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Abstract
Sepsis-associated encephalopathy causes brain dysfunction that can result in cognitive impairments in sepsis survivor
patients. In previous work, we showed that simvastatin attenuated oxidative stress in brain structures related to
memory in septic rats. However, there is still a need to evaluate the long-term impact of simvastatin administration
on brain neurodegenerative processes and cognitive damage in sepsis survivors. Here, we investigated the possible
neuroprotective role of simvastatin in neuroinflammation, and neurodegeneration conditions of brain structures related
to memory in rats at 10 days after sepsis survival. Male Wistar rats (250–300 g) were submitted to cecal ligation and
puncture (CLP, n = 42) or remained as non-manipulated (naïve, n = 30). Both groups were treated (before and after the
surgery) by gavage with simvastatin (20 mg/kg) or an equivalent volume of saline and observed for 10 days.
Simvastatin-treated rats that survived to sepsis showed a reduction in the levels of nitrate, IL1-β, and IL-6 and an
increase in Bcl-2 protein expression in the prefrontal cortex and hippocampus, and synaptophysin only in the hippo-
campus. Immunofluorescence revealed a reduction of glial activation, neurodegeneration, apoptosis, and amyloid
aggregates confirmed by quantification of GFAP, Iba-1, phospho Ser396-tau, total tau, cleaved caspase-3, and
thioflavin-S in the prefrontal cortex and hippocampus. In addition, treated animals presented better performance in
tasks involving habituation memory, discriminative, and aversive memory. These results suggest that statins exert a
neuroprotective role by upregulation of the Bcl-2 and gliosis reduction, which may prevent the cognitive deficit
observed in sepsis survivor animals.
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Introduction

In sepsis, peripheral overproduction of pro-inflammatory cy-
tokines and nitric oxide through the activation of endothelial
cells contributes to an increase in blood-brain barrier (BBB)
permeability (Handa et al. 2008). Inflammatory mediators
may reach the central nervous system (CNS) through the ac-
tivation of primary afferent, vagus, and trigeminal nerves
(neural pathway), or by penetrating via the choroid plexus
and circumventricular organs (CVOs), structures devoid of a
BBB (humoral pathway) (Sonneville et al. 2013). The pres-
ence of these mediators in the CNS alters neurotransmitter
synthesis, promotes microglial activation, neuronal apoptosis,
and activation of immunological cascades (Hshieh et al. 2008;
Semmler et al. 2008; Taccone et al. 2010; Comim et al. 2013;
Oliveira-Pelegrin et al. 2013; da Costa et al. 2017). All these
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mechanisms contribute to the establishment of an inflamma-
tory process in the CNS that, even in the absence of an in situ
infection, will culminate in a diffuse cerebral dysfunction
denominated sepsis-associated encephalopathy (SAE) (van
Gool et al. 2010; Kettenmann et al. 2013).

SAE, which can reach in some cases 70% of sepsis pa-
tients, may be an independent predictor of mortality (Sprung
et al. 1990; Maramattom 2007; Young et al. 1990) and can be
associated with cognitive impairment in a large proportion of
survivors (Calsavara et al. 2013; Chaudhry and Duggal 2014).
Approximately 45% of surviving patients with severe sepsis
present cognitive impairment after 1 year of hospital discharge
(Hopkins et al. 1999; Hopkins et al. 2005), and even after
eight years, cognitive deficits such as memory impairment
are still observed in some of those patients (Iwashyna et al.
2010; Adam et al. 2013). This persistent cognitive dysfunction
in sepsis survivor patients diagnosed with SAE is accompa-
nied by hippocampal atrophy and electroencephalogram dis-
turbances (Semmler et al. 2013). In experimental models of
SAE, damages to hippocampus and cortex were associated to
impaired long-term potentiation (LTP) and reduced learning
and memory (Comim et al. 2011a, b; Imamura et al. 2011;
Field et al. 2012). Some authors (Olivieri et al. 2018; Schwalm
et al. 2014; Gasparotto et al. 2018) have proposed that brain
deposition of the amyloid-β (Aβ) peptide, which is known to
occur under inflammatory conditions through cytokine-
mediated upregulation of β-amyloid cleaving enzyme-1
(BACE-1) (Guo et al. 2002; Chen et al. 2012; Sastre et al.
2003), may contribute to cognitive dysfunctions in sepsis
survivors.

Based on the cognitive impact of SAE, and the consequent
risk for the development of dementias, it becomes essential to
develop strategies to attenuate the neurodegenerative process-
es triggered by SAE (Benveniste et al. 2001; Ransohoff 2016).
In this scenario, statins, in addition to be clinically employed
in vascular diseases via the well-known inhibition of HMG-
CoA reductase, also exhibit anti-inflammatory and antioxi-
dant effects (Catalão et al. 2017; Kim et al. 2002; Qin et al.
2019; Reis et al. 2017),and therefore have been investigated as
an option to treat the late consequences of SAE.

The pleiotropic effects of statins are known to be in part
related to the inhibition of the synthesis of isoprenoid com-
pounds, such as farnesyl pyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP), which limits G pro-
tein prenylation and their consequent binding to the plasma
membrane to trigger cellular signaling cascades leading to
production of inflammatory, endothelial mediators, and reac-
tive oxygen species (ROS) (Greenwood et al. 2006).
Nonetheless, clinical studies relating statins and sepsis are still
rather controversial about the benefits of these compounds
(Martin et al. 2007; Kopterides and Falagas 2009; Piechota
et al. 2013;Wan et al. 2014; Deshpande et al. 2015;Mehl et al.
2015). Recent studies have reported that treatment with statins

led to decreased glial activation, reduction of microvascular
damage and apoptosis, restoration of balance in the redox
system, and regulation of mitochondrial bioenergetics in brain
structures related to the memory of rats and mice 48 h after
sepsis (Catalão et al. 2017; Reis et al. 2017). However, these
studies did not analyze whether these brain alterations persist
in the form of long-term impaired memory observed in ani-
mals that survive days after sepsis. Despite of those promising
results, important gaps still need to be filled in order to obtain
a consensus regarding the use of statins as a therapeutic strat-
egy to face neuroinflammation and cognitive damage in sepsis
survivors (Piechota et al. 2013). For instance, quantification of
biomarkers of neurodegeneration in parallel to behavioral tests
in SAE in rats was not performed yet, and in our view, this
approach would allow a better comprehension of the molecu-
lar effects of statins.

Here, we investigated the effects of simvastatin in cecal
ligation and puncture (CLP)–induced polymicrobial sepsis in
10-day survivor rats by monitoring neuroinflammatory and
neurodegenerative events through quantification of
dementia-related biomarkers in structures responsible for
learning and memory.

Materials and Methods

Animals

Male Wistar rats (280 ± 30 g) provided by the Animal
Facility of the Campus of Ribeirão Preto, University of
São Paulo, were housed in controlled temperature (25 ±
1 °C) and photoperiodic (12:12 h night:day cycle) con-
ditions, with food (Nuvilab CR-1, NUVITAL) and tap
water available ad libitum. All experiments were carried
out according to the National Council of Animal
Experiment Control (CONCEA) and with approval by
the Institutional Animal Care and Use Committee at the
School of Dentistry of Ribeirão Preto, University of São
Paulo (protocol number: 2019.1.51.58.6). We used hu-
mane endpoints in shock research (Nemzek et al. 2004)
as criteria to euthanize CLP animals in high suffering,
immediately before or soon after the studied time points
defined in this study.

Cecal Ligation and Puncture Surgery and Drug
Administration

Animals were randomly assigned to one of two groups, CLP,
or naïve (non-manipulated animals). All experiments were
performed at the same time of day (08:00–10:00). Sepsis
was induced in experimental rats by the surgical procedure
of CLP according to our previous studies (Catalão et al.
2017) and showed that untreated septic animals had 70%
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mortality rate, while simvastatin-treated animals 40%. This
difference in the mortality rate between septic groups was
not significant (data not shown).

Experimental Protocol

Simvastatin (Merck Sharp & Dohme, UK) dissolved in sterile
saline or saline only was administered by gavage, daily at
14:00, 4 days before and 10 days after CLP surgery. The same
protocol, without surgery, was applied to the group of naïve
rats. We chose 10 days after CLP-induced sepsis (cecum per-
forated once with a 14-gauge needle) because this is consid-
ered by several authors to be the initial time point that marks
the full recovery of the animals considering them as survivors
of sepsis (Barichello et al. 2005; Cassol et al. 2010; Steckert
et al. 2015). Additionally, the dose of 20 mg/kg simvastatin
was determined from a pharmacokinetic study using different
doses (20 mg /kg, 40 mg/kg, and 80 mg/kg) according to our
previous study (Catalão et al. 2017). Since the oral route is the
most common way to administer statins to patients who use
this medication continuously, we used oral gavage as a route
of administration to simulate what occurs in clinical practice.
Moreover, simvastatin is a lipophilic statin with a high pene-
tration capacity across the blood-brain barrier (Saheki et al.
1994; Vuletic et al. 2006), and there are several findings put-
ting in evidence its action on the CNS, including of our group
(Stein et al. 2015; Catalão et al. 2017; Reis et al. 2017; Zheng
et al. 2018). After 10 days, the survivor animals were split into
two groups. In one group, the animals were anesthetized and
fixed in the stereotaxic apparatus to collect the cerebrospinal
fluid (CSF) as described by Consiglio and Lucion (2000).
Subsequently, the animals were decapitated or anesthetized
and perfusedwith PBS (0.01M) for blood collection and brain
removal. CSF and blood were used for the determination of
nitrate and cytokine concentrations. The brains collected from
the decapitated animals were removed and immediately fixed
in paraformaldehyde (4%), following specific protocols for
immunohistochemistry or immunofluorescence. The prefron-
tal cortex and hippocampus of the perfused animals were dis-
sected for determination of glial activation, neurodegenera-
tive, and apoptotic biomarkers. Finally, the other animal group
was randomized to perform the behavioral test after 10 days of
simvastatin treatment.

Nitrate and Cytokine Determination

Total nitrate was determined by means of the purge system of
a Sievers Instruments Nitric Oxide Analyzer (NOA model
280i, Boulder, CO, USA), as described in previous work of
this laboratory (Wahab et al. 2016).

IL-1β and IL-6 concentrations were determined using
specific enzyme-linked immunosorbent assay (ELISA)
kits for each cytokine (R&D Systems, Minneapolis,

MN, USA) according to the manufacturer’s instructions.
The detection limits for IL-1β and IL-6-specific ELISA
kits were 5, 10, and 5 pg/mL, respectively. The samples
were analyzed in a microplate reader (Synergy™ H1,
BioTek® Instruments, Inc.).

Immunofluorescence and Immunohistochemical
Assays

The animals were perfused with 250 mL of PBS followed by
250 mL of fixative solution (4% paraformaldehyde in
0.1 mol/L phosphate buffer). For immunofluorescence, the
brains were removed, post-fixed in a fixative solution for
4 h, placed in PBS containing 30% sucrose, and stored at
4 °C. The brain coronal sections were cut with a cryostat
(Microm HM 505 E) and the free-floating sections (40 μm)
were submitted to an antigen retrieval protocol, for 30 min at
70 °C. After washing three times with PBS, nonspecific bind-
ing sites were blocked for 60 min with 5% normal goat serum
and 0.3% Triton X-100 in PBS. Posteriorly, the sections were
incubated overnight at 4 °C with either Iba-1 (WAKO,
1:1000) or GFAP (Millipore, 1:7000) antibody. After rinsing
again, the sections were incubated for 2 h at 4 °C with goat
anti-rabbit Alexa Fluor 488 conjugate (Vector, 1:1000).
Finally, the sections were mounted on gelatin-coated slides
and covered with antifade mounting medium (ProLong®
Gold Antifade Mountant, Thermo Fisher Scientific) contain-
ing DAPI for nuclear staining.

For immunohistochemical analyses, the brains were post-
fixed in paraformaldehyde (4%) for 2 days at 4 °C and then
kept in alcohol 70%. After dehydration, the s sections were
incubated overnight at 4 °C with a cleaved caspase-3 antibody
(Cell Signaling, 1:300), followed by incubationwith a second-
ary HRP-conjugated ant ibody (Abcam, 1:1000) .
Subsequently, they were reacted with diaminobenzidine
(DAB (Sigma-Aldrich, D5905)) for 2 min. Staining specific-
ity was checked by the omission of the primary antibody in
some sections, resulting in the complete elimination of the
immunoreaction signal. Images were captured using an
AxioCam MRc system (Zeiss) coupled to the Zeiss KS300
microscope. The anatomical description of brain regions was
done according to the rat brain atlas of Paxinos and Watson
(2005).

Thioflavin-S Histochemistry

Brain sections were mounted on glass slides and allowed to
completely air dry prior to staining. Subsequently, the slides
were washed with 70% and 80% ethanol for 1 min each and
incubated in filtered (0.2 μm filter) thioflavin-S (Sigma-
Aldrich, T1892) solution (1% in 80% of ethanol) for 15 min.
The slides were again washed with 80% and 70% ethanol for
1 min each, followed by two washes with distilled water.
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Finally, after 2 h of drying in the dark, the slides were cover
slipped and sealed with clear nail polish. Green fluorescence-
stained plaques were visualized by fluorescence microscopy,
and images were captured using an AxioCam MRc system
(Zeiss) coupled to the Zeiss KS300 microscope. Extracts of
the prefrontal cortex and hippocampus were prepared in RIPA
buffer containing protease inhibitors (Sigma-Aldrich) and
centrifuged at 2000×g for 2 min at 4 °C. The supernatant
(5 μL) was incubated for 5 min in 195 μL PBS containing
200 μM thioflavin-S. A standard curve of Aβ42 (Sigma-
Aldrich, A9810) (0–11 μM) was prepared in PBS and amy-
loid fibril formation was monitored by thioflavin-S fluores-
cence for 24 h (Xue et al. 2017). Thioflavin-S binding to
amyloid fibrils was determined at 450/482 nm excitation/
emission (Naiki et al. 1989) in a fluorescence spectrophotom-
eter (Synergy 2, BioTek Instruments, Inc., Winooski, USA).

Western Blot Assays

The prefrontal cortex and hippocampus were dissected from
brain samples and immersed in RIPA buffer, containing a
10% p ro t e a s e i nh i b i t o r cock t a i l a nd 0 . 5% of
phenylmethylsulfonyl fluoride (Sigma-Aldrich). Following ho-
mogenization and centrifugation, the supernatant was collected.
Proteins (30 μg/sample) were separated electrophoretically
(125 V, 90 min) in 12% SDS-polyacrylamide gels. After elec-
trophoresis, proteins were blotted to a nitrocellulose membrane
(0.45 μmpore size; Millipore) in a tank blotting system (125 V,
90 min). The membranes were kept in blocking solution (BSA
5% in PBS, with 0.2% Tween 20) for 1 h and then incubated
overnight at 4 °C with specific primary antibodies for Iba-1
(WAKO, 1:2000), GFAP (Millipore, 1:1000), phospho
Ser396-tau (Abcam, 1:1000), total tau (Abcam, 1:1000),
synaptophysin (Cell Signaling, 1:3000), Bcl-2 (Santa Cruz,
1:1000), and cleaved caspase-3 (Cell Signaling, 1:1000), and
then incubated for 2 h at 4 °C with a secondary HRP-
conjugated antibody (Abcam, 1:10000). A chemiluminescence
reaction kit (GE Healthcare) was used for detection, and
immunolabeled protein bands were visualized in a ChemiDoc
MP System (Bio-Rad) and analyzed by the ImageLab 5.2.1
software. A β-actin-specific antibody was used for normaliza-
tion of the samples. The western blot assays and analysis were
done according to the previous works of this laboratory
(Santos-Junior et al. 2018; Catalão et al. 2019).

Open Field Task

The animal habituation to an open field was tested in an acryl-
ic arena (46 × 46 × 46 cm) surrounded by infrared sensors for
detecting the position of the animal during the monitoring
period. Thus, it was possible to calculate the average speed
and the total distance walked using dedicated software
(Insight, Ribeirão Preto, Brazil). In the training session, the

animals were placed in the center of the arena to explore it for
5 min. In the test session, 24 h later, they were returned to the
arena to explore it for another 5 min. The total distance walked
and rearings performed in both sessions were counted. The
decrease in distance walked and rearings between the two
sessions was taken as a measure of the retention of habituation
(Vianna et al. 2000).

Object Recognition Task

An object recognition task assay was carried out as described
in previous studies (Barker andWarburton 2011). Habituation
was observed by placing the animals for 20 min in a wooden
box (50 × 50 × 90 cm) without any of the objects. On the
following day, the animals were again placed in the empty
box to explore it for 3 min. A training session was conducted
by placing an individual rat for 5 min in the box with two
identical objects (objects A1 and A2; Double Lego Toys)
positioned in the bottom of the box in the left and right corner,
respectively. After 3 h in the test session, the rat was allowed
to explore the box for 5 min in the presence of one familiar (A)
and one novel (B) object. The objects were distinct in shape
and color. The exploratory preference was defined as the per-
centage of the total exploration time of the animal spent in-
vestigating object A or the novel object, and from this, we
calculated for each animal the ratio TB/(TA + TB) (TA = time
spent exploring the familiar object A; TB = time spent explor-
ing the novel object B).

Contextual Fear Conditioning Task

The apparatus used was an acrylic box (50 × 25 × 25 cm)
whose floor consisted of 18 parallel-caliber stainless-steel bars
(1 mm diameter), spaced 1 cm apart, and connected to an
automatic shock generator (scrambler, Insight, Ribeirão
Preto, Brazil). The conditioning session consisted of a habit-
uation time (5 min) and 10 shocks to the paws (1.0 mA, 1 s)
with a 60-s interval between them. During habituation, the
basal freezing time of the animal (defined as the complete
immobilization of the animal, except for respiratory move-
ments) was quantified. In the intervals between the shocks,
the freezing time was quantified in fractions of 15 s. After
24 h and 5 days, the animals were re-exposed to the same
context of the conditioning session, but without the applica-
tion of shocks, and its freezing reaction was counted every
15 s during 8 min to evaluate the short-term memory (STM)
and long-term memory (LTM), respectively.

Statistical Analysis

All results are expressed as mean ± SEM. Nitrate, cytokines,
synaptophysin, Bcl-2, phospho Ser396-tau, total tau, GFAP,
Iba-1, amyloid fibrils, cleaved caspase-3, and contextual fear
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conditioning task results were analyzed by one-way analysis
of variance (ANOVA) followed by Tukey’s post hoc test for
multiple comparisons. Behavioral tests, such as open field task
and object recognition task, were analyzed using an unpaired
Student’s t test for data with normal distribution, or a Mann–
Whitney test in case of a nonparametric data distribution. The
software used was GraphPad© Prism 7.00 (San Diego, CA,
USA). Results were considered statistically significant when
P < 0 .05 (*P < 0 . 05 , **P < 0 .01 , ***P < 0 .001 ,
****P < 0.0001).

Results

Plasma and CSF Levels of Nitrate and Cytokines in 10-
Day Sepsis Survivor Animals Following Simvastatin
Treatment

Sepsis caused an increase in CSF nitrate levels (F(3, 12) =
7.859; P > 0.01), IL-1β (F(3, 16) = 6921; P < 0.01), and IL-6
(F(3, 13) = 14.05; P < 0.01). When simvastatin was adminis-
tered, we observed a decrease in CSF nitrate levels (F(3,

12) = 7.859; P < 0.05), IL-1β (F(3, 16) = 6921; P < 0.05), and
IL-6 (F(3, 13) = 14.05; P < 0.001) when compared with
vehicle-treated CLP animals. There was no significant differ-
ence in plasma nitrate and cytokine levels between groups
(Fig. 1).

Glial Activation in Prefrontal Cortex and
Hippocampus of 10-Day Sepsis Survivor Animals
Following Simvastatin Treatment

The number of reactive astrocytes stained with GFAP was sig-
nificantly increased in the prefrontal cortex (F(3, 17) = 12;
P < 0.001) and hippocampus (F(3, 20) = 4.181; P < 0.05) of the
sepsis survivor animals (Fig. 2a, b, and c) compared with naïve
animals. This was also the case for microglia immunolabeled
with Iba-1 in the prefrontal cortex (F(3, 22) = 8.496; P < 0.01),
dentate gyrus, and CA1 region (hippocampus: F(3, 17) = 15.95;
P < 0.001) (Fig. 2d, e, and f). Simvastatin administration
prevented astrogliosis in both structures (prefrontal cortex: F(3,
17) = 12; P < 0.05; hippocampus: F(3, 20) = 4.181; P < 0.05) and
mitigated microglia activation (prefrontal cortex: F(3, 22) = 8.496;
P < 0.01; hippocampus: F(3, 17) = 15.95; P < 0.05).

Levels of Neurodegeneration Biomarkers in the
Prefrontal Cortex and Hippocampus of 10-Day Sepsis
Survivor Animals Following Simvastatin Treatment

The sepsis survivor animals showed increased brain levels of
phospho Ser396-tau protein (prefrontal cortex: F(3, 20) = 27.42;
P < 0.001; hippocampus: F(3, 20) = 4.884; P < 0.05) (Fig. 3d
and f), species associated to abnormal Tau hyperphosphorylation
and neurodegeneration (Bramblett et al. 1993). Total tau levels
were also elevated in sepsis survivor animals (prefrontal cortex:

Fig. 1 Effect of treatment with simvastatin (20 mg/kg, p.o.) or saline
4 days before and 10 days after CLP surgery on nitrate and pro-
inflammatory cytokine levels in the plasma and CSF of sepsis survivor
rats. Sepsis caused an increase in nitrate (d), IL-1β (e), and IL-6 (f) levels
in the CSF. Simvastatin treatment prevented the increase in nitrate and in
these cytokines in the CSF. Nitrate (a), IL-1β (b), and IL-6 (c) levels in
the plasma were not affected in any of the groups. Bars indicate mean ±

SEM (n = 5–7 animals per group). One-way ANOVAwith Tukey’s mul-
tiple comparison test correction.*P < 0.05 (d, e) vs. CLP+Sal. **P < 0.01
vs. Ctr+Sal (d, e, f) and Ctr+Sv (d, e, f). ***P < 0.001 vs. CLP+Sal (f).
Ctr+Sal (naïve animals treated with saline); CLP+Sal (septic animals
treated with saline); Ctr+Sv (naïve animals treated with simvastatin);
CLP+Sv (septic animals treated with simvastatin)
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F(3, 20) = 7.302; P < 0.01; hippocampus: F(3, 20) = 11.58;
P < 0.001) (Fig. 3e and g). Amyloid aggregates were readily
found in the brains of sepsis survivors (prefrontal cortex: F(3,
20) = 6.905; P < 0.05; hippocampus: F(3, 24) = 7.9; P < 0.01)
(Fig. 3a, b, and c). Simvastatin treatment alleviated the increase
in both phospho Ser396-tau (prefrontal cortex: F(3, 20) = 27.42;
P < 0.001; hippocampus: F(3, 20) = 4.884; P < 0.05) and total
tau levels (prefrontal cortex:F(3, 20) = 7.302;P < 0.05; hippocam-
pus: F(3, 20) = 11.58; P < 0.01). A similar positive effect of sim-
vastatin was observed in thioflavin-S-positive amyloid aggre-
gates burden in the prefrontal cortex (F(3, 20) = 6.905; P< 0.01)
and the CA1 region of hippocampus (F(3, 24) = 7.9; P < 0.05).

Immunostaining of Cleaved Caspase-3 in the
Prefrontal Cortex and Hippocampus of 10-Day
Sepsis Survivor Animals Following Simvastatin
Treatment

Sepsis led to an increase in the expression of cleaved caspase-3
in the rat brains after sepsis (prefrontal cortex: F(3, 23) = 8.82,

P < 0.01; hippocampus:F(3, 25) = 19.76,P < 0.001) (Fig. 4b and
c). Simvastatin treatment mitigated apoptosis in the prefrontal
cortex (F(3, 23) = 8.82, P < 0.01) (Fig. 4b) and the hippocampus
(F(3, 25) = 19.76, P < 0.001) (Fig. 4c). This condition was also
observed in the immunohistochemistry assay (Fig. 4a).

Synaptophysin and Bcl-2 Levels in the Prefrontal
Cortex and Hippocampus of 10-Day Sepsis Survivor
Animals Following Simvastatin Treatment

The prefrontal cortex of the sepsis survivor animals showed a
decrease in synaptophysin (F(3, 19) = 4.387; P < 0.05) and Bcl-
2 (F(3, 19) = 4.624; P < 0.05) levels (Fig. 5a, b). In the hippo-
campus, only synaptophysin levels showed a decrease (F(3,
19) = 6.481; P < 0.05) (Fig. 5c). Simvastatin treatment led to
increased Bcl-2 levels in the prefrontal cortex (F(3, 19) = 4.624;
P < 0.05) (Fig. 5b) and the hippocampus (F(3, 15) = 13.8;
P < 0.001) (Fig. 5d), but prevented the decrease in
synaptophysin levels only in the hippocampus (F(3, 19) =
6.481; P < 0.01) of sepsis survivor animals (Fig. 5c).

Fig. 2 Effect of treatment with simvastatin (20 mg/kg, p.o.) or saline
4 days before and 10 days after CLP surgery on glial activation in
sepsis survivor rats. Photomicrographs of different regions of rat brains
immunostained for GFAP (a) and Iba-1(d): PF, prefrontal cortex; DG,
dentate gyrus; CA1, cornu ammonis area 1. In all these regions, the CLP+
Sal group showed reactive astrocytes with marked hypertrophic
processes. In contrast, the CLP+Sv group showed scattered astrocytes
with thin astrocyte processes, similar to the picture seen in Ctr+Sal and
Ctr+Sv groups (a). Simvastatin administration prevented astrogliosis in
the prefrontal cortex (b) and hippocampus (c) of the sepsis survivor
animals by western blot analysis. Bars indicate mean ± SEM (n = 5–7
animals per group). One-way ANOVA with Tukey’s multiple compari-
son test correction. *P < 0.05 vs. Ctr+Sal (c), Ctr+Sv (c) and CLP+Sal (b,
c). ***P < 0.001 vs. Ctr+Sal (b) e Ctr+Sv (b). In the CLP+Sal group,

microglia presented typical ameboid shape of activation with round bod-
ies and scarce dendrites in all these regions. In contrast, the CLP+Sv
group showed suppression of these activation microglial. The Ctr+Sal
and Ctr+Sv groups showed resident microglia with fine and short pro-
cesses (d). Scale bar, 20 μm. Simvastatin administration decreased sig-
nificantly the amount of Iba1+ microglia in the prefrontal cortex (e) and
hippocampus (f) of the sepsis survivor animals by western blot analysis.
Bars indicate mean ± SEM (n = 5–7 animals per group). One-way
ANOVA with Tukey’s multiple comparison test correction. *P < 0.05
vs. CLP+Sal (f). **P < 0.01 vs. Ctr+Sal (e), Ctr+Sv (e) and CLP+Sal
(e). ***P < 0.001 vs. Ctr+Sal (f) e Ctr+Sv (f). Ctr+Sal (naïve animals
treated with saline); CLP+Sal (septic animals treated with saline); Ctr+
Sv (naïve animals treated with simvastatin); CLP+Sv (septic animals
treated with simvastatin)
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Behavioral Assessment Through Habituation to Open
Field Task in 10-Day Sepsis Survivor Animals

Simvastatin-treated septic animals showed a significant de-
crease in the distance walked (t = 1.95; df = 6; P < 0.05)
(Fig. 6a) and the number of rearings (t = 4.761; df = 6; P <
0.01) (Fig. 6b) between the training and test sessions. These
differences were also observed in the groups of non-septic
animals, which indicate that in those groups, there was habit-
uation. In contrast, the septic group did not show differences
between the training and test sessions in both assessments,
indicating damages with respect to the retention of a spatial
habituation. In the open field task, there were no differences in
distance walked and rearings between the groups in the train-
ing session, demonstrating absence of motor damage.

Behavioral Assessment Through Object Recognition
Task in 10-Day Sepsis Survivor Animals

The septic animals did not present differences (t = 1.044; df =
10; P > 0.05) in the object recognition index; i.e., they did not
spend a significantly higher percentage of time exploring the

novel object (C) in comparison with the familiar object (A),
indicating that sepsis causes impairment to the discriminative
memory. In contrast, septic animals treated with simvastatin
presented significant differences (t = 10.27; df = 10;
P < 0.001) for the object recognition index, showing prefer-
ence for the new object (Fig. 6 c and d).

Behavioral Assessment Through Contextual Fear
Conditioning in Sepsis Survivor Animals

During the conditioning phase to the aversive stimulus, no sig-
nificant differences were found in the freezing rate between the
experimental groups, demonstrating integrity in the phase of
memory acquisition. However, septic animals showed a signifi-
cant decrease in this rate 24 h (F(3, 24) = 6.037; P < 0.05) and
5 days (F(3, 24) = 17.29; P < 0.0001) after the conditioning, sug-
gesting impaired short-term (STM) and long-term (LTM) aver-
sive memory (Fig. 6e). Treatment with simvastatin prevented the
reduction in the animals’ freezing reaction evaluated both for the
STM (F(3, 24) = 6.037; P < 0.05) and LTM (F(3, 24) = 17.29;
P < 0.0001) tests (Fig. 6e).

Fig. 3 Effect of treatment with simvastatin (20 mg/kg, p.o.) or saline
4 days before and 10 days after CLP surgery on amyloid aggregates
burden and neurodegenerative biomarkers in sepsis survivor rats.
Photomicrographs of different regions of rat brains stained for
thioflavin-S: PF, prefrontal cortex; DG, dentate gyrus; CA1, cornu
ammonis area 1. In the CLP+Sal group, cells displayed a large amount
of amyloid aggregates in all these regions. However, the CLP+Sv group
displayed a reduction in the deposition of these amyloid aggregates. The
Ctr+Sal and Ctr+Sv groups displayed no significant amount of amyloid
aggregates (a). Scale bar, 20 μm. Simvastatin administration decreased
significantly the amount of amyloid fibrils in the prefrontal cortex (b) and
hippocampus (c) of the sepsis survivor animals by fluorometric
determination. Bars indicate mean ± SEM (n = 5–7 animals per group).

One-way ANOVA with Tukey’s multiple comparison test correction.
*P < 0.05 vs. Ctr+Sal (b); Ctr+Sv (b, c) and CLP+Sal (c). **P < 0.01
vs. Ctr+Sal (c) and CLP+Sal (b). The brain of septic animals showed an
increase in the expression of phospho Ser396-tau and total tau protein.
Simvastatin-treated septic animals showed a decrease in these markers
in both the prefrontal cortex (d and e) and hippocampus (f and g). Bars
indicate mean ± SEM (n = 5–7 animals per group). One-way ANOVA
with Tukey’s multiple comparison test correction. *P < 0.05 vs. Ctr+Sal
(f); Ctr+Sv (f) and CLP+Sal (e, f). **P < 0.01 vs. Ctr+Sal (e); Ctr+Sv (e)
and CLP+Sal (g). ***P < 0.001 vs. Ctr+Sal (d, g); Ctr+Sv (d, g) and
CLP+Sal (d). Ctr+Sal (naïve animals treated with saline); CLP+Sal (sep-
tic animals treated with saline); Ctr+Sv (naïve animals treated with sim-
vastatin); CLP+Sv (septic animals treated with simvastatin)
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Discussion

Inflammatory mediators produced during sepsis can reach the
CNS and, through the activation of glial cells, contribute to
installing a neuroinflammatory process characterized as SAE
(van Gool et al. 2010; Kettenmann et al. 2013). In this study,
IL-1β, IL-6, and nitrate levels were measured in the CSF and
plasma 10 days after sepsis induction in rats in order to eval-
uate the possible action of simvastatin in survivor animals.
Although we found no significant difference in the plasma
levels of these inflammatory mediators, their increase in
CSF leads us to infer that, even with systemic recovery, there
is an important sustained neuroinflammatory process in these
surviving animals, and the prior and continuous use of simva-
statin was effective in reducing this condition. It is known that
the synergistic interaction between IL-1β and other cytokines
leads to a higher level of neurotoxicity, which is associated

with changes in the performance of behavioral tasks, as ob-
served in septic animals affected by SAE (Allan et al. 2005;
Calsavara et al. 2013). Glial cell activation seems to play a key
role in SAE pathophysiology (Akiyama et al. 2000;
Sonneville et al. 2013). As already reported in previous stud-
ies, after 48 h of sepsis induction, the brains of rats and mice
showed intense oxidative stress and microglial and astrocytic
activation that was mitigated by simvastatin administration
(Catalão et al. 2017; Reis et al. 2017). In this present study,
we observed that this effect persisted in the brains of rats even
at 10 days after they had survived sepsis.

In fact, chronic inflammation plays an essential role in neu-
ronal apoptosis and nuclear factor-κappaB (NF-κB) is a deter-
mining factor in its regulation. Recent studies report that statins
may act on the regulation of NF-κB signaling pathway by
SIRT1 (silent information regulator 1) activation and inhibiting
the M1microglia phenotype (Tian et al. 2019; Pan et al. 2018;

Fig. 4 Effect of treatment with simvastatin (20 mg/kg, p.o.) or saline
4 days before and 10 days after CLP surgery on apoptosis in brains of
sepsis survivor rats. Photomicrographs of different regions of rat brains
immunostained for cleaved caspase-3: PF, prefrontal cortex; DG, dentate
gyrus; CA1, cornu ammonis area 1. In the CLP group, there was intense
labeling of apoptotic cells in all these regions. In the CLP+Sv group, there
was a significant reduction in the increase of these apoptotic cells. The
Ctr+Sal and Ctr+Sv groups displayed no significant amount of apoptotic
cells immunolabeled for the cleaved caspase-3 (a). Scale bar, 10 μm.

Simvastatin administration decreased significantly the amount of cleaved
caspse-3 protein in the prefrontal cortex (b) and hippocampus (c) of the
sepsis survivor animals by western blot analysis. Bars indicate mean ±
SEM (n = 5–7 animals per group). One-way ANOVAwith Tukey’s mul-
tiple comparison test correction. **P < 0.01 vs. Ctr+Sal (b); Ctr+Sv (b)
and CLP+Sal (b). ***P < 0.001 vs. Ctr+Sal (c); Ctr+Sv (c) and CLP+Sal
(c). Ctr+Sal (naïve animals treated with saline); CLP+Sal (septic animals
treated with saline); Ctr+Sv (naïve animals treated with simvastatin);
CLP+Sv (septic animals treated with simvastatin)
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Zhuo et al. 2018; Lu et al. 2019). This modulation is likely to
occur by suppressing microglia activity and blocking the
pIκBα/pNF-κB signaling pathway, decreasing downstream in-
flammatory cytokines (Lu et al. 2019). Besides, NF-κB inacti-
vation associated with SIRT1 elevation inhibits p53-dependent
apoptosis in endothelial progenitor cells (Du et al. 2014) and
increases Bcl-2 level followed by decreased Bax content in
mice fed a high-fat diet (Liu et al. 2019). In our study, although
we did not investigate the NF-κB/SIRT1 signaling pathway,
we observed a decrease on the Iba-1 expression accompanied
by reduction of cytokines, cleaved caspase-3, and increase of
Bcl-2 in the brain of simvastatin-treated septic animals. These
results reinforce the pleiotropic effects of statins mediated by
reduced glial activation.

It is possible that this mechanism explains the decrease of
IL-1β levels and the reduction in GFAP protein expression
involved in the astrocytic activation (Pekny et al. 2016).
Reactive astrocytes can increase expression of genes of the
complement cascade and release an unidentified neurotoxin
that induces neuronal and oligodendrocyte death leading to
cognitive impairment (Liddelow and Barres 2017). The pleio-
tropic effect of simvastatin in reducing microglial activation

may have contributed to the downregulation of astrogliosis,
since the cytokine release by activated microglia induces the
neurotoxic phenotype of astrocytes (Arranz and De Strooper
2019; Liddelow et al. 2017).

Chronic inflammation is often linked to degenerative con-
ditions, and a common outcome of such condition is cognitive
dysfunction, as in Alzheimer’s disease (AD) (McManus and
Heneka 2017; Heneka et al. 2018; Heneka 2019). This link led
us to investigate the levels of two major AD biomarkers in the
pathophysiology of SAE (Calsolaro and Edison 2016). In the
10-day sepsis survivor animals, we observed a considerable
increase in amyloid fibrils and phospho Ser396-tau, making it
possible to infer that sustained neuroinflammation caused by
glial activation culminates in neurodegeneration. It is possible
that the observed appearance of amyloid plaques is related to
an impairment in the clearance mechanisms of the β-amyloid
peptide induced by inflammation, a fact that would increase
the risk for the development of a CNS amyloidosis such as
sporadic AD (Mawuenyega et al. 2010). In the case of Tau
hyperphosphorylation, although we have not observed a sig-
nificant increase in the phospho-tau/total tau ratio, the detec-
tion of elevated levels of phospho Ser396-Tau strongly

Fig. 5 Effect of treatment with simvastatin (20 mg/kg, p.o.) or saline
4 days before and 10 days after CLP surgery on neurotransmission and
anti-apoptotic markers in brains of sepsis survivor rats. The brain of septic
animals showed a decrease in synaptophysin and Bcl-2 expression.
Simvastatin-treated septic animals showed an increase in Bcl-2 in both
the prefrontal cortex (b) and hippocampus (d). The synaptophysin ex-
pression increased only in the hippocampus (c) and was not altered in the

prefrontal cortex (a). Bars indicate mean ± SEM (n = 5–7 animals per
group). One-way ANOVA with Tukey’s multiple comparison test cor-
rection. *P < 0.05 vs. Ctr+Sal (a, b, c); Ctr+Sv (a, b, c) and CLP+Sal (b).
**P < 0.01 vs. CLP+Sal (c). ***P < 0.001 vs. CLP+Sal (d). Ctr+Sal
(naïve animals treated with saline); CLP+Sal (septic animals treated with
saline); Ctr+Sv (naïve animals treated with simvastatin); CLP+Sv (septic
animals treated with simvastatin)
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suggests a propensity to formation of Tau aggregates and con-
sequent neurodegeneration, since phosphorylation at this res-
idue has been shown to modulate Tau conformation towards a
more aggregation-prone structure (Chukwu et al. 2018). The
accumulation of β-amyloid aggregates could also constitute
the molecular culprit responsible for the cognitive impairment
in sepsis survivors, since it is known that these aggregates
cause synaptic dysfunction, through reduction in synapse den-
sity (Shankar and Walsh 2009). Supporting this notion, we
have observed a significant reduction in synaptophysin (an
important synaptic vesicular glycoprotein) in both the

prefrontal cortex and hippocampus of the sepsis survivor an-
imals tested in this study. Therefore, through its pleiotropic
effects, simvastatin administered to survivor animals was po-
tentially able to normalize the brain levels of Aβ42, thus re-
ducing the formation of amyloid aggregates and the conse-
quent abnormal tau phosphorylation, besides restoring
synaptophysin levels in the hippocampus. This idea is rein-
forced by the fact that Aβ aggregates induce excessive ROS
formation in hippocampal neurons, and simvastatin has been
able to attenuate brain oxidative stress in septic animals
(Catalão et al. 2017; Figueiredo et al. 2013).

Fig. 6 Effect of treatment with simvastatin (20 mg/kg, p.o.) or saline
4 days before and 10 days after CLP surgery on habituation memory by
an open field task test (a and b), on discriminativememory assessed by an
object recognition task test (c and d) and on aversive memory assessed by
a contextual fear conditioning task test (e) in sepsis survivor rats. Sepsis
caused a weakening in the retention of habituation, whereas simvastatin
treatment prevented this impairment, as seen through the differences in
the distance walked (a) and the number of rearings (b) between training
and test sessions. Bars indicate mean ± SEM (n = 5–7 animals per group).
Unpaired Student’s t test or Mann–Whitney test. *P < 0.05 and
**P < 0.01 compared with the training session in the same group.
Exploration index of the identical objects (A and A′) in the training ses-
sion (c) did not present significant differences in any of the experimental
groups. Simvastatin-treated septic animals and non-septic animals, but
not septic rats, showed a preference for the new object (C) in relation to

the familiar object (A), in the test session (d). Bars indicate mean ± SEM
(n = 5–7 animals per group). Unpaired Student’s t test or Mann–Whitney
test. ***P < 0.001 and ****P < 0.0001 compared with the familiar object
(A) in the same group. Shown are the results for the freezing rate of the
animals during (COND), 24 h (MCP = short-term memory), and 5 day
after the conditioning (MLP = long-term memory) (e). Untreated septic
animals showed a significantly lower freezing rate at 24 h and 5 days
post-conditioning. Simvastatin administration was able to prevent the
MCP andMLP impairments. Bars indicate mean ± SEM (n = 5–7 animals
per group). One-way ANOVA with tukey’s multiple comparison test
correction. *P < 0.05 vs. Ctr+Sv and CLP+Sal. **P < 0.01 vs. Ctr+Sv.
****P < 0.0001 vs. Ctr+Sal and CLP+Sal. Ctr+Sal (naïve animals treated
with saline); CLP+Sal (septic animals treated with saline); Ctr+Sv (naïve
animals treated with simvastatin); CLP+Sv (septic animals treated with
simvastatin)
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In cerebral dysfunctions, including SAE, glial cells are in-
volved in NF-κB and inducible nitric oxide synthase (iNOS)
activation mechanisms, triggering cellular toxicity and neuro-
nal death (Gorina et al. 2011). Additionally, an increase in the
hypoxia-inducible factor-1α (HIF-1α) modulates the expres-
sion of pro-apoptotic genes, including caspase-3, a common
effector playing a central role in all apoptosis pathways
(Oliveira-Pelegrin et al. 2014; Jänicke et al. 1998; Elmore
2007). In our study, we observed a reduction in the cleaved
caspase-3 protein in the prefrontal cortex and hippocampus of
septic animals treated with simvastatin. Similar results obtain-
ed in a recent study, also performed in our laboratory, postu-
lated that the decrease in apoptotic markers seen in the brain of
septic animals treated with simvastatin was a consequence of
the restoration of redox system balance and regulation of mi-
tochondrial bioenergetics (Catalão et al. 2017). Since apopto-
tic events are preceded by mitochondrial disturbances and are
associated with reactive oxygen/nitrogen species (ROS/RNS)
production, compounds with antioxidant properties, such as
HMG-CoA reductase inhibitors, play a key role in the long-
term brain dysfunction prevention imposed by the SAE
(Catalão et al. 2017; Reis et al. 2017; Greenwood et al. 2006).

In addition, we observed in our study an increase in the
expression of Bcl-2 (a protein involved in anti-apoptotic
mechanisms) in the brain of septic survival animals treated
with simvastatin. It is possible that the increase in the levels
of this protein is related to the reduction of nitrate levels in the
CSF, since an elevation in NO metabolites accompanied by
increased myeloperoxidase (MPO) activity has been shown to
contribute to the apoptosis of neurons and astrocytes
(Ambrosini et al. 2005). Furthermore, an exaggerated eleva-
tion in nitrate levels with consequent formation of oxidant
species has been seen capable of altering the balance between
pro- and anti-apoptotic proteins of the prefrontal cortex and
hippocampus of septic rats (Semmler et al. 2005; Semmler
et al. 2007; Weberpals et al. 2009; Brown and Neher 2010).
For example, upregulation of Bax (intracellular pro-apoptotic
protein) expression and downregulation of Bcl-2 expression
are associated with NO-mediated neurotoxic mechanisms
(Matsuzaki et al. 1999; Tamatani et al. 1998). Additionally,
neurons with neurofibrillary tangle formation showed reduced
levels of Bcl-2, demonstrating the important role this protein
plays in neurodegenerative mechanisms (Satou et al. 1995).
Several studies have shown that the protective effect of sim-
vastatin is due to increase in Bcl-2 gene expression, and its
ability to suppress apoptosis is related to the decrease of the
Bax/Bcl-2 ratio (Johnson-Anuna et al. 2005, 2007; Franke
et al. 2007). Although we have not analyzed Bax protein in
this study, the neuroprotective effect of simvastatin was dem-
onstrated through increasing Bcl-2 protein levels followed by
decreased cleaved caspase-3 protein, a common effector in all
apoptotic pathways (Elmore 2007; Jänicke et al. 1998).
Interestingly, this anti-apoptotic effect of simvastatin seems

to occur independent from inhibition of the mevalonate path-
way, but is likely due to the stimulation of endothelin-1 and
nuclear factor of activated T cells 3 (NFATc3) (Butterick et al.
2010). However, at high concentrations, simvastatin inhibits
TNF-α-induced NF-κB activation in a dose-dependent man-
ner by reducing Bcl-2 levels in human myeloid KBM-5 cells
(Ahn et al. 2007). Thus, changes in Bcl-2 levels, independent
of the mevalonate pathway, can also be explained by activa-
tion of its gene expression by the transcription factor NF-κB
(Viatour et al. 2003), and high simvastatin concentrations ap-
pear to be related to pro-apoptotic effects (Wood et al. 2013).
Moderate and low doses of statins, such as those adopted in
this study (20 mg/kg), may attenuate cell apoptosis via the
elevation of SIRT1 and subsequent inactivation of NF-κB
activity (Liu et al. 2019).

One of the advantages of oral administration of simvastatin
is the reduction in off-target effects, as it has a high absorption
by the intestinal mucosa and a high degree of first-pass hepatic
extraction, protecting peripheral tissues from unexpected side
effects (Vickers et al. 1990; Blum 1994). However, the vari-
ous changes that occur in the liver during sepsis may increase
the likelihood of the most common side effect of statin use,
that is, elevation of liver aminotransferases, contributing to
further deterioration of liver function, as demonstrated by sev-
eral clinical studies (Vasudevan et al. 2005; Elhayany et al.
2012; Chaipichit et al. 2015). A limiting factor in our study
was not having measured liver function biomarkers to assess
the degree of simvastatin toxicity in our treatment protocol.
Nevertheless, we believe that the brain alterations of simva-
statin we report on this study can occur with or without these
side effects.

From clinical studies, it is known that sepsis survivors may
present cognitive disabilities, such as memory and learning
deficits that are often confused with neurodegenerative dis-
eases or other dementias (Jackson et al. 2004; Granja et al.
2005; Hopkins et al. 2005; Hough and Curtis 2005). In this
study, behavioral tests were performed in order to evaluate the
impact of simvastatin on cognitive damages imposed by SAE
in sepsis survivor animals. It is worthy of note that during
these tests, we did not observe any limiting symptoms, such
as locomotor disability in animals treated with simvastatin,
since the continuous use of statins may trigger metabolic my-
opathies, such as rhabdomyolysis generating muscle weak-
ness and compromising behavioral tasks (Ayanian et al.
1988).

The untreated sepsis survivors in this present study showed
deficits in memory retention when performing the behavioral
tasks at 10 days after sepsis survival. Several behavioral stud-
ies using different time points have already indicated such a
long-term functional and cognitive decline mechanism in
SAE (Barichello et al. 2007; Hernandes et al. 2014; Mina
et al. 2014; Schwalm et al. 2014; Michels et al. 2015).
However, there are controversies of whether the cognitive
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and memory deficits found in brain dysfunction are direct
consequences of systemic inflammation, or are generated by
resident brain cells, such as microglia or astrocytes (Michels
et al. 2015). Previous studies from our and another laboratory
have demonstrated that systemic inflammation plays a critical
role in glial activation through the production of pro-
inflammatory mediators, and that NO can reach the CNS by
crossing the BBB, which is more permeable in the septic con-
dition (Catalão et al. 2017; Yang et al. 2015).

Subsequently, as demonstrated so far, in sepsis survivors, a
sustained glial activation will produce more cytokines,
chemokines, and ROS/RNS, supporting a neuroinflammatory
environment characterized by high toxicity and leading to the
development of a neurodegenerative condition associated with
synaptic dysfunction, tissue death, and cognitive impairment. In
addition to this mechanism, studies have shown that changes in
various receptors, such as those G protein–coupled receptors
(GPCRs), may be responsible for the progression of cognitive
decline (Xu et al. 2012). The modification of these receptors
could trigger a signaling cascade producing messenger sub-
stances capable of modulating certain receptors associated with
amyloid plaque formation and tau neurotoxicity (Xiong et al.
2004). This mechanism has been used to support investigations
of the possible neuroprotective effect of statins in neurodegen-
erative diseases, since the action of this drug is related to the
inhibition of G protein prenylation (Li et al. 2012; Posada-
Duque et al. 2013; Ostrowski et al. 2016; Jeong et al. 2018).
In AD, sustained glial activation plays a key role in neuroin-
flammation causing alterations in phagocytosis with consequent
insufficiency in the removal of Aβ peptides and synaptic dys-
function (McQuade and Blurton-Jones 2019). We believe that a
similar mechanism occurs in SAE because we saw elevations in
Iba-1 and GFAP proteins and an increase in amyloid fibrils and
a reduction in synaptophysin in the prefrontal cortex and hippo-
campus of our animals. Therefore, therapeutic strategies capable
of modulating activated microglia and reactive astrocytes may
be beneficial to prevent cognitive dysfunctions (Shetty et al.
2019). Reinforcing this hypothesis and corroborating our re-
sults, microglial inhibition by intracerebroventricular injection
of minocycline was seen to decrease acute cerebral oxidative
damage and inflammation, preventing long-term cognitive dys-
function in sepsis survivor rats (Michels et al. 2015). In addition,
the use of an IL-1β inhibitor (IL-1βra) in septic rats was able to
reverse the increase in BBB permeability and pro-inflammatory
cytokine levels in the prefrontal cortex, hippocampus, and stri-
atum, preventing cognitive impairment (Mina et al. 2014).

Finally, we believe that reducing gliosis has contributed to
improve animals’ performance on behavioral tasks since
sustained glial activation can trigger neuroinflammation with
subsequent neurodegeneration resulting in cognitive dysfunc-
tion and long-term memory deficits (Widmann and Heneka
2014). Decreased glial activation is likely to be the result of
simvastatin’s anti-inflammatory and antioxidant action

through downregulation of protein prenylation, which in turn
leads to suppression of NADPH oxidase (NOX) activity and
reduction of pro-inflammatory cytokines (Fracassi et al.
2019). Additionally, the anti-apoptotic effect of simvastatin
observed by increasing Bcl-2 protein followed by decreased
cleaved caspase-3 protein appears to be independent of the
mevalonate/isoprenoid/cholesterol pathway and occurs
through a transcriptional mechanism stimulating Bcl-2 gene
expression (Johnson-Anuna et al. 2005, 2007; Franke et al.
2007; Butterick et al. 2010). Therefore, we believe that the
combination of these mechanisms may partly explain the
simvastatin-induced neuroprotection observed in sepsis survi-
vor rats.

In conclusion, simvastatin administered 4 days before and
10 days after septic induction proved to be effective in reduc-
ing inflammation, preventing the installation of biomarkers
typical of neurodegenerative diseases, and reducing apoptotic
mediators produced by sustained glial activation in sepsis sur-
vivor animals. In addition, simvastatin was able to restore the
levels of synaptophysin in the hippocampus and provided ev-
idence for anti-apoptotic effects by increasing Bcl-2 and re-
ducing cleaved caspase-3 levels. Finally, its combined effects
alleviated cognitive dysfunctions related to habituation, dis-
criminative memory, and aversive reactions, as demonstrated
by specific behavioral tests. Thinking translationally, since a
significant proportion of sepsis survivors are expected to de-
velop cognitive dysfunctions, and statins are currently widely
consumed, it is possible to speculate that those individuals
taking statin regularly would be less susceptible to develop
cognitive decline after a septic event.

Therefore, it would be relevant to consider, from the ther-
apeutic point of view, the maintenance of this drug during
sepsis treatment. Nevertheless, studies related to the pharma-
cokinetics of HMG-CoA inhibitors, as well as their bioavail-
ability and interaction with brain isoprenoidmolecules, should
be performed to clarify question about the effectiveness of
their pleiotropic effects in neuropathologies.
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