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Abstract
An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood 
of dysregulation. In response, human cells have evolved sophisticated quality control mechanisms to identify and elimi-
nate abnormal dysfunctional mitochondria. One pivotal mitochondrial quality control pathway is PINK1/Parkin-dependent 
mitophagy which mediates the selective removal of the dysfunctional mitochondria from the cell by autophagy. PTEN-
induced putative kinase 1 (PINK1) is a mitochondrial Ser/Thr kinase that was originally identified as a gene responsible for 
autosomal recessive early-onset Parkinson’s disease (PD). Notably, upon failure of mitochondrial import, Parkin, another 
autosomal-recessive PD gene, is recruited to mitochondria and mediates the autophagic clearance of deregulated mitochon-
dria. Importantly, recruitment of Parkin to damaged mitochondria hinges on the accumulation of PINK1 on the outer mito-
chondrial membrane (OMM). Normally, PINK1 is imported from the cytosol through the translocase of the outer membrane 
(TOM) complex, a large multimeric channel responsible for the import of most mitochondrial proteins. After import, PINK1 
is rapidly degraded. Thus, at steady-state, PINK1 levels are kept low. However, upon mitochondrial import failure, PINK1 
accumulates and forms a high-molecular weight > 700 kDa complex with TOM on the OMM. Thus, PINK1 functions as sen-
sor, tagging dysfunctional mitochondria for Parkin-mediated mitophagy. Although much has been learned about the function 
of PINK1 in mitophagy, the biochemical and structural basis of negative regulation of PINK1 operation and functions is far 
from clear. Recent work unveiled new players as PTEN-l as negative regulator of PINK1 function. Herein, we review key 
aspects of mitophagy and PINK1/Parkin-mediated mitophagy with highlighting the role of negative regulation of PINK1 
function and presenting some of the key future directions in PD cell biology.
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Introduction

Cellular homeostasis is accomplished through a sustained bal-
ance between biogenesis and turnover. Defects in damaged 
organelles and protein aggregate removal can cause cellular 
stress and eventually cell death. Lysosomal-mediated deg-
radation and intracellular component recycling are under a 

tight control of regulated, highly conserved process termed 
autophagy (Mizushima et al. 2008; Mizushima 2018). There 
are three forms of intracellular autophagy in mammalian cells, 
including macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA). Autophagy could be either a non-
selective randomly uptake process (bulk autophagy) or a special 
process to remove or degrade specific organelles, aggregated 
proteins, DNA, and pathogens (selective autophagy). The clas-
sification of these forms depends on the size of the substrates to 
be removed, their lysosomal degradation scale, and the delivery 
mechanism of the substrates to the lysosome. Macroautophagy  
is considered to be the major route for cytoplasmic proteins and  
organelles degradation; it is orchestrated by a group of proteins 
encoded by autophagy-related genes (ATGs) (Nakatogawa et al. 
2009). Subcellular components in macroautophagy are engulfed 
by double-membrane vesicles termed autophagosomes and 
be vulnerable to lysosomal enzymes. The second form of 
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autophagy (microautophagy) arises through the entrance of 
cellular constituents (including whole organelles) to lysosome 
via the direct invaginations of lysosomal membranes (Li et al. 
2012). The latter form of autophagy is chaperone-mediated 
autophagy, in which soluble cytosolic proteins containing a 
specific targeting motif are delivered by the cytosolic chaper-
one heat shock cognate 70 (HSC70) to the lysosomal surface  
(Kaushik et al. 2012). Several types of selective autophagy, spe-
cific for the substrate, have been found; for instance, mitochon-
dria (mitophagy), lipids (lipophagy), pathogens (xenophagy), 
peroxisomes (pexophagy), ribosomes (ribophagy), and endoplas-
mic reticulum (reticulophagy or ERphagy) (Tasdemir et al. 2007; 
Weidberg et al. 2009; Bauckman et al. 2015; Eldeeb et al. 2021a).

Mitochondria are not only the powerhouse of the cell 
that provide energy for a variety of different processes, but 
also are key triggers for programmed cell death, regulators 
of calcium homeostasis, and providers of diverse cellular 
metabolic and chemicals for the cell (Lill 2009; Schmidt 
et al. 2010; Harbauer et al. 2014; Hou et al. 2017). To fulfill 
such multitasking, mitochondrial quality control must be 

tightly controlled to achieve normal cellular activities. One 
major aspect of evolutionarily conserved macroautophagy 
is mitophagy, which involves monitoring quality control of 
mitochondria, either by regulating their number or, spe-
cifically, by removing those that are damaged (De Duve 
et al. 1996; Lemasters 2005; Eldeeb et al. 2018; Eldeeb 
et al. 2020a, b, c; Eldeeb and Ragheb 2020). Owing to its 
pivotal function in sustaining mitochondrial homeostasis 
and strong association with multiple human diseases, such 
as Parkinson’s disease (PD) and Alzheimer’s disease (AD), 
the mitophagy machinery has gained considerable attention 
throughout the last two decades. Cells possess numerous 
non‐redundant mechanisms of mitophagy which imply that 
different stimuli can trigger mitophagy via various signaling 
cascades (Fig. 1) (Palikaras et al. 2017). For instance, the 
PINK1/Parkin-dependent mitophagy is the main modulator 
of depolarized mitochondria turnover. Additionally, several 
mitochondrial proteins, such as BNIP3, NIX, and FUNDC1, 
could function as mitophagy receptors, and they are consti-
tutively localized at the outer membrane of mitochondria 

Fig. 1  The major pathways of mitophagy, including ubiquitin-mediated 
mitophagy (pathway 1, PINK1-Parkin-dependent mitophagy; and path-
way 2, Parkin-independent mitophagy), receptor-mediated mitophagy, and  
lipid-mediated mitophagy. In PINK1-Parkin-dependent mitophagy, the 
stabilized PINK1 on the OMM of the damaged mitochondria facilitates 
the recruitment of Parkin from the cytosol to the OMM, resulting in the 
phospho-ubiquitination of proteins on the OMM via PINK1 and Parkin 
activities and finally the formation of mitophagosome. In ubiquitin-

mediated Parkin-independent mitophagy, MUL1 (E3 ubiquitin ligase) 
located at damaged mitochondria can bind directly to GABAA receptor-
associated protein (GABARAP), resulting in recruitment of phagophore 
to engulf damaged mitochondria. In receptor-mediated mitophagy, OMM 
receptors, such as BNIP3, NIX/BNIP3L, FUNDC1, and FKBP8, bind 
directly to LC3s allowing finally the formation of mitophagosome. In 
lipid-mediated mitophagy, cardiolipin is translocated from IMM to OMM, 
and binds directly to LC3s, resulting in mitophagy initiation
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(OMM) and interact directly with autophagosomal mem-
brane protein light chain 3 (LC3) to stimulate mitophagy. 
There are also lipid-mediated mitophagy and ubiquitin- 
mediated mitophagy (Chu et al. 2013; Strappazzon et al. 
2015; Villa et al. 2018). Collectively, these pathways are 
deregulated in human diseases, including cancer, neurode-
generative disorders, metabolic disorders, and aging reveal-
ing the significance of mitophagy as a cellular housekeeping 
function (Valente et al. 2004; Narendra et al. 2008; Chourasia 
et al. 2015; Springer et al. 2016; Pickles et al. 2018a). In the 
current review, we provide an overview of the key pathways  
involved in mitophagy regulation, and we discuss the poten-
tial role of the newly identified PTEN isoforms, PTEN-
Short, and PTEN-Long, in the fine-tuning of mitophagy.

Molecular Pathways of Mitophagy

PINK1‑Parkin‑Mediated Ubiquitin‑Driven 
Mitophagy

Ubiquitin (ub) is a small protein that plays crucial role in multi-
cellular processes including protein degradation and immune 
system signaling. Among the ubiquitin enzymes, ubiquitin-
activating enzyme (E1), ubiquitin-conjugating enzyme (E2), 
and ubiquitin ligase (E3), E3 Ub ligases are the most abundant 
which designates that E3 ligases are the principal factors affect-
ing the substrate specificity essential to the ubiquitin pathway 
(Scheffner et al. 1995). Parkin (encoded by the PARK2 gene) is 
an E3 Ub ligase, which was discovered in 1998, and it contains 
five domains: an N-terminal Ub-like domain (UBL), a RING1 
domain, an IBR domain, a RING2 domain, and a RING0 
domain which is a Parkin unique domain (Hristova et al. 2009; 
Trempe et al. 2013; Walden et al. 2017) and has important roles 
in the pathogenesis of autosomal recessive Parkinson’s disease 
(ARPD) (Kitada et al. 1998; Lucking et al. 1998; Abbas et al. 
1999). Another ARPD-associated gene, PINK1 (PTEN-induced 
putative kinase 1) which encoded by PARK6 gene and was dis-
covered in 2001 (Unoki et al. 2001), encodes a mitochondrial 
serine/threonine kinase that regulates Parkin activity via phos-
phorylation cascades. PINK1 comprises of different domains, 
including an N-terminal mitochondrial targeting sequence 
(MTS) and a transmembrane domain (TMD) followed by a 
serine/threonine kinase domain and a regulatory domain at the 
C-terminal (Okatsu et al. 2015). Considering mitochondrial 
quality maintenance, the PINK1/Parkin-pathway is considered 
to play a key role in the removal of dysfunctional mitochondria  
and to constitute a mitochondrial quality-control system via 
PINK1-Parkin-mediated mitophagy initiation (Harper et al. 
2018; Pickles et al. 2018a; Wang et al. 2020). The discov-
ery of PINK1-Parkin-mediated pathway has been persuasive 
due to its contributions in understanding the key molecular 

mechanisms of mitophagy (Narendra et al. 2008, 2010; Vives- 
Bauza et al. 2010).

In normal healthy condition, Parkin is located in the cytosol 
and is in an autoinhibited state. Also, PINK1 is regularly main-
tained at a low level owing to mitochondrial import, protease 
cleavage, and proteasomal degradation, where PINK1 gets 
imported by the translocase of the outer membrane (TOM) 
complex into the inter membrane space (IMS) and the mito-
chondrial inner membrane (MIM), and then degraded by 
matrix processing peptidase (MPP), presenilin-associated 
rhomboid like (PARL), and the proteasome at the N-terminal 
part between Ala103 and Phe104 (Jin et al. 2010; Deas et al. 
2011; Lazarou et al. 2012). The resulting N-terminal destabi-
lizing amino acid is constitutively recognized by N-end rule E3 
ubiquitin ligases (UBR1, UBR2, and UBR4) for protein degra-
dation (Eldeeb and Ragheb 2018; Yamano et al. 2013). How-
ever, reduced potential of mitochondrial membrane results in 
accumulation of PINK1 on the outer mitochondrial membrane 
(OMM), and the accumulated PINK1 then undergoes dimeriza-
tion and autophosphorylation at Ser228 and Ser402 thus result-
ing in its activation (Okatsu et al. 2012, 2013; Aerts et al. 2015; 
Rasool et al. 2018). Therefore, PINK1 functions as a mito-
chondrial damage sensor resulting in mitophagy propagation. 
Once activated, PINK1 leads to downstream phosphorylation 
events including Ser65 in the UBL domain of Parkin. Unfor-
tunately, this alone is not enough to fully induce mitophagy, so 
PINK1 phosphorylate free ubiquitin as well as (poly-ubiquitin) 
chains at Ser65, which are already present on OMM proteins. 
Phosphoubiquitin (pSer65-Ub) then serves as a key receptor 
to initiate Parkin recruitment from cytosol to mitochondria 
(Okatsu et al. 2013; Kane et al. 2014; Kazlauskaite et al. 2014;  
Koyano et al. 2014; Shiba-Fukushima et al. 2014). Subse-
quently, activated Parkin linked more Ub onto OMM proteins 
for PINK1 phosphorylation that modulates more rounds of 
Parkin translocation to mitochondria, thereby forming a posi-
tive feedforward loop of PINK1, pSer65-Ub, and Parkin to  
trigger mitophagy. Intriguingly, PINK1-mediated pSer65-Ub is 
not the only identified phosphorylation; multiple other PINK1-
independent phosphorylation Ub sites, including pSer20-Ub, 
pThr7-Ub, and pSer57-Ub, have been recognized (Wauer et al. 
2015). Between them, it has been reported that pSer57-Ub 
hyperactivate Parkin (George et al. 2017).

After fully activation, Parkin polyubiquitylates different pro-
teins on OMM such as Mfn1/2, TOM20/40/70, and VDAC 1 
(Geisler et al. 2010; Sarraf et al. 2013). The bulk ubiquityla-
tion of OMM proteins facilitates two main downstream events: 
recruitment of receptor proteins and activation of the ubiquitin– 
proteasome system. Receptor proteins, such as p62, interact on 
one side with the polyubiquitin chains directly and on the other 
side with LC3s or GABARAPs (Stolz et al. 2014). Initially, p62 
was identified as the main adapter for Pink1/Parkin-mediated 
mitophagy (Geisler et al. 2010). Recently, comprehensive 
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study reported the importance of five well-known receptors: 
TAX1BP1, NDP52, NBR1, p62, and OPTN. Among them, 
NDP52 and OPTN were found to be the most important recep-
tors for PINK1/Parkin-dependent mitophagy (Lazarou et al. 
2015). The recruitment of autophagy receptors such as NDP52 
and OPTN to damaged mitochondria is TANK-binding kinase 
1 (TBK1)-dependent process (Heo et al. 2015; Lazarou et al. 
2015; Richter et al. 2016). TBK1 is a serine/threonine kinase 
that enhances the binding ability of autophagy receptors to vari-
ous Ub chains through their phosphorylation (Heo et al. 2015; 
Richter et al. 2016). In the presence of PINK1 and Parkin, TBK1 
activation also requires OPTN binding to Ub chains (Heo et al. 
2015; Richter et al. 2016). In the current mitophagy model, 
OPTN and NDP52 recruit phagophore onto mitochondria by 
directly binding to LC3 through their LC3-interacting region 
(LIR) domain after binding to polyubiquitin chains (Gatica et al. 
2018; Palikaras et al. 2018). A very recent study has highlighted 
the role of NDP52 in the recruitment of ULK1 complex to dam-
aged mitochondria (Vargas et al. 2019). NDP52 directly inter-
acts with FIP200 in a TBK1-dependent manner to recruit ULK1 
complex, leading to autophagosome biogenesis on damaged 
mitochondria and initiation of autophagy machinery. There-
fore, receptor proteins ensure the removal of mitochondria by  
autophagosomes.

Receptor‑Mediated Mitophagy

BNIP3/NIX‑Mediated Mitophagy

Several mitophagy receptors, such as ATG32 in yeast (Okamoto  
et al. 2009) as well as BNIP3 (BCL2 and adenovirus E1B 
19-kDa-interacting protein 3) (Hanna et al. 2012), NIX (also 
known as BNIP3L) (Chen et al. 2010), and FUNDC1 in mam-
malian cells, have recently been identified. One major char-
acteristic of mitophagy receptors is that they contain LIR that 
interacts with LC3, thereby enhancing the mitochondrial seques-
tration into phagophore (Wei et al. 2015; Bhujabal et al. 2017). 
The mechanism of BNIP3‐ and NIX‐mediated mitophagy is 
distinguished from that of the Parkin/PINK1 pathway in that 
these proteins act as direct adaptors targeting mitochondria to 
the autophagosome. BNIP3 (a member of pro-death BCL2 fam-
ily proteins) (Boyd et al. 1994) and NIX (a homolog of BNIP3 
with ~ 56% sequence similarity) (Matsushima et al. 1998) have 
BH3 domain and C-terminal transmembrane domain (TMD), 
which is crucial for their proapoptotic functions and mitochon-
drial localization (Yasuda et al. 1998; Imazu et al. 1999). Fur-
thermore, BNIP3 and NIX have an identical N-terminus LIR 
domain exposed to the cytosol that facilitate interacting with 
LC3s (microtubule-associated protein 1A/1B light chain) for 
both receptors, or to GABARAP (gamma aminobutyric acid 
receptor-associated protein) for NIX, leading to recruitment of 
autophagosomes to induce mitophagy (Novak et al. 2010; Hanna 
et al. 2012; Birgisdottir et al. 2013). In these stress response 

pathways, the expression of BNIP3 is transcriptionally regu-
lated by HIF‐1, PPARγ, Rb/E2F, FoxO3, activated Ras, and p53, 
whereas NIX is regulated by HIF‐1 and p53 (Sowter et al. 2001; 
Mammucari et al. 2007; Zhang et al. 2008). Although BNIP3 
and NIX are predominantly under transcriptional control, they 
are post-translationally modified for their mitophagic activity. 
Evidently, it has been shown that serine phosphorylation at posi-
tions 17 and 24 adjacent to the LIR of BNIP3 and at positions 
34 and 35 in the LIR domain of NIX enhances the interaction of 
these receptors with LC3 augmenting mitophagy (Rogov et al. 
2017). LIR motif mutation prevents the BNIP3/NIX interaction 
with LC3 and thus mitigates the mitochondrial removal (Novak 
et al. 2010; Hanna et al. 2012; Zhu et al. 2013), while LIR 
motif phosphorylation promotes the interaction with LC3 and 
enhances mitophagy (Zhu et al. 2013; Rogov et al. 2017). NIX 
is implicated in the clearance of mitochondria from reticulocytes 
which is a crucial step for the red blood cell maturation, and it 
was confirmed as mitochondria were not cleared in reticulocytes 
when NIX is deficient (Diwan et al. 2007; Schweers et al. 2007; 
Zhang et al. 2008).

Furthermore, recent studies emphasized that both BNIP3 
and NIX have a significant role in the progression of can-
cer and metastasis (Chourasia et al. 2015). In addition, it is 
believed that BNIP3-mediated mitophagy delays the meta-
static disease progression. It is accepted that mitophagy, in 
general, is a tumor suppression mechanism (Bernardini et al. 
2017; Roperto et al. 2019).

BNIP3 and NIX are implicated in hypoxia-induced tumor 
cell death. BNIP3 was identified in a subtractive hybridi-
zation screen in Chinese hamster ovary-K1 cells exposed 
to hypoxia, and hypoxia strongly induced BNIP3 mRNA 
(Bruick 2000). Furthermore, BNIP3 protein was induced 
by hypoxia in these cells, and the kinetics of induction cor-
related with cell death. The BNIP3 promoter has two HIF-
1α-binding sites, and the site at − 234 relative to the transla-
tional start codon is required for transactivation by hypoxia 
and HIF-1α. In another study, hypoxia induced BNIP3 
expression in tumor cell lines, and BNIP3 was expressed in 
the perinecrotic areas of several epithelial cell carcinomas 
(Sowter et al. 2001). In this study, BNIP3 was suppressed 
by Von Hippel-Lindau protein in a renal cell carcinoma cell 
line, consistent with its regulation through the HIF-1α path-
way. Hypoxia in tumors is a negative prognostic indicator; 
accordingly, deregulation of BNIP3 expression is associated 
with aggressive disease (reviewed by Burton and Gibson 
(Burton et al. 2009).

Under hypoxic conditions, NIX level is fine-tuned by various 
post-transcriptional and post-translational mechanisms (Bruick 
2000; Sowter et al. 2001; Fei et al. 2004). For instance, in U2OS 
osteosarcoma cells, NIX abundance appear to be regulated tran-
scriptionally and post-transcriptionally by two factors including 
hypoxia and p53 (Fei et al. 2004). Although the transcriptional 
mechanism by which NIX levels is regulated appears to involve 
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HIF-1α-dependent recruitment of CBP to the Nix gene, fol-
lowed by recruitment of p53, the post-transcriptional mecha-
nism remains yet to be fully elucidated. In line with this, it was 
found that repressing NIX level experimentally augments the 
growth of these cells in a tumor transplant model, underscor-
ing a potential role for NIX in restraining tumor growth upon 
hypoxic circumstances. Tellingly, in studies of human cancer, 
hypermethylation of the BNIP3 promoter was found in pancre-
atic cancer (Okami et al. 2004), and the Nix gene was found to 
be mutated in a panel of primary breast and ovarian tumors (Lai 
et al. 2003). Thus, BNIP3 and NIX are regulated by hypoxia 
in tumor cells, and their expression is associated with tumor 
cell death.

In heart muscle, the BNIP3 and NIX have been shown to 
play a regulatory role in pathological cell death and this has 
been demonstrated in rat cardiomyocytes (Guo et al. 2001; 
Kubasiak et al. 2002; Regula et al. 2002).

Numerous researches suggest a possible crosstalk between 
BNIP3/NIX receptor-mediated pathway and PINK1-Parkin-
mediated axis (Ding et al. 2010; Lee et al. 2011); NIX was 
connected to Pink1/Parkin-mediated mitophagy as a substrate 
of Parkin that recruits NBR1 to the mitochondria (Gao et al. 
2015). Additionally, BNIP3-induced mitophagy is reduced 
in Parkin-deficient cells (Lee et al. 2011) and BNIP3 can 
stabilize PINK1 on OMM and inhibit PINK1 proteolytic 
degradation (Zhang et al. 2016). These results indicate that 
these pathways could cooperate with each other to ensure 
effective mitophagy.

FUNDC1‑Mediated Mitophagy

FUN14 domain containing 1 (FUNDC1), an integral mito-
chondrial outer-membrane protein, is another important recep-
tor for hypoxia-mediated mitophagy. FUNDC1 composed of 
three TMD and an LIR domain in its N-terminus exposed 
to the cytosol which interacts with LC3 for autophagosome 
recruitment (Liu et al. 2012). Like other key regulators of 
mitophagy, the activity of FUNDC1 is also fine-tuned by 
phosphorylation and dephosphorylation. The phosphorylation 
states of the three key residues, Ser13, Ser17, and Tyr18, in 
the outer membrane region of FUNDC1 have been reported 
to play essential roles in impacting the binding affinity for 
LC3 and controlling mitophagy (Chen et al. 2014; Wu et al. 
2016). Under normal conditions, the LIR motif of FUNDC1 is 
phosphorylated at Ser13 by CSNK2/CK2 kinase and at Tyr18 
by SRC kinase, which leads to inhibition of its interaction 
with LC3 and prevents mitophagy. Conversely, hypoxia elicits 
dephosphorylation of FUNDC1, which can then bind to LC3 
and provoke mitophagy (Chen et al. 2014; Lv et al. 2017).

Another study showed that hypoxia leads to upregulation 
of ULK1 and initiates its translocation to damaged mitochon-
dria; ULK1 directly phosphorylates FUNDC1 at serine‐17, 
which is required for FUNDC1 and LC3 binding leading 

to mitophagy (Chen et al. 2014). Furthermore, Chen et al. 
confirmed that phosphoglycerate mutase family member 5 
(PGAM5) dephosphorylates Ser13 upon induction of hypoxia 
in mitochondria, which results in the enhanced interaction 
of FUNDC1 with LC3, and eventually selective removal of 
dysfunctional mitochondria, while (casein kinase 2) CK2 
phosphorylates the Ser13 of FUNDC1 in normal cells to 
reverse the effect of PGAM5 in mitophagy activation (Chen 
et al. 2014).

Many studies have demonstrated that contact between 
the mitochondria and the ER plays a crucial role in mito-
chondrial fission (Friedman et al. 2011; Murley et al. 2013; 
Naon et al. 2014). During physiological mitochondrial 
fission, several mitochondrial receptors, including MFF, 
MID49/51, and FIS1, have been reported to recruit DRP1, a 
highly conserved dynamin‐related GTPase which is essen-
tial for the mitochondrial fission process (Smirnova et al. 
2001). In contrast, mitochondrial fission under hypoxic 
conditions is still elusive, and thus, further studies are 
warranted to enhance our understanding of the molecular 
mechanisms of mitochondrial fission upon hypoxia (Kim 
et al. 2011).

Interestingly, it was reported that FUNDC1 integrates 
mitophagy and mitochondrial fission at the interface of the 
ER–mitochondrial contact site (MAM) through the associa-
tion with ER‐membrane protein calnexin to recruit DRP‐1 
(Wu et al. 2016). Another interactor of FUNDC1 is the 
mitochondrial E3 ligase MARCH5 (known as MITOL), 
which is a mitochondrially localized RING‐finger E3 ligase 
that is involved in mitochondrial dynamics by ubiquitylat-
ing Fis1 (Yonashiro et al. 2006), Mfn1 (Park et al. 2014), 
and Mfn2 (Sugiura et al. 2013). Recently, MARCH5 was 
found to play a role in ubiquitin‐mediated degradation 
of MiD49 and recruitment of Drp1 (Xu et al. 2016). The 
MARCH5/FUNDC1 interaction mediate FUNDC1 ubiq-
uitylation at lysine 119 for subsequent degradation hence 
reducing mitophagy activity. Therefore, the regulation of 
MARCH5/FUNDC1 axis desensitizes mitochondrial deg-
radation and prevents improper clearness of undamaged 
mitochondria.

PTEN‑Short as a Negative Regulator 
of Mitophagy

PTEN (phosphatase and tensin homolog deleted on chro-
mosome ten) was shown to be instrumental for several sig-
nal transduction networks. PTEN contains 403 amino acids 
with a N-terminal phosphatidylinositol (4,5)-bisphosphate 
[PI(4,5)P2]-binding domain (PBD), a catalytic phosphatase 
domain, a C2 domain, a C-tail domain, and a PDZ-binding 
motif (Lee et al. 1999). PTEN is a potent tumor suppres-
sor with both lipid phosphatase and protein phosphatase 
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activity, which was identified in 1997 (Li et al. 1997; Li 
et al. 1997; Steck et al. 1997). In addition, it is the second 
most common tumor suppressor, after P53, and is closely 
associated to tumorigenesis (Nakamura et al. 2000). Fur-
thermore, PTEN is also widely expressed in the central 
nervous system (Song et al. 2012), and plays an impor-
tant role in the development of the nervous system and 
maintenance of its normal functions. Concomitantly, its 
deregulation has been implicated in neurological disorders, 
such as Alzheimer’s disease (Sonoda et al. 2010). Previ-
ous studies demonstrated that autophagy signaling depends 
upon the activity of the tumor suppressor PTEN. Crucially, 
the role of PTEN in controlling autophagy is dependent 
upon its lipid phosphatase activity, which downregulates 
the inhibitory effect of the PI3-K/AKT pathway on the 
autophagic pathway by dephosphorylating phosphatidylin-
ositol 3,4,5-trisphosphate (PIP3) to phosphatidylinositol-
4,5-bisphosphate (PIP2) (Cantley et al. 1999; Arico et al. 
2001; Ueno et al. 2008; Rodon et al. 2013).

Previous studies identified Ser72 in RAB7A, a RAB linked 
with mitophagy pathway, as influential target of TBK1 during 
mitochondrial depolarization. RAB7A could be a direct target 
for phosphorylation by TBK1 at Ser72 and provoke PINK1-
Parkin-mediated mitophagy, but non-phosphorylated RAB7A 
failed to initiate mitophagy (Heo et al. 2018). PTEN has been 
suggested to regulate RAB7A dephosphorylation in the con-
text of epidermal growth factor receptor (EGFR) signaling 
through the endosome (Shinde et al. 2016). Based on the 
findings of previous studies (Erland et al. 2018), mitophagy 
can be activated by Mitofusin‐2 (Mfn2) and helps injured 
mitochondria fuse with the lysosome (Chandra et al. 2018). 
Furthermore, other studies have also indicated that Mfn2 
is primarily activated by the AMPK pathway (Daniel et al. 
2018), which increases the phosphorylation of CREB, a tran-
scriptional promoter (Edwards et al. 2018). Phosphorylated 
CREB translocates into the nucleus where it interacts with 
and activates the promoter of Mfn2, leading to the upregula-
tion of Mfn2 expression and mitophagy activity (Fernández 
Vázquez et al. 2018). Inhibition of PTEN could promote 
endothelial survival via activating the AMPK–CREB–Mfn2‐
mitophagy signaling pathway providing a beneficial influ-
ence on mitochondrial homeostasis, cellular survival, and 
endothelial migration (Li et al. 2020). A recent study by 
W Tang et al. concluded that inhibition of PTEN function 
induced by bv (phen)-suppressed PINK1/Parkin-mediated 
mitophagy, which resulted in an increased apoptosis and 
release of mitochondrial Cytochrome C in H/R-injured H9c2 
cells (Tang et al. 2019). Another study has also suggested 
that inflammation-induced PTEN downregulation resulted 
in TLR4-JNK-Bnip3-mitophagy pathway activation, which 
eventually amplified the cellular death signals in nasal epi-
thelial cells(Li et al. 2018).

PTEN‑Long as a Pivotal Regulator of PINK1–
Parkin‑Mediated Mitophagy

PINK1-mediated phosphorylation and Parkin-mediated ubiq-
uitination are the two key molecular events positively regu-
lating mitophagy. The PINK1/Parkin pathway of mitophagy 
is subject to intricate regulation, primarily via the action of 
a number of deubiquitinating enzymes (DUBs), including 
USP15, USP30, USP35, and PTEN-L (PTENα) (Bingol et al. 
2014; Cornelissen et al. 2014; Wang et al. 2015; Wang et al. 
2018a, b). Unlike PTEN which is typically initiated at AUG 
codons (Kozak 1999), PTEN-L translation initiation occurs at 
non-AUG codons, which enhances genome coding capacity 
and protein diversity (Hann et al. 1988; Németh et al. 2007; 
Gerashchenko et al. 2010). Besides the same five functional 
domains with the canonical PTEN, PTEN-L contains an alter-
natively translated region (ATR) adding 173 amino acids at 
the N-terminus that encode a secretion signal sequence that 
allows this enzyme to be secreted into the extracellular envi-
ronment (Fig. 2) (Hopkins et al. 2013). The extended ATR of 
PTEN-L consists of a secreted polyalanine signal sequence 
(Poly-A), a cell permeable polyarginine motif (Poly-R), a 
nuclear localization sequence (NLS), and a membrane-binding 
α-helix (MBH) (Hopkins et al. 2013; Malaney et al. 2013; 
Masson et al. 2016; Shen et al. 2019). In addition, PTEN-L 
may modify distinct substrates compared with PTEN as most 
parts of the ATR contain various post-translational modifi-
cation sites and protein-binding motifs (Malaney et al. 2013; 
Masson et al. 2016). Significant proportion of PTEN-L is pre-
sent in the mitochondrial fraction which enhances the possible 
regulatory role of PTEN-L in mitophagy (Wang et al. 2018a, 
b). PTEN-L is a canonical PTEN isoform located at outer 
mitochondrial membrane (OMM) and dephosphorylates Ub, 
hence may act to oppose PINK1/Parkin-mediated mitophagy. 
PTEN-L serves as the phosphatase to dephosphorylate pSer65-
Ub mediated by PINK1, which is the key step for subsequent 
events including Parkin translocation, phosphorylation, con-
formational changes, and E3 ligase activation and ultimately 
mitophagy. Thus, PTEN-L-mediated dephosphorylation of 
pSer65-Ub eventually disrupts the feedforward loop and sup-
presses mitophagy (Fig. 3). In vitro analysis showed the role 
of PTEN-L on pSer65-Ub chains, a key element in the feed-
forward mechanism in mitophagy, and PTEN-L dephospho-
rylates pSer65-mono-Ub, pSer65-tetra-Ub, and pSer65-poly-
Ub chains (Wang et al. 2018a, b). PTEN-L was found to be 
involved in many cell functions; for instance, PTEN-L was 
found to be regulating mitochondrial energy metabolism. Con-
comitantly, somatic deletion of PTEN-L impairs mitochon-
drial respiratory chain function, as it is involved in the electron 
transfer reaction and ATP production, likely through regula-
tion of COX activity, the rate-limiting enzyme in the respira-
tory chain. Multiple mechanisms may be involved in PTENα 
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regulation of COX activity (Liang et al. 2014). Based on previ-
ous studies, PTEN-L is proposed to be a membrane-permeable 
lipid phosphatase that is released from cells and then taken 

up into other cells. PTEN-L antagonized PI3K signaling and 
induced tumor cell death in vitro and in vivo. Recently, studies 
report that PTEN-L is a required component of MFN1-Bak 

Fig. 2  Protein domain structure and isoforms of phosphatase and ten-
sin homolog (PTEN). (A) PTEN-short (canonical PTEN) consists of 
five functional domains: a PIP2-binding domain (PBD), catalytic phos-
phatase domain, C2 lipid/membrane-binding domain, C-tail domain, 
and PDZ-binding motif. Canonical PTEN is translated from AUG start 
codon. (B) PTEN-long (PTEN-L) composed of the same five func-
tional domains of the canonical PTEN and an alternatively translated 

region (ATR) which adds 173 amino acids to the N-terminus. PTEN-L 
is translated from a CUG start codon upstream from the classic AUG 
start codon. (C) ATR region structure of PTEN-L contains a polyala-
nine signal sequence (Poly-A), a cell permeable polyarginine stretch 
(Poly-R), a nuclear localization sequence (NLS), and a membrane-
binding a-helix (MBH)

Fig. 3  Key effectors involved in mitophagy machinery during healthy 
and damaged phases of mitochondria. Under basal mitochondrial 
healthy condition, PINK1 is imported into the mitochondria, cleaved 
by proteases, and degraded by proteasome, while Parkin keeps in an 
inactive conformation in the cytosol. Upon mitochondrial deregula-
tion, PINK1 is stabilized and activated at the outer mitochondrial 
membrane (OMM), which leads to the phosphorylation of its down-
stream targets, such as ubiquitin (Ub). Parkin has a high affinity to 
phosphorylated Ub (pSer65-Ub), which recruits Parkin from cytosol 

to mitochondria. Several other factors, such as mitofusin 2 (MFN2), 
Miro, Rab7A, and BCL2/adenovirus E1B 19 kDa protein-interacting 
proteins 3 (BNIP3), are also involved in Parkin mitochondrial recruit-
ment. Binding to pSer65-Ub releases the Ub-like (UBL) domain of 
Parkin from RING1 domain, partially activating Parkin. Then, PINK1 
phosphorylates the UBL domain at Ser65, which drives the phospho-
UBL to rebind fully activation of Parkin. On the other hand, PTEN-L 
located at OMM dephosphorylates Ub to suppress mitophagy
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signaling for apoptosis which resulted in mitochondrial frag-
mentation. This study, in conjunction to the Pink1-Parkin 
mitophagy-associated functions of PTEN-L, further solidifies 
a role for PTEN-L in regulating the targeted elimination of 
dysfunctional mitochondria (Sivakumar et al. 2020). Thus, 
understanding this novel function of PTEN-L provides a key 
missing piece in the molecular mitophagy pathway, a critical 
process in several human diseases.

Intriguingly, recognition of PTENα helps understand the 
complexity of PTEN function. Tellingly, previous studies 
revealed that PTENα and PTEN-L have distinct functions in 
response to stress and might be involved in different molecu-
lar mechanisms of neuroprotection (Jochner et al. 2019). 
PTEN family proteins are not only involved in the regulation 
of PINK1-Parkin-mediated Ub-driven but also implicated in 
BNIP3-mediated mitophagy. Additional studies to further 
understand the key tenets of PTEN family proteins are thus 
needed. These future studies would evaluate the potential 
role of targeting PTEN-L as potential molecular therapeutic 
targets in the regulation of mitophagy to benefit mitophagy-
related human diseases.

Concluding Remarks and Future 
Perspectives

Optimal mitochondrial functioning is critical for cellular 
homeostasis, and abrogation of mitochondrial operation 
have long been widely linked to the pathogenesis of neuro-
degenerative diseases such as AD, PD, and ALS. Neverthe-
less, the detailed molecular mechanisms by which mitochon-
drial integrity is compromised in neurodegeneration are still 
far from clear.

To combat mitochondrial damage and maintain healthy 
mitochondrial operation, mammalian cells have evolved 
sophisticated mitochondrial quality control mechanisms. In 
neuronal cells, mitophagy represents a major quality control 
strategy for the clearance of aged and deficient mitochondria 
through lysosomal proteolysis. While the molecular mecha-
nisms governing mitophagy have been extensively studied 
in the past decade, ablation in mitophagy progression has 
emerged recently as a pivotal hallmark in aging-linked neu-
rodegeneration. Importantly, approaches to enhance protec-
tion of mitochondrial function have been recently recognized 
as a potential practical strategy to promote neuroprotection  
and halt disease pathology  (Eldeeb et  al. 2021b). For 
instance, mitochondrially targeted antioxidants have been 
proposed to exert protective effect against neurodegeneration 
in mice models. Remarkably, the antioxidant MitoQ, a redox 
active ubiquinone targeted to mitochondria, has been dem-
onstrated to exhibit protective role in several of aging and 
neurodegenerative disorders (Kelso et al. 2001; McManus 
et al. 2011; Miquel et al. 2014; Ng et al. 2014).

Importantly, given the findings that PTEN-L is negative 
regulator of mitophagy, targeting PTEN-L could be another 
promising target for future drug discovery investigations. 
Lastly, further detailed molecular studies to elucidate 
mitophagy in physiological-relevant cellular models not only 
advance our understanding of molecular basis of diseases, 
but also unearth novel strategies to circumvent neurodegen-
eration (Cai et al. 2020).
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