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Abstract
Exercise exerts helpful effects in Parkinson’s disease. In this study, the 6-hydroxydopamine (6-OHDA) injection was used to
investigate the effect of exercise on apomorphine-induced rotation and neurorestoration. Rats (n = 32) were divided into four
groups: (1) Saline+Noexercise (Sham); (2) 6-OHDA+Noexercise (6-OHDA); (3) Saline+Exercise (S+EXE), and (4) 6-OHDA+
Exercise (6-OHDA+EXE). The rats were administered 8 μg 6-OHDA by injection into the right medial forebrain bundle. After
2 weeks, the exercise group was run (14 consecutive days, 30 min per day). One month after the surgery, following the injection
of apomorphine, the 6-OHDA group displayed a significant increase in rotation and the 6-OHDA+EXE group showed a
significant reduction of rotational asymmetry (P < 0.001). 6-OHDA injection reduced the mRNA and protein expression of
the AMP-activated protein kinase, brain-derived neurotropic factor, and tyrosine hydroxylase in relation to the Sham group and
exercise increased these levels. Expression of the silent information regulator 2 homolog 1 and peroxisome proliferator-activated
receptor gamma coactivator 1-alpha was unexpectedly enhanced in the 6-OHDA groups in relation to the Sham group. These
findings suggest that the 6-OHDA injection increased the neurodegeneration and mitochondrial and behavioral dysfunctions and
the treadmill running attenuated these disorders in the ipsilateral striatum of the 6-OHDA+EXE group.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that
causes suffering of millions of people, especially in the grow-
ing aging population. Patients with PD are typically debilitat-
ed with movement disorder symptoms, with increased reac-
tive oxygen species production and mitochondrial apoptotic
susceptibility, as well as decreased transcriptional drive for
mitochondrial biogenesis (Oliveira et al. 2014; Petzinger
et al. 2015; Corona and Duchen 2015). However, the precise

underlying mechanisms of these processes remain unclear
(Oliveira et al. 2014) and currently, there is no cure for PD
(Petzinger et al. 2015). The major pathology of PD involves
the deletion or downregulation of mitochondrial genes that are
essential for supporting mitochondrial biogenesis, leading to
mitochondrial dysfunction and contributing to progressive de-
generation of the dopaminergic neuron (Gerecke et al. 2010;
Patki and Lau 2011). A common neurotoxin substance in
animal models of PD is 6-hydroxydopamine (6-OHDA) that
destructs dopamine neurons (Aguiar Jr et al. 2016; Garcia
et al. 2017; Rezaee et al. 2019a; b).

A set of enzymes fine-tunes the mitochondrial function in a
cell. AMP-activated protein kinase (Ampk) is an enzyme that
rapidly regulates metabolic and mitochondrial enzymes by
their direct phosphorylation, and also affects the transcription
of specific genes to adapt gene expression to cellular energy
demands (Cantó and Auwerx 2009). The silent information
regulator 2 homolog 1 (Sirt1) may influence the aging process
and many age-associated diseases. It is downregulated in ag-
ing cells, suggesting that Sirt1 may function to extend the life
span (Oliveira et al. 2014), and it plays an intricate role in the
pathology of multiple diseases (Chong et al. 2012). Ampk and
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Sirt1, through phosphorylation and deacetylation, respectively
(Kang et al. 2013), modulate the activity of peroxisome
proliferator-activated receptor gamma coactivator 1-alpha
(Pgc1α), which is a key factor activating mitochondrial bio-
genesis and its expression can be used as a marker of this
process (Steiner et al. 2011; Oliveira et al. 2014). Sirt1 appears
to contribute to the regulation of metabolism by acting in a
pathway whereby it deacetylates and activates Pgc1α (Cantó
and Auwerx 2009; Kang et al. 2013). Brain-derived neuro-
trophic factor (Bdnf) is an essential vital protein in learning
and memory, neuronal plasticity, neuroprotection, and mito-
chondrial function (Miranda et al. 2019; Rezaee et al. 2019b).
The trophic effect of Bdnf on dopamine neurons is evaluated
as potential neuroprotective (Razgado-Hernandez et al. 2015).
Finally, tyrosine hydroxylase (Th) is a rate-limiting enzyme
involved in the synthesis of catecholamine neurotransmitters,
such as dopamine, and it is used as a marker of neuronal
degeneration (Yoon et al. 2007; Tuon et al. 2014). One of
the important ways to evaluate the efficacy of therapeutic
methods of neurodegenerative disease is an assessment of
the Th level (Tuon et al. 2014; Aguiar Jr et al. 2016).
According to previous studies, Th is positively regulated by
Bdnf, and Pgc1α is effective in regulating Bdnf (Hsueh et al.
2018; Rezaee et al. 2019b).

Severe motor, mental, functional, and mitochondrial dis-
ability following the progressive neuronal degeneration in
PD suggests that a therapeutic approach preventing neurode-
generation and promoting neuroprotection would be a valu-
able strategy to control the disease. Exercise is one interven-
tion that has been shown to reduce the production of free
radicals and mitochondrial dysfunction (Gerecke et al.
2010). Implications for an exercise-induced enhancement of
neuroprotective effects and cognitive functions are vast and
contradictory (Steiner et al. 2011; Chen et al. 2017; Costa et al.
2017). The data differ depending on the exercise program, age
of animals, and type and amount of injection of neurotoxin
(Choe et al. 2012; Aguiar Jr et al. 2016; Real et al. 2017).

Accordingly, the present study investigates the therapeutic
effect of exercise on neuroprotection after the unilateral injec-
tion of 6-OHDA.

Materials and Methods

Animals

For the study, 32 male Wister rats (weighing 270 ± 20 g,
6 months old, from the Pasteur Institute of Iran) were used.
The animals were housed (n = 4 per cage) in a temperature-
controlled room (22 ± 2 °C) with a 12-h light/12-h dark cycle,
and free access to food and water. One week before the sur-
gery, to familiarize the rats with the experimental conditions,
the animals were placed on a treadmill, for 10 min/day at 5 m/

min, to ensure that all animals performed similarly prior to 6-
OHDA lesioning. After the familiarization, the rats were ran-
domly assigned to four groups (n = 8 animals/group), as fol-
lows: (1) Saline+Noexercise (Sham); (2) 6-OHDA+
Noexercise (6-OHDA); (3) Saline+Exercise (S+EXE); and
(4) 6-OHDA+Exercise (6-OHDA+EXE) (as explained
below).

Ethical Standards

All experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals, and have been approved by the Ethic
Committee for Animal Experiments at the University of
Isfahan (IR.UI.REC.1396,008).

Surgical Procedures

Rats were anesthetized using xylazine (0.67 mg/kg, intraper-
itoneal injection, i.p.) and ketamine (0.33 mg/kg, i.p.), and
then received unilateral stereotaxic injections of 8 μg of 6-
OHDA (Sigma-Aldrich; 4 μL of 2 μg/μL solution prepared
in 0.2% ascorbic acid and 0.9%NaCl) or saline (4 μL of 0.2%
ascorbic acid and 0.9%NaCl) (Tuon et al. 2015), into the right
medial forebrain bundle anteroposterior (AP), − 1.8 mm; lat-
eral (LAT), 4.7 mm from the bregma; and vertical (DV), −
8.2 mm from the skull surface (Mabandla et al. 2004; Yoon
et al. 2007; Carvalho et al. 2013), by a 5-μL Hamilton syringe
attached to an infusion pump (BI Insight 2000), at a rate of
0.5 μL/min for 8 min for each rat. The cannula was left in
place for an additional 5 min after the injection before being
slowly retracted. Briefly, 5 days following the 6-OHDA or
saline administration, a time point to complete the cell death
process, the rotations following the intraperitoneal injection of
apomorphine were calculated (with a similar way to
Behavioral test section). Finally, 6-OHDA-induced rats that
showed significant rotations were selected to continue the
study and the others were excluded for further investigation
(Tuon et al. 2014).

Exercise Protocols

Two weeks after the induction of lesions, exercise groups
began following a light treadmill exercise protocol for
30 min, once a day, for 14 consecutive days (Cho et al.
2013). The exercise load was started at a velocity of 5 m/
min for the first 5 min, 8 m/min for the next 5 min, and
15 m/min for the last 20 min, without electrical shock and at
0° of inclination. The noexercise groups were placed on an
unmoving treadmill for the same period of time.
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Behavioral Test (Asymmetry Rotational)

Forty-eight hours after the last training session, rats are placed
in a plastic container (25-cm high and 28-cm diameter) for
10 min to habituate. This was followed by a challenge with
the dopamine receptor agonist R(−)-apomorphine (0.5 mg/kg,
i.p.). The rotation number under apomorphine (Sigma) is one
test that used to quantify the degree of lesion in the PD model
and is related to the extent of dopamine depletion, after the
unilateral 6-hydroxydopamine lesion. The contralateral rota-
tions (opposite to the lesioned right side) induced by apomor-
phine are related to the unbalance in the nigrostriatal dopami-
nergic pathways between the right (lesioned) and left
(unlesioned) brain hemispheres (Tuon et al. 2012; 2014;
Aguiar Jr et al. 2016; Costa et al. 2017; Real et al. 2017).
This test was monitored for 60 min.

Euthanasia and Tissue Collection

One day after the behavioral test, the rats were anesthe-
tized with ketamine (5 mg/100 g of body weight, i.p.) and
xylazine (1 mg/100 g of body weight, i.p.), and the right
striatum was surgically removed. The extracted tissues
were deep-frozen in liquid nitrogen, and then stored at
− 80 °C. Tissue homogenates were centrifuged at
11,000×g (40 min, 4 °C) for 40 min to remove insoluble
material (Tuon et al. 2014; 2015).

Isolation of Total RNA and Real-Time Quantitative
PCR

Total RNA was isolated from tissues (n = 8 per group)
using the RNeasy mini kit (Qiagen Inc., Valencia, CA,
USA), as recommended by the manufacturer. The concen-
tration and purity of RNA were assessed using NanoDrop
spectrophotometer (NanoDrop Technologies Wilmington,
DE, USA) by reading sample absorbance at 230 nm,
260 nm, and 280 nm. Then, 1 μg of total RNA was used
for the synthesis of cDNA (cDNA synthesis kit,
Fermentas, Lithuania) by utilizing oligo dT primers. RT-
qPCR was performed using SYBR Green PCR master mix
(TaKaRa, Japan) and a Step One Plus thermocycler (ABI
Applied Biosystems, USA). The forward and reverse
primer sequences are provided in Table 1. The Ct value
is the fractional cycle number at which sample fluores-
cence exceeds a fixed threshold. The fold-change in ex-
pression was calculated by using the ΔΔCt method, and
the data are presented as the percentage of fold-change of
expression in treated groups compared with the corre-
sponding control group after normalization to Gapdh en-
dogenous control (Patki and Lau 2011).

Protein Extraction and Western Blotting

Proteins were extracted from the striatum samples (n = 5 per
group) in the RIPA buffer (Sigma) according to the manufac-
turer’s protocol. As previously described by our group
(Rezaee et al. 2019a), briefly, 1 mL of RIPA buffer was added
to 100 mg of brain tissue in a 1.5-mL tube and homogenized
(five times, 5 min each, at 4 °C). Insoluble material was re-
moved by centrifugation (12,000×g for 20 min). Soluble pro-
tein concentration in sample supernatants was determined
using a protein assay kit (Bio-Rad, Hercules, CA). Equal
amounts of protein (0.2 mg per sample) were resolved on
10% SDS-PAGE and transferred on to polyvinylidene
difluoride membranes (Bio-Rad Laboratories, USA). The
membranes were blocked overnight in 10% (w/v) non-fat
dried milk (Merk, Germany) in phosphate-buffered saline,
incubated with antibodies, and the signals developed as de-
scribed elsewhere (Tuon et al. 2012). The antibodies used
were antiphospho (Thr172) Ampk (1:200; sc-33524), anti-
Sirt1 (1:200; sc-15404), anti-Pgc1α (1:200, sc-55476), anti-
brain-derived neurotrophic factor (1:200, sc-65514), anti-Th
(1:200; sc-25269) and anti–β-actin antibodies (1:200; sc-
47778), from Santa Cruz Biotechnology (Santa Cruz, USA).
Chemiluminescent detection was enabled by using a second-
ary antibody conjugated with a horseradish peroxidase
(1:2500; Bio-Rad, 170-6516), and the bands were visualized
using an Amersham ECL advanced western blotting detection
kit. NIH ImageJ program was used to compare the density of
bands on Western blot.

Data Analysis

All data are presented as themean + standard error of themean
(SEM). Data for the treatment groups, 1 month after the

Table 1 Primers used in RT-qPCR experiments (5′–3′)

Locus bp Sequence

Ampk-Fw 131 GCCAAATCAGGGACTGCTACTC

Ampk-Rv GAGGTCACGGATGAGGTAAG
AGA

Sirt1-Fw 132 TGACGCCTTATCCTCTAGTTCCT

Sirt1-Rv TCAGCATCATCTTCCAAGCCATT

Pgc1α-Fw 169 ACAACCGCAGTCGCAACA

Pgc1α-Rv AGGAGTCGTGGGAGGAGTTAG

Bdnf-Fw 83 ACTCGCAATGCCGAACTACC

Bdnf-Rv CCTTATGAACCGCCAGCCAAT

Th-Fw 125 TCATCACCTGGTCACCAAGTT

Th-Rv GGTCGCCGTGCCTGTACT

Gapdh-Fw 181 CTAGAGACAGCCGCATCTTCTTG

Gapdh-Rv AATCCGTTCACACCGACCTTC

Gapdh was used as a housekeeping gene for data normalization
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surgery, were compared using GraphPad Prism 8 Software, La
Jolla, CA, USA and one-way analysis of variance (ANOVA)
(version 23.0), followed by Tukey’s post hoc test. P < 0.05
was considered to be statistically significant.

Results

Apomorphine-Induced Rotations

Apomorphine-induced RT was performed 30 days after 6-
OHDA injection. Statistical analysis indicated differences in
apomorphine-induced rotation behavior of animals in differ-
ent groups [F(3,28) = 2174.7, P < 0.001], with post hoc anal-
ysis revealing a significantly higher rotational asymmetry in
the 6-OHDA group than in other groups. As shown in Fig. 1,
the treadmill exercise significantly reduced the rotational
asymmetry in the 6-OHDA+EXE group (318.7 ± 6.7 turns/
h) compared with the sedentary parkinsonian group (363.6 ±
22.2 turns/h) (P < 0.001). This analysis was complemented by
the assessment of Th level (Figs. 2, 3e).

Assessment of Ampk/Sirt1/Pgc1a, Bdnf, and ThmRNA
Levels

Forty-eight hours after the behavioral test, the effect of exer-
cise on expression of specific genes in animals was investigat-
ed. One-way ANOVA analysis revealed that the interaction
between groups was significantly different in the case ofAmpk
[F(3,28) = 26.04, P < 0.001], Bdnf [F(3,28) = 203, P < 0.001],
and Th [F(3,28) = 56.42, P < 0.001]. We found that the 6-
OHDA administration led to a significant reduction of these
mRNA levels (Fig. 2a–e) compared with the Sham group.

Exercise resulted in increased mRNA levels in the 6-
OHDA+EXE group up to Sham group for every three genes
and there were significant increases compared with the 6-
OHDA group (respectively 80%, 73%, and 71%).
Furthermore, analysis of the interaction between all experi-
mental groups by one-way ANOVA revealed a significant
difference in Sirt1 levels [F(3,28) = 13.6, P < 0.001] (Fig.
2b) and Pgc1a expression [F(3,28) = 10.08, P < 0.001] (Fig.
2c). Unexpectedly, and contrary to previousmRNA levels, the
striatal expression of Sirt1 (30%) and Pgc1a (27%) in the 6-
OHDA group was significantly higher than in the Sham
group. The striatal levels for later genes in 6-OHDA and 6-
OHDA+EXE groups were similar and there were no signifi-
cant differences between them (Fig. 2b, c).

Protein Analysis by Western Blotting

The striatal Ampk, Bdnf, and Th protein levels were shown in
Fig. 3 a, d, and e, respectively. A significant difference was
evident by interaction analysis of all groups in Ampk
[F(3,16) = 352.8, P < 0.001], Bdnf [F(3,16) = 231.9,
P < 0.001], and Th [F(3,16) = 265.9, P < 0.001] levels.
These protein levels in animals administered 6-OHDA were
significantly reduced compared with the Sham group.
Exercise in the 6-OHDA+EXE group significantly increased
the Ampk (60%), Bdnf (72%), and Th (66%) levels compared
with sedentary 6-OHDA animals, but these levels significant-
ly were lower than the Sham group (P < 0.001).

Surprisingly, the Sirt1 protein level in all of groups in-
creased significantly (~ 30%) compared with the Sham group
[F(3,16) = 269.3, P < 0.001] (Fig. 3b), also Pgc1α protein
level in the Sham group was significantly lower (~ 20%) than
the other groups [F(3,16) = 38.7, P < 0.001] (Fig. 3c). Here
were no statistically significant differences between 6-OHDA
and 6-OHDA+EXE groups in Sirt1 and Pgc1α protein levels
(Fig. 3b, c).

Discussion

The aim of the current study was to examine the effect of
exercise on the neuroprotection of dopaminergic neuron, ro-
tational behavior and some mitochondrial factors following a
6-OHDA–induced cell death. Using the rat model of PD, we
showed that 6-OHDA injection resulted in behavioral and
mitochondrial disorders. Furthermore, treadmill exercise
ameliorated the behavioral impairment in rats with a signif-
icant effect on Bdnf and Th expression levels (Figs. 2d, e
and 3d, e). We observed that regular treadmill exercise re-
sulted in increase of mRNAs and proteins in the striatum of
S+EXE rats (Figs. 2, 3). This was different to what has been
reported previously by Tillerson et al. (2003). One differ-
ence between the current study and that was the age of the
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Fig. 1 The effect of treadmill exercise on apomorphine-induced rotation
in rats. Values are expressed as the mean + SEM (n = 8 per group); #
P < 0.001 in relation to 6-OHDA group, according to one-way ANOVA
followed by Tukey’s post hoc test. Sham, Saline+Noexercise; S+EXE,
Saline+Exercise; 6-OHDA, 6-OHDA+Noexercise; and 6-OHDA+EXE,
6-OHDA+Exercise
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experimental animals (aged vs. young). In the present study,
the rats were young. Thus, age is an important factor affect-
ing the expression of biochemical factors following exercise,
even in the healthy rat. Similar results with our observations,
on the heart and liver, were reported by previous studies
(Bayod et al. 2012; Oliveira et al. 2014). Furthermore,
Bayod et al. (2012) demonstrated that Ampk, Sirt1, and
Pgc1a genes are expressed in young human after exercise,
indicating that mitochondrial biogenesis-related genes are

readily activated in young individuals, and that these re-
sponses are attenuated in older individuals. Muscle heat gen-
eration during exercise can play a role in the activation of
the Ampk–Sirt1–Pgc1a pathway and mitochondrial biogene-
sis (Bayod et al. 2012). Mitochondrial abnormality, mainly
in the brain, plays a vital role in the development of PD
(Chong et al. 2012). Many studies reported that exercise is
an effective intervention that upregulates important factors
of mitochondrial biogenesis and neurogenesis, e.g., Pgc-1α
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Fig. 2 Effects of treadmill exercise on Ampk, Sirt1, Pgc1a, Bdnf, and Th
mRNA levels. RT-qPCR was performed to detect changes in the expres-
sion of Ampk (a), Sirt1 (b), Pgc1a (c), Bdnf (d), and Th (e) genes in the
striatum of animals administered 6-OHDA before the exercise. Values are
expressed as the mean + SEM (n = 8 per group); *P < 0.001 and

**P < 0.01 compared with the Sham group; #P < 0.001 compared with
the 6-OHDA group, according to one-wayANOVA followed by Tukey’s
post hoc test. Sham, Saline+Noexercise; S+EXE, Saline+Exercise; 6-
OHDA, 6-OHDA+Noexercise; and 6-OHDA+EXE, 6-OHDA+Exercise
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(Patki and Lau 2011; Kang et al. 2013; Oliveira et al. 2014;
LaHue et al. 2016). In the present study, the exercise after
the 6-OHDA injection resulted in attenuation of behavioral
abnormality and an increase of the genes expression, espe-
cially Th level, that confirm neuroprotective effects of exer-
cise on the dopaminergic system. This finding is supported
by the previous study that assessed preventive exercise be-
fore 6-OHDA injection (Carvalho et al. 2013; Rezaee et al.
2019b). In contrast, Real et al. (2017) indicated exercise-

induced stress causes neurodegeneration and increases rota-
tions in exercised rats compare with the control group.

It has been also demonstrated that exercise leads to in-
creased expression of neurotrophic factors especially Bdnf,
resulting in neuroprotection and increase of Th protein level
(Pothakos et al. 2009) that has been confirmed in the present
study (Figs. 2d, e and 3d, e). Indeed, the efficiency of every
proposed experimental protocol on PD is confirmed by mea-
suring the Th levels (Phillipson 2014; Real et al. 2017).
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Fig. 3 Effects of treadmill exercise on Ampk (a), Sirt1 (b), Pgc1a (c),
Bdnf (d), and Th (e) levels in the striatum of animals administered 6-
OHDA before the exercise, as assessed by western blotting. Values are
expressed as the mean + SEM (n = 5 per group); *P < 0.001 and

**P < 0.01 compared with the Sham group, #P < 0.001 compared with
the 6-OHDA group, according to one-wayANOVA followed by Tukey’s
post hoc test. Sham, Saline+Noexercise; S+EXE, Saline+Exercise; 6-
OHDA, 6-OHDA+Noexercise; and 6-OHDA+EXE, 6-OHDA+Exercise
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Consistent with what has been previously reported (Aguiar
Jr et al. 2016; Garcia et al. 2017), and contrary to what has
been anticipated, we observed 6-OHDA injection leading to
increased Sirt1 and Pgc1a mRNA and protein level 30 days
after the 6-OHDA injection (Figs. 2b, c and 3b, c). This indi-
cated continuous mitochondrial transcription and activity of
metabolic factors, probably to compensate for the cellular
damage caused by 6-OHDA (Patki and Lau 2011).
However, these observations suggested that increasing ex-
pression of these factors were not sufficient to prevent the
reduction of Th protein level and behavioral disorder in the
6-OHDA sedentary group (Figs. 1, 2, 3e). Since in this group,
regardless of compensatory increase in expression of these
genes, disorders of behavioral and neurodegeneration are not
attenuated. On the other hand, 14-day light exercise after the
lesion reduced these abnormalities (Figs. 1, 2, 3). It is not clear
why exercise can alleviate disorders in PD. Probably, exercise
increases blood flow for the removal of the neurotoxin from
the various brain regions (Mabandla et al. 2004). Furthermore,
exercise by enhancing the expression of Ampk, Sirt1, and
Pgc1a, as upstream of Bdnf gene, enhances mitochondrial
biogenesis, brain plasticity, and neuroprotective effects due
to neurotrophins and reduces of behavioral disorders and brain
insults (McMurphy et al. 2019; Miranda et al. 2019; Rezaee
et al. 2019b).

Several explanations can account for the differences in
conclusions of studies involving animal models of PD.
These include the induction method used and severity of le-
sion, the type and intensity of the exercise regimen, and the
time of starting the exercise after the induction of lesion
(Gerecke et al. 2010; Garcia et al. 2017). Inconsistent with
previous studies (Fisher et al. 2004; Yoon et al. 2007;
Pothakos et al. 2009; Gerecke et al. 2010), in the current study,
we observed that the exercise exerted a protective effect
against behavioral disorder (asymmetry rotation) (Fig. 1).
The rotational test produces a useful parameter for evaluating
behavioral deficits and the imbalances of dopamine in stria-
tum of the unilateral rat model of PD (Tuon et al. 2012). Loss
of Th expression and increase of apomorphine-induced turn-
ing behavior displayed that our model of 6-OHDA MFB in-
jections caused dopaminergic degeneration. We found that the
exercised animals with 6-OHDA injection when compared
with the 6-OHDA sedentary group showed a reduction in
the number of turns that reflects a protective effect of exercise
on dopaminergic neurons. This result is reinforced by larger
Th expression in the striatum of this group that occurred dur-
ing the 14-day training. Bdnf as upstream gene of Th is upreg-
ulated also in the 6-OHDA+EXE group (Figs. 2, 3e). One of
the few studies published that the exercise exerts neuroprotec-
tive effects on the dopaminergic system, partly through the
upregulation of Bdnf (Tajiri et al. 2010). Bdnf is an essential
vital protein that is involved in learning and memory and can
improve brain plasticity.Moreover, the expression of Bdnf is a

protectivemechanism against toxicity (WrannChristiane et al.
2013; Sleiman et al. 2016; Xia et al. 2017). On the other hand,
regardless of increase of Th level in the 6-OHDA+EXE group
compare with the 6-OHDA sedentary group, its level was
significantly lower than control rats in the Sham group
(Figs. 2, 3e). It is important to note that there was a 14-day
delay before the beginning of exercise (after the surgery) in
the present study. Since depletion of dopamine in the striatum
is reportedly maximal 1 week after 6-OHDA infusion into the
medial forebrain bundle (Yoon et al. 2007), in this study,
starting training protocol after the short time of surgery might
have better results. Garcia et al. (2017) also reported only in
the third month after injection that the changes in Th level
were similar to control animals and its level in closer assess-
ments to injection was significantly lower than the Sham
group. Hence, probably longer times after surgery, more than
1month, are necessary to the rehabilitation of the deficits up to
normal level.

In the current study, our lesion protocol was successful in
causing a rat model of PD. As shown, the 6-OHDA injection
increased apomorphine-induced rotation behavior and dopa-
mine degeneration that is confirmed by loss of Th expression
in response to 6-OHDA. On the other hand, the exercise fol-
lowing the surgery could reduce behavioral (apomorphine-
induced rotation) and non-behavioral impairments and in-
crease neuroprotection. However, a compensatory increase
of Sirt1 and Pgc1a expression in the sedentary 6-OHDA
group were not lead to the attenuation of behavioral disorder
and dopamine loss. Therefore, based on the findings, the com-
pensatory regulation of Sirt1 and Pgc-1α is not a useful strat-
egy for treating PD. It seems that exercise triggers mecha-
nisms on CNS resulted in neuroprotective effects and mito-
chondrial recovery in the 6-OHDA animal models. Hence,
light treadmill exercise provides a therapeutic response for
the treatment of PD.
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