain more prone to oxida-
tive stress. Numerous neurodegenerative disorders like AD, 

PD, HD, and ALS are the result of biochemical changes 
due to excessive ROS production. Targeting mitochon-
drial ROS production is major strategy for the treatment of 
NDD(Onyango et al. 2010; Umare et al. 2021; Wankhede 
et al. 2022).

Antioxidants

To counteract the ROS protecting neuron cells and prevents 
neurodegenerative illnesses, a variety of neuroprotective 
treatments have been created to date. Specifically, these 
drugs are antioxidants which exert neuroprotective action 
by decreasing the oxidative stress and improvement in the 
overall mitochondrial health. These agents include Olan-
zapine, Melatonin, Z-LEHDFMK Mitoquinone, Riluzole, 
Dichloroacetate, Clozapine, N-acetylcysteine, Olesoxime, 
erythropoietin, vitamin E, Z-FA-MK and Cholest-4-en-3-
one, which are extensively studied for their neuroprotective 
potential (Upaganlawar et al. 2021; Wu et al. 2019). Among 
these erythropoietin was found to be most promising agent 
which employ its action by regulating of oxygen balance, gly-
colysis and mitochondrial dynamics (Aliev et al. 2003; Rey 
et al. 2021). Several other antioxidants for instance coenzyme 
Q10, creatine and dimebon, exerts positive action in the AD 
and PD in preclinical studies, however, some were unsuc-
cessful in the clinical trials (Reddy 2009; Wang et al. 2019).

The small peptide containing-tyrosine (SS-02 and SS-31) 
are reported as potent antioxidant in preventing oxidative 
neuronal death (Szeto 2008). These SS peptides act directly 
on mitochondrial inner membrane. The data from animal 
studies showed that SS02 and SS-31 readily penetrates the 
BBB and eliminate free radical in tert butyhydroperoxide 
(tBHP) mediated ROS generation in cell cultures (Szeto 
2006). Evidences also have demonstrated effectiveness of 
these peptides in PD and ALS (Petri et al. 2006; Xiong 
et al. 2012).

Targeting Mitochondrial Bioenergetics

The modification of the redox state of mitochondria may 
serve as an alternate approach for treatment of NDD. There 
is a mounting body of evidence demonstrated that a diverse 
mitochondria-mediated signaling cascade is triggered by the 
mild inhibition of the OXPHOS complexes and enhances 
various pathways. Complex I inhibition aims to promote 
healthy aging, postpone the onset of neurodegenerative dis-
ease, and provide relief for a number of NDDs, such as AD, 
HD, PD, and AML. A growing body of evidence supports 
strong therapeutic potential of nicotinamide riboside, a pre-
cursor of NAD + , to prevent cognitive decline, synapse loss, 
and neuronal death. Additionally, pyruvate improves brain 
energetics via pyruvate dehydrogenase (Cerutti et al. 2014; 
Lautrup et al. 2019; Linnane et al. 1992).
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Table 1   Therapeutic interventions for mitochondrial dysfunction in neurodegenerative diseases

Tested treatment for 
mitochondrial dysfunction

Comment References

Antioxidants- Reduce oxidative stress- provide neuroprotection (Jaber et al. 2020; Orsucci et al. 2011; Reddy 2009; Wang 
et al. 2019, 2022b; Wu et al. 2019)Coenzyme Q10

Idebenone
Mitoquinone
Carnosic acid
Mangiferin
Metformin Partial complex I inhibitor (Gueguen et al. 2015; Rotermund et al. 2018; Trushina et al. 

2022)Resveratrol Partial complex I inhibitor
Berberine Partial complex I inhibitor
Epigallocatechin 3-gallate Partial complex I inhibitor
CP2 Partial complex I inhibitor, Activation of AMPK pathway
MSDC-0160 Block MPC-1,↓mTOR (Mallet et al. 2022) (Ghosh et al. 2016)

MPC-1, preserve energy metabolism, neuroprotection & 
antiinflammatory (↓mTOR)

Lapatinib ditosylate (LAP) ↓ MPC-1, ↓ ERR-α, antiinflammatory & neuroprotection (Huang et al. 2020; Salomone et al. 2012)
Pioglitazone ↑ Mitochondrial biogenesis (Heneka et al. 2015; Huang et al. 2020; Investigators 2015; 

Salomone et al. 2012)
Thiazolidinediones PPAR activation (Cheng et al. 2015)
Resveratrol ↑ AMPK activation (Vingtdeux et al. 2010)

↓ Drp1, imporves Parkin & PINK translation (Li et al. 2019)
↑ LC3-II, antioxidant
↑PGC-1α, ↑TFAM (Blanchet et al. 2008; Ho et al. 2010; Kim et al. 2007; 

Whitaker et al. 2016)
↑Sirtuins, ↑AMPK pathway (Cantó and Auwerx 2009)
Partial complex I inhibitor (Gueguen et al. 2015)

AICAR​ ↑AMPK pathway (Vingtdeux et al. 2010)
Melatonin ↑PGC-1α, restore mitochondrial structure (Tiwari et al. 2021)
LY344864 ↑PGC-1α (Scholpa et al. 2018)
Quinazolinone Mdivi-1 inhibitor

↓ DRP1 GTPase activity
↓Mitochondrial fragmentation

(Cheng et al. 2015; Gan et al. 2014; Heneka et al. 2015; 
Risner et al. 2006; Watson et al. 2005)

Rosiglitazone ↑ATP production (Cheng et al. 2015; Heneka et al. 2015; Quintanilla et al. 
2008; Risner et al. 2006; Watson et al. 2005)

↑PPAR-PGC-1 (Quintanilla et al. 2008)
↑Protein synthesis

Bezafibrate ↑PPAR-PGC-1 (Quintanilla et al. 2008)
↑Protein synthesis

REN001 ↑PPAR-PGC-1
STACs ↑PGC-1α, AMPK & Sirt1 (Tufekci et al. 2011)
NBMs ↑Sirt1 activation (Orsucci et al. 2011)
Quercetin Antioxidant (Kale et al. 2021; Khan et al. 2018; Liu et al. 2020; Sandhir 

and Mehrotra 2013; Tiwari et al. 2021)
↑AMPK & Sirt1 (Tufekci et al. 2011)

Icariin ↓ Mitosis triggered by ROS (Kale et al. 2021; Liu et al. 2020; Tiwari et al. 2021)
Triterpenoids ↑ NrF2 signaling (Tufekci et al. 2011)

Mangiferin Anti-inflammatory,
↓TNF-α, ↓NF-κB, ↓ activation of microglia and astrocytes,
Antiapoptotic-↓ caspase activation,
↓ DRP1 activity

(Feng et al. 2019; Wang et al. 2022b)
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OXPHOS Modulators

A number of evidence of mitochondrial alterations spe-
cifically, OXPHOS defects have been illustrated which 
results in neurodegenerative diseases (Kawamata and 
Manfredi 2018). Some agents act as OXPHOS modu-
lators which employ their function through interacting 
with components of respiratory chain. Coenzyme Q10, 
an electron carrier in the ETC with antioxidant prop-
erties, extensively used for management of disorders 
associated with mitochondria. In addition, several neu-
rogenic/neurodegenerative illnesses have been treated 
using coenzyme Q10 with its equivalents, idebenone and 
mitoquinone. Idebenone act by transferring of electrons 
from respiratory complex II to III (Orsucci et al. 2011). 
It has been investigated in various clinical studies for a 
range of mitochondria associated illnesses because of its 
antioxidant characteristics and safety profile(Paudel et al. 
2020; Singh et al. 2021). Despite its clinical effectiveness 
in dealing with the Leber’s hereditary optic neuropathy 
(LHON), a Complex I disease, it has been less success-
ful in clinical trials for other neurodegenerative diseases. 
This may be due to lack of neuronal NAD(P)H: quinone 
oxidoreductase 1 (NQO1) activity which has contributed 
to the limited efficacy of idebenone in neurodegenera-
tive disease treatment. Reports conferred that carnosic 
acid–idebenone combination treatment promoted NQO1-
dependent complex I bypass activity in neurons, as well 
as other brain cell types. This may be able to expose the 
neuroprotective therapeutic potential of idebenone or 
related quinones (Jaber et al. 2020).

Complex I Inhibitors

Inhibiting complex I partially with various small mole-
cules, being studied in clinical trials has been used as a 
cutting-edge treatment NDD. In a small number of clini-
cal trials, metformin, berberine, epigallocatechin-3-gallate, 
and resveratrol were tested for neurodegenerative illnesses 
(Rotermund et al. 2018; Wankhede et al. 2022). Another 
molecule that targets complex 1 resveratrol, it binds the 
mitochondrial complex 1 and shows pro- and antioxidant 
effects depending on dose (Gueguen et al. 2015). Recent 
study reported that, in AD partial inhibition of mitochon-
drial complex I with the small molecule compound CP2 
triggers a variety of AMPK pathways that provide neuro-
protection (Trushina et al. 2022). On contrary, complex I 
is also a significant cause for ROS production. Evidences 
revealed that inhibition of mitochondria complex I is a 
major cause of PD in drug abusers. Also the administra-
tion of rotenone found to mimic clinical features of PD in 
animals via complex-I inhibition thereby enhancing oxi-
dative stress in nigral-striatal system (Xiong et al. 2012).

Mitochondrial Pyruvate Carrier

The mitochondrial pyruvate carrier (MPC) is another poten-
tial mitochondrial target for the treatment of NDD. The high 
amounts of energy needed for neural transmission are typi-
cally produced by oxidative phosphorylation in neurons, but 
other regions of the brain, comprising the parietal region 
and prefrontal cortices, were discovered to primarily rely 
on aerobic glycolysis. Because of this, the MPC in general 
play a crucial function in neurons. In these cells, pyruvate is 
mostly produced by glycolysis, while LDH may also convert 
lactate to pyruvate. The astrocyte-neuron shuttle is the pri-
mary source for lactate which is taken up by neurons from 
astrocytes. (Bélanger et al. 2011). Abundance of reports sup-
ports pharmacological MPC inhibition has been explored as 
a potential target for NDDs (Fig. 4) (Quansah et al. 2018; 
Zangari et al. 2020).

The MSDC-0160 analog of MSDC-0602  K is being 
studied for treatments of AD and PD. The degeneration of 
hippocampal neurons in AD rat model has been thought to 
be ameliorated by blocking the MPC-1, which reduces the 
activation of the mammalian target of rapamycin (mTOR). 
In D-galactose/ovariectomized rats, an anti-cancer medi-
cation, lapatinib ditosylate (LAP), suppresses MPC-1 via 
decreasing estrogen-related receptor-alpha (ERR-alpha). 
According to a study, LAP plays an neuroprotective and anti-
inflammatory role in the AD that targets MPC-1. In a phase 
2 clinical study, individuals with AD had better cerebral glu-
cose metabolism and less brain damage (Huang et al. 2020; 
Salomone et al. 2012).

As a single point, MPC is essential for pyruvate entry into 
the mitochondrial matrix, which in turn affects the energy 
metabolism that is impaired in PD. Treatment with MSDC-
0160 enhanced motor behavior, reduced dopaminergic den-
ervation, and diminished neuroinflammation and mTOR 
activity in unilateral 6-OHDA mice. Concurrently, MSDC-
0160 treatment significantly altered energy metabolism, as 
seen by an increase in glutamate oxidation, β-oxidation, 
and ketogenesis to meet energy requirements and preserve 
energy homeostasis(Mallet et al. 2022). Its neuroprotective 
and anti-inflammatory characteristics were validated in a 
pre-clinical investigation using experimental models of PD 
(Ghosh et al. 2016).

Targeting Mitochondrial Biogenesis

A growing body of evidence supports beneficial effects 
of drugs targeting PPARγ-PGC1α-NRF2 in NDD. Piogl-
itazone, an FDA-approved medication, have been demon-
strated to enhance biogenesis and mitochondrial function 
in diabetes individuals (Scarpulla 2011). Positive outcomes 
from pre-clinical research point to its potential for use in the 
treatment of neurological disorders linked to mitochondria 
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(Masciopinto et al. 2012). A PPAR activator, thiazolidinedi-
ones (TZDs) has shown to improve cognitive impairments in 
AD via stimulating mitochondrial biogenesis (Cheng et al. 
2015; Heneka et al. 2015; Risner et al. 2006; Watson et al. 
2005). Analogous results were seen with resveratrol and 5- 
aminoimidazole-4-carboxamide ribonucleotide (AICAR) 
through AMPK thereby activating mitochondrial biogenesis 
(Vingtdeux et al. 2010). Resveratrol also decreases neuro-
degeneration via activating PGC-1α in AD, PD, HD, and 
ALS (Blanchet et al. 2008; Ho et al. 2010; Kim et al. 2007; 
Whitaker et al. 2016). Furthermore, melatonin improved 
PGC-1α signaling and also restores mitochondrial structure 
and function in AD (Simmons et al. 2020). In addition, res-
veratrol increases TFAM expression along with PGC-1α in 
animal model of PD, demonstrating improved biogenesis 
(Peng et al. 2016). Treatment with LY344864 improved the 
expression PGC-1α in different brain regions in PD (Scholpa 
et al. 2018).

The efficiency of pioglitazone was found in treatment of 
X-linked adrenoleukodystrophy (X-ALD) which is a neuro-
degenerative condition marked by mitochondrial and peroxi-
somal dysfunction, is being studied in a phase 2 clinical trial 
(Investigators 2015). Rosiglitazone, bezafibrate, and REN001 
are additional medications that stimulate the PPAR-PGC-1 
axis. Rosiglitazone specifically reduces mitochondrial dys-
function by boosting mitochondrial mass and bezafibrate 
boosts the ability of mitochondria to produce ATP by boosting 
mitochondrial proteins. It also found to ameliorate mitochon-
drial dysfunction in mHtt expressing neurons (Quintanilla 
et al. 2008). Sirtuin 1 (Sirt1) and AMPK are some potential 
targets to regulate PGC-1α and reestablish mitochondrial 
function. For both proteins, a number of activating substances 
have been discovered, some of which are now undergoing 

clinical trials for disorders linked to the mitochondria. Sirt1 
activity may be controlled pharmacologically via allos-
teric modulators, also known as Sirt1-activating substances 
(STACs). Alternately, NAD + precursors often referred to as 
NAD + boosting molecules (NBMs), targets enzymes that 
activate NAD + production or prevent its breakdown, can 
be used to stimulate Sirt1 activation. The use of STACs and 
NBMs as prospective agents for neurodegenerative disorders 
associated with mitochondrial malfunction has been sug-
gested by studies using murine models (See Fig. 3). Further-
more, the substantial findings supports the role of SIRT 1 
agonists quercetin and resveratrol stimulate the mitochondrial 
biogenesis by activating sirtuins and AMPK, poses their ben-
eficial effects in NDD (Cerutti et al. 2014; Morató et al. 2015; 
Valko et al. 2007). Triterpenoids have been shown to promote 
expression of gene elaborated in mitochondrial biogenesis, 
thereby activating NrF2 signaling (Tufekci et al. 2011).

Targeting Mitochondrial Dynamics

An important physiological mechanism called mitochondrial 
dynamics occurs in the appropriate arrangement of posi-
tioning of mitochondria in areas with high energy needs 
by coordinating fission and fusion activities. Neurodegen-
erative disease development is linked to changes in mito-
chondrial dynamics. Despite the fact that several genetic, 
pharmacological, and cellular investigations have suggested 
that mitochondria play a central role in the development of 
AD, anomalies in mitochondrial dynamic function are likely 
to contribute to mitochondrial and neuronal dysfunction 
(Fig. 4) (Reitz 2012; Smith et al. 1997). Recent research has 
focused on possible treatments for neurological diseases that 
target the fission proteins Drp1 and the fusion protein Mfn2. 

Fig. 4   Possible Pathway in tar-
geting mitochondrial pyruvate 
carrier to treat NDD. MPC-1, 
mitochondrial pyruvate carrier; 
α KG, alpha ketoglutarate; 
mTOR, mammalian target of 
rapamycin; ERR-α, estrogen-
related receptor alpha; LAP, 
lapatinib ditosylate. Inhibition 
of MPC-1 through suppres-
sion ERR-α, inhibits mTOR 
hyperactivity and also shifts 
the source to glutamate for 
energy via oxidation which 
results in reduction of excito-
toxicity mediated by glutamate. 
Inhibition of mTOR directly or 
indirectly ameliorate the neuro-
inflammation in NDD
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According to two studies, in both APP and tau transgenic 
models, the prevention of mitochondrial fragmentation by 
partial Drp1 impairment is adequate to reduce mitochon-
drial dysfunction resulting in synaptic loss (Kandimalla et al. 
2016; Manczak et al. 2016).

Lysine deacetylases (KDAC) inhibitors have been 
reported to increase histone H3 acetylation and reduce Fis1 
expression levels along with Drp1 recruitment without alter-
ing other fusion and fission proteins. These results suggest 
that mitochondrial elongation has been resulted from down-
regulation of Fis1 (Lee et al. 2012; Zhao et al. 2011).

Another compound quinazolinone which act as a Mdivi-1 
inhibitor, found to selective inhibits DRP1 GTPase activity 
and thus impart neuroprotection and reduces mitochondrial 
fragmentation in AD and PD (Bordt et al. 2017; Manczak 
et al. 2019).

Targeting Mitochondrial Quality Control 
and Metabolism

The cell manages its mitochondria in an order includes 
both intra-mitochondrial activities like heme, protein 
replacement and activities like fusion, fission, mito-
chondrial biogenesis, and mitophagy. The combination 
of these mechanisms demonstrates MQC, which is par-
ticularly crucial in cellular illnesses ranging from basic 
mitochondrial hereditary defects to secondary mitochon-
drial diseases such as neurodegenerative, and inflamma-
tory disorders (Cai and Tammineni 2016; Chang et al. 
2020; Chen and Chan 2009). These conditions’ genetic 
and biochemical variability is strikingly comparable to 
that of several acquired disorders defined by metabolic 
as well as oxidative stress, exhibiting broad variability. 
This biologic variation reflects cell-specific and repair 
mechanisms, complicating reasonable pharmaceuti-
cal treatments not only for primary but also secondary 
mitochondrial diseases. Moreover, novel mitochondrial 
dynamics and turnover ideas, as well as new mitochon-
drial illness models, are giving opportunity to create and 
test MQC-based treatments (Nunnari and Suomalainen 
2012; Warda et al. 2013).

Past studies have shown that there is equilibrium among 
mitochondrial fusion and fission in Alzheimer’s disease, 
which contributes to disorders pathophysiology. Numerous 
different investigations have discovered that the production 
of the Fis1 and the DRP1 are elevated in AD individuals 
and mutant APP-expressing AD animal models. Interrup-
tions in mitochondrial proteostasis were reported repeat-
edly in AD. The accumulation of Aβ in AD, directly blocks 
the import channels, causing mitochondrial protein import 
to be disrupted and pre-protein maturation to be ham-
pered. These disruptions result in mitochondrial malfunc-
tion (Goyal and Chaturvedi 2020). In Parkinson’s disease, 

irregular mitochondrial dynamics have been documented. 
It has been demonstrated that alpha-synuclein regulates 
mitochondrial morphology directly. Recent research has 
shown the molecular pathways causing alpha-synuclein 
induced mitochondrial morphological defects. The oligo-
meric alpha-synuclein attaches to the lipids in the OMM, 
disrupting membrane curvature and slowing mitochondrial 
fusion (Gilmozzi et al. 2020; Shaw et al. 2005). The number 
and form of mitochondria may be influenced by fission and 
fusion events. Quercetin, a flavonoid chemical derived from 
onions, and the herbal medicine bupleurum. Its therapeutic 
effects include increased anti-inflammatory and anti-tumor 
action. Furthermore, Quercetin has a substantial antioxidant 
impact on several cell types (Khan et al. 2018; Sandhir and 
Mehrotra 2013). Quercetin and icariin suppress excess mito-
sis in mitochondria generated by ROS or cAMP-dependent 
protein kinase and preserve normal mitochondrial number 
and quality (Kale et al. 2021; Liu et al. 2020; Tiwari et al. 
2021). Resveratrol has the ability to drastically control Drp1 
production, enhance mitochondrial lengthening, and boost 
parkin and PINK1 translocation. Resveratrol also consider-
ably increases LC3-II expression at the same time. Addition-
ally, it protects against oxidative stress produced by hypoxia/
reoxygenation injury induced oxidative stress and the mito-
chondrial apoptotic pathway (Li et al. 2019). Another study 
reported that GTPase inhibitors such as dynasore regulates 
the expression of Drp1, ameliorating the motor deficits in 
PD. The study demonstrated that inhibition of Drp1 pre-
vented excessive mitophagy and mitochondrial fragmen-
tation via regulating the expression of PINK1 and parkin, 
thereby maintain mitochondrial homeostasis in PD (Feng 
et al. 2021b).

Other Approaches

Genome Editing and Gene Therapy

Modern genome editing tools are opening up new possibili-
ties for gene therapy for a variety of disorders. Any nucleic 
acid, for gene addition and deletion like siRNA, cDNA, anti-
sense oligonucleotide, RNA, or DNA editing enzyme, micro-
RNA, can be delivered as a genomic carrier using transgenic 
methods. This method is used for delivery of cDNA delivery 
for the nerve growth factor (NGF), human aspartoacylase 
(ASPA), survival motor neuron (SMN), and AADC, and 
it has been found to be efficient and well tolerated (Hudry 
and Vandenberghe 2019). Despite of failure in early clinical 
trials to provide adequate therapeutic benefits gene therapy 
is rapidly becoming an important treatment approach for a 
variety of neurodegenerative conditions like AD, PD, and 
HD, principally suited for well-established and validated 
genetic models. Various viral (Adeno associated vectors and 
lentiviral vectors) REF (Marks et al. 2010; Rafii et al. 2018) 
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and non-viral (Liposomes and nanoparticles) REF (Niu et al. 
2017) gene vectors have been studied targeting neurode-
generative disorders. Also being intensively researched and 
improved delivery methods, such as direct injection or car-
riers such as liposomes and AAV9. Although, gene therapy 
using non-viral vectors has not yet been licensed as a treat-
ment for neuronal degeneration, recent developments have 
created a lot of interest. A plethora of clinical and preclinical 
studies has been reviewed and describe the current advances 
of gene therapy for neurodegenerative illness (Chen et al. 
2020). Future therapies are focused on editing the genes 
influencing mitochondrial dynamics. Additionally, overex-
pression of dynamic and stress controllers gene of mitochon-
drial, including HSP70, PGC-1, and TFEB, lessens neuronal 
damage in PD and HD, indicating that the technique may 
be important approache for various other neurodegenerative 
disorders (Li et al. 2013; Valdés et al. 2014). An additional 
cutting-edge method to treat mitochondrial dysfunction is 
mitochondrial transplantation is proven to be effective in 
treating neurodegenerative disorders. The delivery of mito-
chondria has been investigated in many PD models, which 
restored mitochondrial respiratory function enhanced mito-
chondrial activity, increased cell viability, and decrease of 
oxidative stress (Chang et al. 2019).

Caloric Restrictions and Exercise

There are other strategies aimed to enhance mitochondrial 
function to treat neurodegenerative diseases, it includes 
caloric restrictions and exercise. The goal of calorie restric-
tion (CR) is to reduce caloric consumption while maintain-
ing adequate nutritional levels and preventing malnutrition. 
ROS generation is reduced by CR, along with oxidative 
DNA damage and the aging-related transcriptional altera-
tions. It is believed that sirtuins play a significant part in 
facilitating the positive role of CR on lifespan. Comparable 
to CR, overexpression of SIRT1 aids in extending life and 
lowering illness symptoms associated with neurodegenera-
tive disorders (Cantó and Auwerx 2009; Cunha-Santos et al. 
2016). CR stimulates autophagy and suppresses the PI3K/
AKT pathway that may enhance atophagy and preserve 
mitochondria. Furthermore, CR-activate deacetylation of 
SIRT 3 and inhibition of cyclophilin D, ultimately prevents 
excitotoxicity. CR increases number of mitochondrial cristae 
and number of mitochondria (Khraiwesh et al. 2014).

Physical exercise is one of the most promising preven-
tive measures for NDD progression. Exercise increases the 
biosynthesis, respiration, dynamics, and quality control of 
mitochondria in skeletal muscle. In neurodegenerative dis-
eases like AD, there are well-established abnormalities in 
mitochondrial biogenesis and oxidative phosphorylation. 
Recent reports showed regular, moderate exercise appears to 
be especially effective at promoting mitochondrial biogenesis 

(Burtscher et al. 2021; Upaganlawar et al. 2021). Exercise 
boosts the ability of the mouse hippocampus to repair dam-
aged DNA by activating mitochondrial uncoupling proteins 
(UCP) to control proliferation and ROS generated from the 
mitochondria (Andrews et al. 2005). In a animal model of 
AD and PD, exercise augmented the activity of multiple 
mitochondrial respiratory chain complexes (Bo et al. 2014; 
Schmidt et al. 2021). But the beneficial benefits of exercise on 
AD and PD patients are predominantly mediated by improved 
mitochondrial activity is yet to confirm (Frederiksen et al. 
2018). The future challenge will be finding and analyzing 
the best exercise treatments for patients with neurodegenera-
tive disorders. These efforts should provide practical therapy 
alternatives that patients may use at home.

Future Directions

Scientists anticipate that subsequent treatment efforts will 
consist of a combination of techniques addressing mitochon-
drial dysfunction from various sites of entry. It is difficult 
to determine which of the proposed techniques, and which 
combination, will be the most useful, if any. A positive per-
spective is that the discipline has unquestionably entered 
the therapy age. A plausible scenario is that a therapy for 
mitochondrial dysfunction will take several years from now. 
Apparent ideas, such as the link connecting mitochondrial 
malfunction and elevated and damaging ROS production, 
are far more nuanced than often assumed. Considering the 
absence of a treatment, it is critical to diagnose mitochon-
drial diseases since they are a common source of inherent 
metabolic inefficiencies. As a result, it is critical to raise 
mitochondrial information among researchers in order to 
discover novel mitochondrial targeted treatment. As there 
is the lack of treatment, the diagnosis of a mitochondrial 
disorder is critical for preventing further mitochondrial 
malfunction. To ensure safety in translation to humans, it 
is necessary to have a deeper knowledge of the molecular 
mechanisms. This includes developing biomarkers that can 
detect mitochondrial activity and the ability to trigger a 
healthy stress response. This article will provide a review 
of several promising developments as well as the numerous 
hurdles that remain in the search of the successful therapy 
for mitochondrial disorder.

Conclusion

Significant progress has been achieved in the development 
of therapeutic approaches in order to restore mitochondrial 
homeostasis. Mitochondria represent a crucial therapeu-
tic target for a number of prevalent debilitating illnesses. 
However, there are still a lot of difficulties in developing 
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new drugs for mitochondrial medicine. Additionally, there 
are a staggering number of pharmaceuticals, both synthetic 
and natural extracts that target this organelle. However, 
further development is required to provide novel treatment 
approaches, such as gene therapy techniques.
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