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Abstract
Sevoflurane (Sev) might cause neurotoxicity in elderly rats. However, the role of Lin28A in Sev-induced neurotoxicity 
remains unclear in elderly rats. In this study, elderly rats were used to construct an Sev-induced nerve injury model. Learn-
ing and memory abilities were assessed by Morris water maze (MWM) trainings; pathological alterations in hippocampal 
region were assessed by HE staining; neuronal apoptosis was assessed by TUNEL; related protein expression was analyzed 
by immunofluorescence, immunohistochemistry, and Western blotting. Results of this study showed that Sev treatment 
caused nerve injury and cognitive dysfunction in elderly rats, with increased neuronal apoptosis and decreased Lin28A 
levels. Pathological impairment and learning and memory abilities of elderly rats were significantly improved after forced 
overexpression of Lin28A using AAV, accompanied by decreased expression of CD68, Iba-1, and GFAP. TUNEL analysis 
showed that Lin28A overexpression significantly reversed Sev-induced neuronal apoptosis. Further mechanistic analysis 
showed that Lin28A significantly promoted SIRT1 expression, which further reversed Sev-induced Tau acetylation at lysine 
280 and 686 and Tau hyperphosphorylation, thereby alleviating nerve injury and cognitive dysfunction in elderly rats. The 
introduction of SIRT1 inhibitor EX527 further confirmed the involvement of SIRT1 in the regulation of Lin28A in elderly 
rats. In conclusion, our findings demonstrated that Lin28A reduced sevoflurane-induced nerve injury and cognitive dysfunc-
tion by inhibiting Tau acetylation and phosphorylation via activating SIRT1 in elderly rats.
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Introduction

Hippocampus is a high-level center for cognitive functions 
such as learning and memory (Kutlu and Gould 2016). The 
hippocampal pyramidal neurons are dense and relatively 
simple in structure, and are also one of the least tolerant 
sites in the entire central nervous system to various injuries 
such as ischemia, hypoxia, and inflammation (Pimentel 
et al. 2011; Sunabori et al. 2016). Inhalation of anesthetics 
can lead to hippocampal nerve damage, which can result 

in postoperative cognitive dysfunction (PPCD) (Micha 
et al. 2016; Qiu et al. 2021). Sevoflurane (Sev) is a volatile 
anesthetic with fast onset, short recovery time, sweet odor, 
and non-flammability, and is commonly used in pediatric 
anesthesia (Apai et al. 2021). Sev has been used clinically 
for decades (Liu and Yu 2021), and most studies support 
its safety in adults (Landoni et al. 2019, 2011). However, 
studies have shown that Sev causes stress and neurotoxicity  
in the developing brains of rodents and non-human  
primates (Sun 2010). In addition, clinical observations have 
confirmed that exposure to anesthesia from a young age can 
cause long-term cognitive impairment (Shen et al. 2018). 
However, the mechanism of action of Sev exposure leading 
to hippocampal damage is unrevealed.

Neurofibrillary tangles in neurons of the brain, especially  
the hippocampus, can lead to microtubule instability,  
dysfunction of substance transport, synaptic signal  
transmission, etc., which triggers neuronal degeneration 
and loss (Mamun et al. 2020). Tau is a neuronal protein that 
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assembles and stabilizes microtubules. It is now generally  
accepted that neurogenic fiber tangles may be due to 
hyperphosphorylation of intra-neuronal tau proteins that 
are highly susceptible to polymerization to form double-
stranded helical filaments (Ma et al. 2017). Tau lesions, 
i.e., pathological aggregation of Tau protein in neurogenic 
or glial protofibrillary tangles in the brain, are a hallmark 
of the neuropathogenesis of Alzheimer’s disease (Naseri  
et al. 2019). Repeated inhalation of Sev has been reported to 
lead to brain Tau phosphorylation in neonatal mice, causing  
cognitive impairment of neurological function (Yu et al.  
2020). In addition to phosphorylation, other pathological  
alterations including acetylation, glycosylation, and  
nitration are also involved. Among them, Tau acetylation 
is found in physiological aging and occurs prior to Tau 
hyperphosphorylation (Lucke-Wold et al. 2017). A series 
of studies have confirmed that neuronal Tau deacetylation  
is directly mediated by silent information-regulated  
transcription factor 1 (SIRT1), and activation of SIRT1 could 
reduce Tau acetylation and phosphorylation and improve 
Sev-induced cognitive dysfunction (Yan et al. 2020).

Lin28 is a highly conserved RNA-binding protein com-
posed of two homologs, Lin28A and Lin28B, which share 
similar structural and functional characteristics. Lin28 is 
involved in cell proliferation and differentiation in embry-
onic cells, stem cells, cancer, skeletal myogenesis, gliogene-
sis, lymphangiogenesis, and glucose metabolism (Jung et al. 
2020). Reports have shown that Lin28A exhibited a role in 
neurodegenerative diseases. For example, overexpression of 
Lin28A in ventral midbrain NSCs maintains dopamine neu-
rogenic potential as well as expression of midbrain-specific 
markers (Rhee et al. 2016). In addition, it was shown that 
Lin28A has a role in neuronal differentiation (Nowak et al. 
2014) and that Lin28A is also a protective factor against 
ischemia-induced injury in the brain, alleviating ischemia/
reperfusion-induced nerve injury (Chen et al. 2021). How-
ever, the role of Lin28A in Sev-induced cognitive dysfunc-
tion is less studied, and the relevant-related mechanisms are 
unclear.

This study showed that Sev-induced cognitive dysfunc-
tion in elderly rats and downregulated Lin28A expression in 
brain hippocampal tissue; overexpression of Lin28A allevi-
ated Sev-induced neuronal damage and cognitive dysfunc-
tion in elderly rats by inhibiting Tau phosphorylation and 
acetylation via activating SIRT1.

Material and Methods

Animal Modeling and Grouping

Animal study protocol was approved by the Animal Welfare 
Ethics Committee of The affiliated Huai’an No.1 People’s 

Hospital of Nanjing Medical University (Approval No. 
TJBB03121202). Twenty healthy elderly Sprague–Dawley  
(SD) rats (Male, 18  months of age, 550–750  g) were  
purchased from SJA Laboratory Animal Company (Hunan, 
China) and then raised at 24 °C with a constant humidity 
in light/dark environment (12 h) for 48 h, with free access 
to water and food. The rats were randomly divided into 2 
groups: control group and Sev group. To induce general 
anesthesia, rats in the Sev group were exposed to 2% SEV 
delivered in a wetted 30%  O2 carrier gas for 5 h, while  
rats in the control group were exposed to  N2 delivered in 
the same carrier gas without Sev. In addition, saline was 
injected intraperitoneally once during sevoflurane inhalation.  
The condition of the rats was continuously monitored by 
Arterial Blood Gas Analyzer, with a conductance catheter  
placed in the left carotid artery. Following sevoflurane 
inhalation, the animals were maintained on pure oxygen 
until fully conscious and observed for 2 h with free access 
to food, and arterial blood was collected after sevoflurane 
inhalation for analysis of  PaO2. Three hours after the rats 
in the Sev group were awakened, the rats were subjected to 
Morris water maze (MWM) trainings, and then sacrificed by 
decapitation. Specifically, the back of the rat was fixed and 
the right axilla and the left forelimb were clamped. We cut 
the rat neck vertically with scissors, and then, the rat died 
due to cerebrospinal cord dissection and massive bleeding.  
Hippocampal tissue was removed for subsequent studies.

Lin28A Overexpression

Forty elderly rats were randomly divided into 4 groups 
(10 rats per group) using a secure random number genera-
tor: control + AAV-empty group, control + AAV-Lin28A 
group, Sev + AAV-empty group, and Sev + AAV-Lin28A 
group. Overexpression of Lin28A was achieved by adeno-
associated virus (AAV), which was provided by Genechem 
(Shanghai, China). Each group of rats was injected with 
AAV-empty or AAV-Lin28A in tail vein, respectively. Two 
weeks after AAV injection via tail vein, some rats were sub-
jected to Morris water maze (MWM) trainings, and the other 
rats were executed and brain tissues were taken for follow-up 
studies.

Morris Water Maze (MWM) Trainings

One day before MWM training, rats in each group were 
placed in water to swim freely for 2  h to familiarize  
themselves with the water maze environment. The rats’ 
learning ability and memory ability were then assessed by 
navigation test and spatial exploration test, respectively. In 
the navigation test, rats were successively put into water 
from the marked entrance, and the time of finding and 
climbing the platform within 2 min was collected, namely, 
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the escape latency (stable on the platform for 10 s is counted 
as finding the platform, otherwise continue record). In the 
spatial detection test, the platform was removed and the rats 
were put into the pool. The time spent by the rats in the target 
quadrant placed on the platform and the times of crossing 
the area of the platform within 2 min were recorded, and the 
clutter of the path was observed.

HE Staining

Brain tissues were removed from three random rats after 
adequate anesthesia, and the hippocampal tissues were sepa-
rated on ice and soaked in 4% paraformaldehyde, followed 
by dehydration, wax immersion, and embedding, and the 
wax blocks were cut into 5 μm per section, followed by HE 
staining according to the instructions as follows: the sections 
were treated with xylene for 20 min and then sequentially 
with graded ethanol (100%, 95%, and 80%). After rinsing 
with distilled water for 5 min, the sections were stained with 
hematoxylin for 15 min, then stained with eosin for 5 min. 
Finally, the sections were treated with xylene for 5 min, 
mounted with neutral gum, and then subsequently observed 
and photographed under a light microscope.

Terminal Deoxynucleotidyl Transferase‑Mediated 
Deoxyuridine Triphosphate‑Biotin Nick End 
Labeling (TUNEL) Staining

Paraffin-embedded hippocampal tissue sections were depar-
affinized to water and incubated with hydrogen peroxide for 
40 min to eliminate endogenous peroxidase activity. The 
sections were incubated with proteinase K for 10 min and 
TUNEL reaction solution for 1 h. Afterwards, the sections 
were incubated with POD-conversion solution for 30 min, 
developed with DAB for 10 min, and counterstained with 
hematoxylin. After being dehydrated, transparent, and 
mounted, the sections were observed under a high-power 
microscope (× 400) for staining. TUNEL-positive cells 
were pyknotic and stained yellowish-brown or brownish-
yellow, and the apoptotic index of hippocampal neurons was 
calculated.

Western Blotting

RIPA lysis buffer was added to hippocampal tissues in the 
EP tubes and ground evenly to extract the total protein. The 
protein concentration was determined by the BCA method. 
Lin28A, CD68, iba-1, GFAP, Bax, Bcl-2, cleaved caspase 
3, cleaved PARP, SIRT1, ac-Tau (k280), ac-Tau (k686), and 
p-Tau (AT8) levels in the hippocampal tissues were deter-
mined by Western blotting. The extracted proteins (20 μg) 
were separated by SDS-PAGE, and subsequently, the target 
proteins were fully transferred to PVDF membranes, and 

anti-Lin28A (ab279647, abcam, 1:1000, Cambridge, UK), 
anti-CD68 (ab283654, abcam, 1:1000, Cambridge, UK), 
anti-iba1 (ab178846, abcam, 1:1000, Cambridge, UK), anti-
GFAP (ab279647, abcam, 1/10000, Cambridge, UK), anti-
Bax (ab32503, abcam, 1:3000, Cambridge, UK), anti-Bcl-2 
(ab32124, abcam, 1:1000, Cambridge, UK), anti-cleaved 
caspase 3 (ab32042, abcam, 1:500, Cambridge, UK), anti-
cleaved PARP (#9532, Cell Signaling Technology, 1:1000), 
anti-SIRT1 (ab189494, abcam, 1:1000, Cambridge, UK), 
anti-ac-Tau (k280), anti-ac-tau (k280) (1:1000, Anaspec, 
CA, USA), anti-ac-Tau (k686) (1:1000, EnoGene, Nanjing, 
China), and anti-p-tau (AT8) (1:1000, Thermo Fisher Sci-
entific, MA, USA) primary antibodies were added, respec-
tively. GAPDH was used as an internal reference and goat 
anti-rabbit antibody (HRP-labeled) was used as a secondary 
antibody. The PVDF membrane was sealed with 5% skim 
milk for 2 h and then washed with PBS. After developed 
with ECL for 60 s, band scanning was conducted to obtain 
OD value.

Immunohistochemistry (IHC)

Paraffin sections were deparaffinized and washed three 
times with PBS for 5 min each. After antigen retrieval, they 
were washed three times for 5 min with PBS. Endogenous 
peroxidase activity was removed by dropping 3% hydro-
gen peroxide. Then, non-specific antigen blocking was 
performed with 10% serum, followed by incubation with 
primary antibodies overnight at 4 °C in a cold room and sec-
ondary antibodies for 50 min at room temperature, respec-
tively. After incubation was complete, color was developed 
with DAB and counterstained with hematoxylin. Dehydrate, 
mount, dry, and observe under a microscope for photog-
raphy. Following incubation, the sections were visualized 
with DAB and counterstained with hematoxylin, followed 
by dehydration, mounting, and drying. The sections were 
observed and photographed under a microscope.

Immunofluorescence Assay

Hippocampal tissues from rats in each group were fixed with 
4% neutral formaldehyde for 12 h. After dehydrated with 
graded ethanol and cleared with xylene, the tissues were 
embedded in paraffin. The tissues embedded in paraffin 
were cut into 5 mm. After that, the sections were rinsed 
with PBS and permeabilized with 0.5% Triton X- 100 X 
for 20 min at room temperature. After blocking with 10% 
BSA for 30 min at 37 °C, primary antibodies were added 
and cultured overnight at 4 °C. The next day, the sections 
were incubated with fluorescently labeled secondary anti-
bodies for 1 h at 37 °C in the dark. Nuclei were stained 
with diimino-2-phenylindole (DAPI) for 5 min in the dark 
and sealed with a fluorescent quencher. The percentage of 
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Lin28A, Iba-1 and GFAP-positive cells in the total number 
of cells was observed and recorded under a fluorescence 
microscope (Olympus, Japan).

Statistical Analysis

Data were represented as the mean ± SD. Statistical Analy-
sis was carried out using GraphPad Prism 7.0 (GraphPad 
Software, CA, USA). Comparison between 2 groups was 
performed using two-sided Student’s t test, while compari-
son among groups was performed using one-way analysis 
of variance (ANOVA). P < 0.05 was considered statistically 
significant.

Results

Lin28A Is Lowly Expressed in the Hippocampal 
Tissues of Rat Treated with Sev

To assess spatial learning and memory associated with 
the hippocampus, we performed the MWM. water maze  
pathways are shown in Fig. 1A. As shown in Fig. 1A, water 
maze pathways were more complex for rats in the control 
groups. However, SEV treatment made the pathway simpler 
in the water maze. Besides, SEV exposure increased the  
escape latency of the rats and decreased the number of 

platform crossings and time spent in the target quadrant, 
as well as the distance spent in the target quadrant. In  
addition, HE staining showed no pathological changes in the 
hippocampal tissue of rats in the control group. In contrast,  
hippocampal neuron nuclei in the SEV group showed 
vacuolation, with disorganized and loose hippocampal cell 
arrangement, and smaller cells (Fig. 1B). TUNEL staining 
showed that apoptotic cells in hippocampal tissue increased 
after SEV exposure. These results suggest that SEV exposure  
caused hippocampal tissue damage and loss of spatial 
memory in rats (Fig. 1C). Notably, WB and IFA showed 
that the expression of Lin28A in hippocampal tissues was 
decreased after Sev treatment (Fig. 1D–E), indicating that 
the low expression of Lin28A might be involved in Sev-
induced hippocampal tissue damage and spatial memory  
loss in rats.

Lin28A Ameliorated Sev‑Induced Nerve Injury 
and Cognitive Dysfunction

To investigate whether Lin28A was involved in the effect 
of Sev on nerve injury, we overexpressed Lin28A using 
AAV. As shown in Fig. 2A, after rats were injected with 
Lin28A-containing AAV, the level of Lin28A in vivo was 
significantly higher compared to that in the Sev + AAV-
empty group, indicating that Lin28A had been successfully 
overexpressed. To further investigate the effect of Lin28A 

Fig. 1  Lin28A is lowly expressed in the hippocampal tissues of rat 
treated with Sev. Rats were randomly divided into 2 groups: control 
group and Sev group. A Morris water maze (MWM) trainings in each 
group. B Histopathological changes of hippocampus were determined 

by HE staining. C Apoptosis was monitored by TUNEL staining. D The 
expression of Lin28A was monitored by WB. E The level of Lin28A was 
monitored by IFA (**p < 0.05, ***p < 0.001 vs control group)
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on nerve injury, we performed HE staining and MWM. As 
shown in Fig. 2B, compared with the Sev + AAV-empty 
group, in the Sev + AAV-Lin28A group, high Lin28A 
expression significantly ameliorated Sev-induced nerve 
injury (Fig. 2B). In addition, MWM revealed that high 
Lin28A expression decreased the escape latency of the rats, 
while increasing the number of platform crossings and time 
spent in the target quadrant, as well as the distance spent 
in the target quadrant (Fig. 2C). Together, these findings  
suggested that high Lin28A expression reversed Sev-induced  
nerve injury and cognitive dysfunction.

Lin28A Ameliorated Sev‑Induced Microglia 
Activation

To determine the effect of Lin28A on microglia activation,  
we detected the expression of CD68, Iba-1, and GFAP. 
As shown in Fig.  3A and B, there was no significant 
change in the expression of CD68, Iba-1, and GFAP in 

control + AAV-empty and control + AAV-Lin28A groups. 
Notably, the expression of CD68, Iba-1, and GFAP increased 
dramatically after Sev treatment, but retracted after high 
Lin28A expression, indicating that high expression of 
Lin28A ameliorated Sev-induced microglia activation.

Lin28A Ameliorated Sev‑Induced Neuronal 
Apoptosis

To determine the effect of Lin28A on neuronal apoptosis, 
we performed TUNEL and WB. As shown in Fig. 4A, high 
Lin28A expression had no effect on nerve cells not treated 
with Sev, but significantly reversed Sev-induced neuronal 
apoptosis. WB further revealed that Sev treatment increased 
the expression of pro-apoptotic proteins (Bax, cleaved  
caspase 3, and cleaved PARP) but decreased the expression  
of anti-apoptotic protein Bcl-2. However, high expression of 
Lin28A had no effect on the expression of apoptosis-related 
proteins without Sev treatment, but significantly inhibited 

Fig. 2  Lin28A ameliorated Sev-induced nerve injury and cognitive 
dysfunction. Rats were randomly divided into 4 groups: control + AAV-
empty group, control + AAV-Lin28A group, Sev + AAV-empty group, 
and Sev + AAV-Lin28A group. A The expression of Lin28A was 
monitored by WB. B Histopathological changes of hippocampus were 

determined by HE staining. C Morris water maze (MWM) trainings in 
each group (***p < 0.001 vs control + AAV-empty group; ###p < 0.001 
vs control + AAV-Lin28A group; &&p < 0.01, &&&p < 0.001 vs 
Sev + AAV-empty group)
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the expression of pro-apoptotic proteins (Bax, cleaved  
caspase 3, and cleaved PARP) and significantly promoted 
the expression of anti-apoptotic protein Bcl-2. In conclusion, 
these results suggested that Lin28A ameliorated Sev-induced 
neuronal apoptosis.

Lin28A Activated SIRT1 and Inhibited Tau 
Phosphorylation and Acetylation

To further elucidate the mechanism of action of Lin28A, we 
evaluated the effect of Lin28A on SIRT1, ac-Tau (k280),  
ac-Tau (k686), and ac-Tau (AT8) using immunofluores-
cence and WB. As shown in Fig. 5A and B, Sev treatment 
significantly decreased the expression of SIRT1. High 
expression of Lin28A had no significant effect on the 
expression of SIRT1 in nerve cells without Sev treatment, 
but increased the expression of SIRT1 after Sev treatment. 
WB revealed similar results. In addition, Sev treatment 
significantly increased the expression of ac-Tau (k280), 
ac-Tau (k686), and ac-Tau (AT8). Similarly, high Lin28A 
expression had no significant effect on the expression of 
ac-Tau (k280), ac-Tau (k686), and ac-Tau (AT8) in nerve 
cells without Sev treatment, but reversed the expression of 

ac-Tau (k280), ac-Tau (k686), and ac-Tau (AT8) after Sev 
treatment (Fig. 5C and D). Overall, these findings dem-
onstrated that Lin28A activated SIRT1 and inhibited Tau 
phosphorylation and acetylation.

Lin28A Ameliorated Sev‑Induced Hippocampal 
Damage in Rats via SIRT1

From the above f indings, it  is obvious that Sev-
induced tissue damage in the hippocampal region, Tau  
phosphorylation and acetylation, and neuronal apoptosis. To  
further confirm the involvement of SIRT1 in Sev-induced  
nerve injury, we introduced the SIRT1 inhibitor Ex527 
and investigated the role of Ex527. As shown in Fig. 6A,  
Ex527 significantly reversed the nerve injury ameliorated 
by high Lin28A expression (Fig. 6A). In addition, IFA  
revealed that Ex527 significantly increased the expression 
of Iba-1 and GFAP (Fig. 6B). Furthermore, Ex527 treatment  
significantly reversed the decrease of pro-apoptotic related 
proteins (Bax, cleaved caspase 3, and cleaved PARP) and the 
increase of anti-apoptotic proteins due to Lin28A (Fig. 6C).  
In conclusion, our results suggested that Lin28A ameliorated 
Sev-induced hippocampal damage in rats via SIRT1.

Fig. 3  Lin28A ameliorated Sev-induced microglia activation. Rats 
were randomly divided into 4 groups: control + AAV-empty group, con-
trol + AAV-Lin28A group, Sev + AAV-empty group, and Sev + AAV-
Lin28A group. A The levels of Iba-1 and GFAP were monitored by IFA. 

B The expression of CD68, Iba-1, and GFAP was measured by WB. 
(***p < 0.001 vs control + AAV-empty group; #p < 0.05, ###p < 0.001 vs  
control + AAV-Lin28A group; &&&p < 0.001 vs Sev + AAV-empty group)
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Discussion

The brain is the target organ of anesthetic drugs, and the 
function of the central nervous system is suppressed when 
patients receive anesthesia (Li et al. 2019a). The use of 
anesthetic drugs during surgery may induce postoperative 
cognitive dysfunction (POCD) (Zhong and Xu 2019). 
Studies have found that anesthesia and surgery can induce 
allergies, inflammation, and oxidative stress, which can 
produce neurotoxicity and ultimately damage hippocampal 
tissue (Chen et al. 2019; Trapasso et al. 2019; Selmanoglu 
et al. 2021). While the hippocampus is an important brain 
region in the brain for functions such as learning and 
memory, hippocampal damage can lead to impairment in 
learning and cognition (Aksoz et al. 2019). Sev is a general 
anesthetic drug that is more widely used in clinical practice. 
In the present study, we examined the pathological changes 
of brain tissue in elderly rats by HE staining, and the results 
showed that the rats in the Sev group suffered significant 
pathological damage compared with the normal group, 
which is consistent with the results of previous studies 
(Li et al. 2019b; Engelhard et al. 2007). MWM training 

is a typical behavioral experiment, which can reflect the 
spatial learning memory ability of animals (D’Hooge and 
Deyn 2001). In the present study, the rats in the Sev group 
had a significantly higher latency than the control group 
and crossed the platform less often than the control group, 
indicating that Sev anesthesia significantly impaired the 
cognitive function of elderly rats. Neuronal apoptosis after 
stress, trauma, and anesthesia processes in the elderly is 
an important influencing factor for cognitive dysfunction; 
therefore, the apoptosis of neuronal cells after Sev anesthesia 
was measured by TUNEL staining in this study. Our results 
showed that SEV treatment induced apoptosis of neuronal 
cells, which caused cognitive dysfunction in the central 
nervous system (Kang et al. 2020). Notably, Sev treatment 
was found to inhibit the expression of Lin28A in this study, 
which may be related to nerve damage.

Lin28A gene can be recognized by its unique pairing of 
the cold shock domain (CSD) and the zinc finger domain 
of cysteine cysteine histidine cysteine (CCHC) zinc finger 
protein and plays an important role in sequence-specific 
mRNA binding, miRNA binding, miRNA preprocessing, 
and miRNA-regulated gene silencing (Venugopal et  al. 

Fig. 4  Lin28A ameliorated Sev-induced neuronal apoptosis. Rats 
were randomly divided into 4 groups: control + AAV-empty group, 
control + AAV-Lin28A group, Sev + AAV-empty group, and Sev + AAV-
Lin28A group. A Apoptosis was monitored by TUNEL staining. B The 
number of apoptotic cells. C–D The expression of Bcl-2, Bax, cleaved 

caspase 3, and cleaved PARP was measured by WB. (***p < 0.001 vs 
control + AAV-empty group; #p < 0.05, ##p < 0.01, ###p < 0.001 vs 
control + AAV-Lin28A group; &p < 0.05, &&p < 0.01, &&&p < 0.001 vs 
Sev + AAV-empty group)
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2018). Lin28A has been shown to have an important role 
in neural differentiation and cerebral ischemia–reperfusion 
injury (Nowak et  al. 2014; Chen et  al. 2021; Xia et  al. 
2018). As reported by Xia et al., Lin28A promoted and 
antagonized neuronal and glial cell generation, respectively, 
by repressing glial-specific genes and differentiating 
neuroglia directly along the neuronal lineage (Xia et al. 
2018). However, the role of Lin28A in neural injury remains 
unclear. In the present study, we found that Lin28A was 
lowly expressed in Sev-treated elderly rats, indicating 
that Lin28A might be associated with Sev-induced nerve 
injury in elderly rats. Therefore, we evaluated the effect of 
Lin28A on Sev-induced nerve injury by overexpression by 
AAV, MWM trainings, and HE staining. The results showed 
that Lin28A significantly reversed Sev-induced cognitive 
dysfunction and nerve injury in elderly rats. GFAP is a 
unique cytoskeletal protein of astrocytes in the central 
nervous system and plays an important role in maintaining 
the morphology and function of astrocytes (Middeldorp and 
Hol 2011). GFAP is also a specific marker of astrocytes. 
Wang et al. showed that the number of microglia (MG) 

marker Iba-1-and GFAP-positive cells increased after 
epilepsy (Wang et al. 2019). As expected, we also found 
that Lin28A suppressed the expression of CD68, GFAP, and 
Iba-1, thus exerting neuroprotective effects. Furthermore, 
Lin28A could alleviate Sev-induced cognitive dysfunction 
in elderly rats by inhibiting neuronal apoptosis (Kang et al. 
2020). These results have also been reported in the current 
study. As for the mechanism of action of Lin28A, we believe 
that the action of Lin28A might be related to SIRT1.

SIRT1 has been reported to be a nicotinamide adenine 
dinucleotide (NAD) + -dependent class III histone 
deacetylase. It is widely expressed in the brain and is 
involved in various physiological activities such as aging, 
stress, and energy metabolism (Lanzillotta et  al. 2013; 
Cho and Chen 2015). Depression of SIRT1 could cause 
neurodegeneration in aged mice, and promoting the 
expression of SIRT1 protein significantly alleviated the 
central neuroinflammatory response induced by injurious 
stimuli (Kim et  al. 2007). SIRT1 is expressed in both 
neurons and glial cells. In neurons, SIRT1 is involved 
in regulating synaptic plasticity and deacetylating Tau 

Fig. 5  Lin28A activated SIRT1 and inhibited Tau phosphorylation and 
acetylation. Rats were randomly divided into 4 groups: control + AAV-
empty group, control + AAV-Lin28A group, Sev + AAV-empty group, 
and Sev + AAV-Lin28A group. A The levels of SIRT1 were monitored 
by IFA. B SIRT1 positive cells (%). C–D The expression of SIRT1,  

ac-Tau (k280), ac-Tau (k686), and ac-Tau (AT8) was measured by WB. 
(***p < 0.001 vs control + AAV-empty group; #p < 0.05, ###p < 0.001 vs 
control + AAV-Lin28A group; &p < 0.05, &&&p < 0.001 vs Sev + AAV-
empty group)
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proteins, thus reducing pathological Tau protein diffusion, 
and maintaining synaptic and neuronal function (Zhou et al. 
2022; Chen et al. 2005). Similarly, the present study found 
that Lin28A promoted SIRT1 expression, and Lin28A-
induced high SIRT1 expression inhibited Tau acetylation 
at lysine (K) 280 and 686 and Tau hyperphosphorylation 
in the brain, thereby reducing pathological Tau protein 
spreading. However, the introduction of SIRT1 inhibitor 

EX527 exacerbated pathological damage in the hippocampal 
region and promoted the expression of Iba-1 and GFAP as 
well as apoptosis-related proteins. These results suggest that 
Lin28A ameliorates Sevo-induced hippocampal damage in 
rats via SIRT1. Nevertheless, the pathological mechanisms 
of Sev-induced cognitive dysfunction have not been fully 
elucidated, and the mechanism of action of Lin28A in Sev-
induced cognitive dysfunction is quite limited. Previous 

Fig. 6  Lin28A ameliorated Sev-induced hippocampal damage in rats via 
SIRT1. Rats were randomly divided into 3 groups: Sev + AAV-empty 
group, Sev + AAV-Lin28A group, and Sev + AAV-Lin28A + Ex527 
(microinjected into the ventrolateral orbital cortex with a dosage of 
1  μmol/L (dissolved in 10% DMSO)). A Histopathological changes of 

hippocampus were determined by HE staining. B The levels of Iba-1 
and GFAP were monitored by IFA. C The expression of Bcl-2, Bax, 
cleaved caspase 3, and cleaved PARP was measured by WB (**p < 0.01, 
***p < 0.001 vs Sev + AAV-empty group; #p < 0.05, ###p < 0.001 vs 
Sev + AAV-Lin28A group)
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studies have shown that Lin28A had anti-inflammatory and 
antioxidant effects (Guo and Li 2022), but inflammation and 
oxidative stress factors were not investigated in this study. 
Besides, this study only assessed the SIRT1/Tau pathway, 
and a possible contribution of other signaling pathways to 
Lin28A-induced hippocampal injury protection cannot be 
excluded. In addition, this study only assessed aged rats, 
and no studies were performed in neonatal or adult rats, and 
knockdown of Lin28A on hippocampal injury are required 
as supplements. Furthermore, additional non-clinical and 
clinical studies are still required to further define the role 
of Lin28A.

In conclusion, in this study, we investigated the effects 
and potential molecular mechanisms of Lin28A by con-
structing a rat model of neurological injury. Our study 
showed that Lin28A attenuated Sev-induced nerve injury 
and cognitive dysfunction in elderly rats, and these effects 
may be achieved by activating SIRT1, thereby inhibiting Tau 
phosphorylation and acetylation.
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