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Abstract
Research into the neurotoxic activity of venoms from species within the snake family Viperidae is relatively neglected com-
pared with snakes in the Elapidae family. Previous studies into venoms from the Bitis genus of vipers have identified the pres-
ence of presynaptic phospholipase  A2 neurotoxins in B. atropos and B. caudalis, as well as a postsynaptic phospholipase  A2 
in B. arietans. Yet, no studies have investigated how widespread neurotoxicity is across the Bitis genus or if they exhibit prey 
selectivity of their neurotoxins. Utilising a biolayer interferometry assay, we were able to assess the binding of crude venom 
from 14 species of Bitis to the neuromuscular α-1 nAChR orthosteric site across a wide range of vertebrate taxa mimotopes. 
Postsynaptic binding was seen for venoms from B. arietans, B. armata, B. atropos, B. caudalis, B. cornuta, B. peringueyi 
and B. rubida. To further explore the types of neurotoxins present, venoms from the representatives B. armata, B. caudalis, 
B. cornuta and B. rubida were additionally tested in the chick biventer cervicis nerve muscle preparation, which showed 
presynaptic and postsynaptic activity for B. caudalis and only presynaptic neurotoxicity for B. cornuta and B. rubida, with 
myotoxicity also evident for some species. These results, combined with the biolayer interferometry results, indicate complex 
neurotoxicity exerted by Bitis species, which varies dramatically by lineage tested upon. Our data also further support the 
importance of sampling across geographical localities, as significant intraspecific variation of postsynaptic neurotoxicity 
was reported across the different localities.
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Introduction

Snake venom toxins exhibit a variety of pathophysiological 
activities which act synergistically, targeting key physiologi-
cal systems to immobilise prey (Fry et al. 2012). Species 
within the family Viperidae possess highly complex venoms, 

with coagulotoxic effects being the most prominent and 
investigated activity (Serrano et al. 2005). Although neu-
rotoxicity is a main pathophysiology of venom from most 
species within the family Elapidae, it has been relatively 
understudied within Viperidae (Barber et al. 2013; Harris 
et al. 2020b; Nirthanan and Gwee 2004).

The most common function of snake venom 
neurotoxins is to cause flaccid paralysis via inhibition 
of the orthosteric site (acetylcholine binding region) of 
postsynaptic muscle-type α-1 nicotinic acetylcholine 
receptors (nAChRs). This postsynaptic neurotoxicity 
is primarily seen in venoms which possess three finger 
toxins (3FTxs) which are a non-enzymatic toxin class 
ubiquitous to the Elapidae family along with some species 
of Colubridae and Lamprophiidae (Barber et al. 2013; Fry 
et al. 2003, 2008; Nirthanan and Gwee 2004; Pawlak et al. 
2009). Snake toxins that target postsynaptic nAChRs are 
known as α-neurotoxins (Barber et al. 2013; Nirthanan 
and Gwee 2004).
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Conversely, only some species of vipers have been shown 
to have neurotoxic activities. A toxin isolated from Crotalus 
durissus terrificus, known as crotoxin, is a snake venom 
phospholipase  A2  (PLA2) (Chang and Lee 1977a). Crotoxin 
blocks neuromuscular transmission at the presynapse by 
binding to the motor nerve terminal to deplete synaptic 
acetylcholine (ACh) vesicles, thus impairing the release of 
ACh into the synaptic cleft. Toxins that target the presynapse 
to impair ACh vesicle release are known as β-neurotoxins. 
This toxin complex is widespread in Crotalus, and the relative 
presence may vary dramatically between populations, as has 
been shown for Crotalus scutatus (Dobson et al. 2018). Other 
neurotoxic peptides from vipers include the Azemiopsin 
peptides from Azemiops species and the waglerin peptides 
from Tropidolaemus species, which are two types of post-
synaptic neurotoxins that are derived from the propeptide 
region of the C-type natriuretic gene (Brust et  al. 2013; 
Debono et al. 2017; Harris et al. 2020b; Utkin et al. 2012).

Neurotoxic effects have also been identified in some 
African vipers within the genus Bitis. Neurotoxicity is a 
common pathophysiology from Bitis atropos envenomings 
(Van Der Walt and Muller 2018; Wium et al. 2017), with 
two neurotoxic  PLA2 toxins having been isolated from the 
venom and tested for their  LD50 in vivo (Van Zyl et al. 2001). 
Caudoxin, a presynaptic  PLA2 neurotoxin, isolated from 
the venom of B. caudalis has been investigated using both 
chick biventer cervices nerve muscle (CBCNM) and mouse 
phrenic nerve diaphragm (MPND) (Lee et al. 1982). Further, 
the crude venom of B. arietans has shown postsynaptic 
neurotoxic activity (Fernandez et al. 2014). Additionally, a 
 PLA2 toxin named Bitanarin has been isolated that competed 
with α-bungarotoxin for binding to α-7 nAChRs suggesting 
postsynaptic activity (Vulfius et al. 2011). However, unlike 
α-1, α-7 is not a physiologically relevant target, and the 
evolutionary implications of this activity remain to be 
elucidated. Regardless, these studies show that both post- 
and presynaptic acting  PLA2 neurotoxins are prevalent 
within Bitis venoms.

Thus, neurotoxicity in African vipers seems to be a 
neglected area, especially considering the overwhelming 
amount of neurotoxic research conducted on elapids (Barber 
et al. 2013; Nirthanan and Gwee 2004). This is potentially 
due to the lack of neurotoxic symptoms observed in human 
envenoming reports from African viper species. However, 
since humans are not natural prey items of viperid snakes, 
and given the potential for both α- and β-neurotoxins to 
exhibit prey-specific targeting (Chang and Lee 1977b; Chang 
et al. 1977; Harris et al. 2020c; Heyborne and Mackessy 
2013; Pawlak et al. 2006, 2009; Su and Chang 1984), the 
absence of neurotoxic effects in human bite victims is not 
evidence of the absence of neurotoxins. Therefore, the 
exploration of prey-selective neurotoxins in viper venoms 
is a rich but neglected area of research.

Bitis continues to be one of the most medically significant 
and widespread genera across Africa (Kasturiratne et al. 
2008). Despite some evidence for neurotoxicity within 
the genus (Fernandez et  al. 2014; Van Zyl et  al. 2001; 
Viljoen et al. 1982), research has primarily focussed on the 
coagulotoxic effects of their venom (Mackay et al. 1970; 
Marsh and Whaler 1974; Morné et al. 2016; Pirkle et al. 
1986; Sánchez et al. 2011; Viljoen et al. 1979; Youngman 
et al. 2019, 2020). This lack of research leaves a major gap 
in our understanding of the evolutionary history and presence 
of neurotoxicity throughout the genus. Thus, we aimed to 
assess the neurotoxicity of Bitis venoms utilising a well-
established biolayer interferometry (BLI) assay designed 
to test the binding to orthosteric site (ACh binding region) 
of postsynaptic α-1 nAChRs to a plethora of taxon-specific 
mimotopes (Harris et  al. 2020a, 2020b, 2020c; Zdenek 
et al. 2019a). We set out to determine what other members 
of the Bitis genus utilised postsynaptic nAChR targeting 
toxins and then further assess if they exhibit prey-specific 
targeting which is known to occur with some α-neurotoxins 
(Heyborne and Mackessy 2013; Pawlak et al. 2006, 2009). 
Bitis are also the most geographically widespread viper genus 
across Africa, with some species having extremely wide 
distributions (e.g. B. arietans) and others having multiple 
allopatric populations (e.g. B. atropos, B. caudalis and B. 
cornuta) (Barlow et al. 2019; Spawls and Branch 2020). 
Sampling across multiple populations is critically important 
to determine evolutionary facets about the venom activity. 
Thus, different locations of some Bitis species were also 
tested to determine if geographical variation of neurotoxicity 
occurs which has been revealed in other venomous snakes 
(Dobson et al. 2018; Forstner et al. 1997; Glenn and Straight 
1978; Glenn et al. 1983). To further support our BLI results, 
representative Bitis species which exhibited postsynaptic 
binding were additionally tested on a CBCNM assay to 
further confirm the presence of neurotoxic activity.

Methods and Materials

Venoms and Reagents

All venom work was undertaken under University of 
Queensland IBSC Approval #IBC134BSBS2015. All 
venoms were sourced from captive snakes: Bitis arietans 
(Kenya, Mali, Saudi Arabia, Tanzania and West Africa 
locales) and B. nasicornis (Burundi) venoms were purchased 
from Latoxan (Portes-les-Valence, France); B. atropos 
unicolor (Limpopo province), B. cornuta (Kleinzee and 
Springbok) and B. parviocula (Ethiopia) were supplied by 
the Universeum, Gothenburg; B. armata (Cape Arguilas), 
B. peringueyi (UL) and B. schneideri (UL) were supplied 
by the Serpentarium Calden, Germany. All other venom 
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samples were sourced from the Toxin Evolution Lab long-
term cryogenic research collection. For samples from 
species where the geographical locality of the founding 
stock was unknown, the abbreviation UL (unknown 
locality) was used. Venoms were lyophilised and stored at 
− 80 °C. Working stock solutions of venom (50% glycerol 
and 50% double-deionised water  (ddH2O) to preserve 
enzymatic activity) were made at a concentration of 1 mg/
ml and stored at − 20 °C until required. Working stock 
concentrations were determined using a NanoDrop 2000 
UV–Vis Spectrophotometer in triplicate.

Mimotope Production and Preparation

Extending previous research (Harris et al. 2020b, 2020c; 
Zdenek et al. 2019a), a 13–14 amino acid mimotope of the 
nAChR orthosteric site of vertebrate α-1 nAChR subunit was 
developed by GenicBio Ltd. (Shanghai, China) designed 
upon specification and adapted from publicly available 
sequences of cholinergic receptors (Chrna1) from Genbank 
and UniProt. For each taxon, the α-1 orthosteric site amino 
acid sequences were obtained using the following accession 
codes: amphibian α1 (uniprot F6RLA9), lizard α1 (Genbank 
XM_015426640), avian α1 (uniprot E1BT92), rodent α-1 
(uniprot P25108) and human α-1 (uniprot G5E9G9). The 
only exception was the α-1 sequence for the snake α-1 
(Coelognathus radiatus), which was Sanger sequenced 
in a previous study (Zdenek et al. 2019a). During peptide 
synthesis, the Cys-Cys of the native mimotope is replaced 
with Ser-Ser to avoid uncontrolled postsynthetic thiol 
oxidation. Replacement with Ser-Ser is not expected to 
have any effect upon the analyte-ligand complex formation 
as the Cys-Cys bond in the nAChR binding region does 
not participate directly in analyte-ligand binding (McLane 
et al. 1994, 1991; Tzartos and Remoundos 1990). However, 
the Cys-Cys bond is important in the conformation of the 
interaction site of whole receptors. Thus, direct comparisons 
between nAChR mimotopes and whole receptor testing using 
kinetics data should be avoided or approached with caution.

Mimotopes were further synthesised to a biotin linker 
bound to two aminohexanoic acid (Ahx) spacers, forming a 
30 Å linker. Dimethyl sulfoxide (DMSO) was used to solu-
bilise mimotope dry stocks, then diluted in 1:10 dilution of 
double deionised water to create a working stock of 50 µg/
ml and stored at − 80 °C until use.

Biolayer Interferometry

The biolayer interferometry (BLI) assay was performed on 
an Octet HTX system (ForteBio™, Fremont, CA, USA). 
All methodology followed previous research that developed 
this nAChR binding assay (Harris et al. 2020c; Zdenek et al. 
2019a). In brief, Streptavidin biosensors were hydrated in assay 

running buffer for 30–60 min and agitated at 2.0 revolutions per 
minute (RPM) on a shaker, prior to experimentation. Venom 
(analyte) samples were diluted to make a final experimental 
concentration of 50 µg/ml per well and mimotope aliquots 
were diluted to an experimental concentration of 1 µg/ml per 
well. 1× DPBS with 0.1% BSA and 0.05% Tween-20 was used 
for the assay running buffer. Analyte dissociation occurred 
using a standard acidic solution (glycine buffer), made up of 
10 mM glycine (pH 1.5–1.7) in  ddH2O. Raw data is provided 
in supplementary file 1. All experiments were conducted in 
triplicate across the mimotopes. Due to limitations in venom 
supply, B. worthingtoni was unable to be tested upon the 
human mimotope.

All data obtained from the BLI assay was processed in 
exact accordance to the validation of this assay (Zdenek 
et al. 2019a). The association step data was obtained in an 
excel.csv file extracted from raw outputs of the Octet HTX 
system and then imported into Prism 8.0 software (GraphPad 
Software Inc., La Jolla, CA, USA) for analysis and graphing. 
Raw data is provided in supplementary file 1.

Chick Biventer Cervicis Nerve Muscle Preparation

The chick biventer work was undertaken under Monash 
University Animal Ethics Committee (MARP2 committee) 
approval # 22575. Chicks aged 4 to 10 days were euthanized 
with  CO2. After dissection, the chick biventer cervicis nerve 
muscle (CBCNM) preparations were mounted under 1 g 
tension in 5-ml organ baths containing physiological salt 
solution (NaCl, 118.4 mM; KCl, 4.5 mM;  MgSO4, 1.2 mM; 
 KH2PO4, 1.2  mM;  CaCl2, 2.5  mM;  NaHCO3, 25  mM; 
and glucose, 11.1  mM). Organ baths were maintained 
at 34 °C and bubbled with carbogen (95%  O2; 5%  CO2). 
Electrodes were placed around the tendon of the biventer 
muscle and the motor nerve stimulated (0.2 ms duration, 
0.1 Hz, supramaximal V), using a Grass S88 stimulator 
(Grass Instruments, Quincy, MA, USA), to evoke indirect 
twitches. Selective stimulation of the nerve was confirmed 
by the abolition of twitches with d-tubocurarine (10 µM), a 
nAChR competitive antagonist. Tissues were then washed 
repeatedly with physiological salt solution to restore twitch 
responses to nerve stimulation. The stimulation was ceased, 
and the contractile responses to acetylcholine (ACh, 1 mM 
for 30 s), carbachol (CCh, 20 µM for 60 s) and potassium 
chloride (KCl, 40 mM for 30 s) were obtained and recorded. 
The organ bath was then washed, and electrical stimulation 
was resumed and maintained for 30  min to allow the 
preparation to equilibrate. Venom (10 µg/ml) was added 
to the organ bath and the twitch height was recorded until 
the abolition of twitch responses or after a 1 h period. 
The stimulator was turned off again and the bath was 
washed. Contractile responses to ACh, CCh and KCl were 
obtained again to compare with responses prior to venom 
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addition. The twitch responses to electrical stimulations and 
contractile responses to agonists (ACh, CCh and KCI) were 
measured using a Grass FT03 force displacement transducer 
(Grass Instruments, Quincy, MA, USA) and recorded on 
a PowerLab system (ADInstruments Pty Ltd., Bella Vista, 
NSW, Australia). To compare the responses to exogenous 
agonists, one-way ANOVAs were used followed by Tukey’s 
multiple comparison post hoc tests. Graphs were prepared 
using Prism8.0 software (GraphPad Software Inc., La Jolla, 
CA, USA). Raw data is provided in supplementary file 2.

Results and Discussion

Previous research investigating the crude venom of B. 
arietans and isolated  PLA2 toxins has been the only 
indication of postsynaptic neurotoxicity within Bitis venom 
to date (Fernandez et al. 2014; Vulfius et al. 2011). Our 
investigation into the postsynaptic binding activity of the 
crude venom from 14 species across the Bitis genus revealed 
that postsynaptic neurotoxicity is more common throughout 
the genus than previously realised, and in particular is a 
trait of many dwarf Bitis species. However, no significant 
postsynaptic binding was observed for the dwarf species B. 
worthingtoni which is the most basal of the genus, or in any 
of the giant species tested which make up the Macrocerastes 
clade (i.e. B. gabonica, B. nasicornis, B. parviocula, B. 
rhinoceros) (Fig. 1). Intraspecific venom variation was also 
seen for multiple Bitis sp., further supporting the occurrence 
of geographical variation of venom (Fig. 1).

Significant geographical variation was found within B. 
arietans, with only the venoms from the Saudi Arabia and 
Eastern Cape localities possessing notable neurotoxic activity 
out of seven localities tested (Fig. 1). Geographical variation 
in venom composition and function has been documented 
within many snake species (Forstner et al. 1997; Glenn et al. 
1983; Jayanthi and Veerabasappa Gowda 1988; Zdenek et al. 
2019b), including previously for B. arietans venom (Currier 
et al. 2010; Youngman et al. 2019). Interestingly, the two B. 
arietans populations which showed postsynaptic binding are 
not located close to each other, being highly separated at the 
north-eastern and south-eastern extents of B. arietans’ range 
(Barlow et al. 2019; Spawls and Branch 2020). Analysis of 
mitochondrial data across B. arietans has also shown that the 
Arabian population is allopatric and has diverged into its own 
clade, separate from other B. arietans populations including 
that of the Eastern Cape (Barlow et al. 2013). Since nothing is 
known that distinctively links these two populations over other 
populations of B. arietans, either ecologically or geographically, 
it is possible that this postsynaptic neurotoxic activity was 
amplified independently twice within B. arietans or that these 
are the only two populations to retain this activity while all other 
sampled populations have secondarily lost this activity.

Although the basal dwarf species B. worthingtoni did not 
show binding to the nAChR mimotopes, several species of 
dwarf Bitis from the subgenus Calechidna displayed binding 
to the nAChR mimotopes (Fig. 1). These results therefore 
indicate that postsynaptic neurotoxicity has been amplified 
at the base of the Calechidna group of dwarf Bitis. Bitis 
atropos, B. caudalis, B. cornuta, B. peringueyi and B. rubida 
all showed postsynaptic binding activity to the orthosteric site 
of the neuromuscular α-1 nAChR mimotopes (Fig. 1). This 
activity was also subject to intense geographical variation 
among different populations of B. atropos, B. caudalis and 
B. cornuta, all of which have multiple allopatric populations 
(Fig. 1). Three localities of B. caudalis showed the highest 
binding affinity of all Bitis species. However, the Messina 
locality did not show evidence of neurotoxicity, indicating that 
this locality has had a secondary loss of this trait (Fig. 1). One 
locality of B. atropos showed binding while three localities 
did not. B. cornuta also showed significant variation, with two 
out of three localities showing evidence of neurotoxicity but 
the third secondarily lacking this trait. Therefore, our results 
indicate that within the dwarf Bitis, there has been multiple 
secondary losses of this postsynaptic binding activity, 
underscoring how extremely dynamic this trait is.

For most species that showed postsynaptic nAChR 
activity, there was no prey-specific targeting (Fig.  1). 
However, some species such as B. arietans (Eastern cape), 
B. armata and all locales of B. caudalis seemed to show 
some degree of preferential prey binding (Fig. 1). Bitis 
arietans (Eastern cape) and B. armata had their highest 
binding toward the amphibian mimotope. Bitis caudalis 
showed preferential targeting towards the bird mimotope 
with amphibian close behind (Fig. 1) across all localities 
to varying degrees of binding intensity. Although these 
results are not indicative of true prey selectivity, they do 
suggest that certain proportions of postsynaptic nAChR 
toxins within Bitis have the propensity to target certain prey 
orthosteric sites than others. This is also evident in that all 
venoms were either very low binding or did not bind to the 
human and rodent mimotopes.

Previous research utilising the BLI method has shown 
that the orthosteric site of the human α-1 nAChR is 
susceptible (albeit weak compared with taxa types tested) 
to other classes of α-neurotoxins (Harris et  al. 2020b). 
This suggests that the α-neurotoxin susceptibility of Bitis 
venoms toward the human α-1 orthosteric site is low. This 
also further supports the lack of neurotoxic symptoms in 
Bitis envenomations, except B. atropos which is likely 
to be caused by presynaptic neurotoxins. These results 
further support the importance of using taxa which are 
representative of potential prey to capture the whole function 
of the venom when investigating activity. Numerous studies 
only aim to understand venom activity regarding medical 
significance and thus are focussed on the pathophysiology 
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of human envenomations, which is not always an accurate 
reflection of the physiological system specific toxins have 
evolved toward natural prey. Future work should endeavour 
to determine the biochemical interactions associated with 
the human α-1 orthosteric site which prevent the binding of 
Bitis α-neurotoxins.

To further investigate the neurotoxic activity of Bitis 
venoms, we tested representative species using the in vitro 
CBCNM preparation. The selected species were B. armata 

(Cape Arguilas), B. caudalis (Namaqualand), B. cornuta 
(Springbok) and B. rubida. Interestingly, although B. caudalis 
had the strongest response on the BLI, it displayed a relatively 
weak neurotoxic response on the CBCNM, only reducing 
twitch height by approximately 50% over 60 min (Fig. 2a). 
However, B. caudalis venom showed the largest inhibitory 
effect on contractile responses to ACh and CCh, potentially 
indicating the highest postsynaptic activity (Fig.  2b). 
However, only the decrease in ACh response (F(4,14) = 6.156, 

Fig. 1  Comparison of wavelength (nm) curves of the association 
step (ka binding step) for Bitis, conducted over a 120-s assay period. 
Venoms were tested against amphibian (green), lizard (red), snake 
(aqua), bird (blue), rodent (brown) and human (purple) mimotopes in 
triplicate (n = 3). Crotalus horridus was included as a negative con-

trol to represent a venom rich in non-binding toxin types. The dots 
surrounding the curve lines represent the standard error of the mean 
(SEM). Due to the high precision of the BLI assay, the SEMs are too 
small to be viewed for some curves
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p = 0.0084) was statistically significant when compared with 
the time control and this was accompanied by a significant drop 
in the contractile response to KCl (F(4,14) = 3.84, p = 0.0466) 
(Fig. 2b). The drop in response to KCl is suggestive that there 
may be myotoxic effects in addition to postsynaptic neurotoxic 
binding, causing the reduction in response to the exogenous 
agonists ACh and CCh in this tissue preparation.

The neurotoxic activity of B. armata, B. cornuta (Springbok) 
and B. rubida venom all showed varying levels of binding to 
the nAChR mimotopes. Bitis armata venom displayed almost 
no neurotoxicity on the CBCNM assay (Fig. 2a) which is also 
consistent with the lack of binding toward the bird mimotope 
(Fig. 1). However, the level of binding which occurred to the 
amphibian mimotope by B. armata venom in the BLI assay is 
suggestive that there may be a small proportion of postsynaptic 
neurotoxins in the venom which specifically target amphibian 
postsynaptically (Fig. 1). However, more research is needed 
to confirm the level of specificity which these kinds of toxins 
might exhibit, such as using amphibian neuromuscular tissue 
preparations. Venoms from B. cornuta (Springbok) and B. 
rubida showed binding in the BLI assay to various nAChR 
mimotopes tested including the bird mimotope. Testing upon 
the CBCNM assay showed potent neurotoxic activity from B. 
cornuta (Springbok) and B. rubida venom, both venoms causing 
100% inhibition of twitch height (Fig. 2a). These venoms 
also partially reduced contractile responses to ACh and CCh 
indicating that this neurotoxic effect may be due to the activity 
of both presynaptic and postsynaptic neurotoxins, although 
this was also accompanied by a decrease in response to KCl 
which likely indicates a myotoxic in addition to postsynaptic 
neurotoxic effect similar to the results for the venom of B. 
caudalis (Fig. 2b).

A potential scenario for the neurotoxic activity of B. caudalis, 
B. cornuta and B. rubida is that the binding seen towards the 
nAChR mimotopes in the BLI assays is due to the crude venoms 

possessing a low proportion of neurotoxins which target the 
postsynaptic nAChR orthosteric site. However, this activity 
is not discernible in the CBCNM due to the venom being 
proportionally higher in presynaptic acting neurotoxins (Lee 
et al. 1982; Van Zyl et al. 2001; Viljoen et al. 1982) as well as, 
potentially, myotoxins which obscures any potential postsynaptic 
activity.  PLA2 toxins possessing both presynaptic neurotoxic 
activity as well as myotoxic activity have indeed been described, 
such as notexin from the venom of the elapid snake Notechis 
scutatus (Dixon and Harris 1996; Harris and Johnson 1978; 
Harris et al. 1973). Due to the propensity for  PLA2 toxins to have 
multiple functions, it is possible that some of the α-neurotoxins 
present in B. caudalis, B. cornuta, B. rubida which bind to the 
postsynaptic mimotopes in the BLI assay are also displaying 
presynaptic or myotoxic activity on the CBCNM causing our 
observed results. This is thus a rich area for future research.

Conclusions

Our study identifies for the first time the wide prevalence of 
postsynaptic α-1 nAChR orthosteric targeting venoms across the 
genus Bitis. Postsynaptic neurotoxicity was present in the venom 
of B. arietans as well as numerous dwarf Bitis species within the 
Calechidna clade. This suggests that this form of neurotoxicity 
may be a basal trait that has been independently amplified on 
multiple occasions within Bitis. Bitis caudalis, B. cornuta and 
B. rubida all showed evidence for possessing both presynaptic 
and postsynaptic neurotoxicity, in addition to myotoxicity. 
These results therefore suggest that neurotoxic venom activity 
is more widespread throughout the Bitis genus than previously 
known. Significant intraspecific geographical variation was 
also revealed for the postsynaptic neurotoxic activity of B. 
arietans, B. atropos, B. caudalis and B. cornuta. Thus, these 
results further support the growing body of literature which 

Fig. 2  Chick biventer cervicis nerve muscle preparation showing the 
neurotoxic activity of venoms at 10 µg/ml from B. armata, B. rubida, 
B. caudalis and B. cornuta and relative agonist blockage. a Inhibi-
tion of indirect twitches by the crude venom of B. armata (blue), B. 
rubida (red), B. caudalis (green) and B. cornuta (purple). Vehicle 
(white) represents the time control. b Effect of the venoms on con-

tractile response to exogenous acetylcholine (ACh), carbachol (CCh) 
and potassium chloride (KCI). All venoms were tested in quadrupli-
cate (n = 4), except B. armata which could only be tested in triplicate 
(n = 3) due to a limited amount of venom. Error bars represent the 
SEM
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establishes the importance in assessing geographical variation in 
venom activity, particularly for species with extensive or isolated 
ranges. Future work should investigate additional species across 
a wider range of concentrations and with more replicates in order 
to more fully investigate this neglected area of research. The 
isolation and characterisation of neurotoxins from the venoms 
would also be beneficial to elucidate their site of action. This is 
particularly important for B. atropos which is well-characterised 
as producing potent human effects yet was not very strong in this 
assay. Thus, the human medicine site of action appears to lie 
outside the orthosteric site, and thus, follow-up studies should 
investigate using the chick biventer assay and also ascertain the 
efficacy of the available South African antivenom. This and 
other neglected aspects of Bitis venom neurotoxicity is a rich 
area of future research.
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