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Abstract

The ubiquitin (Ub)-proteasome system (UPS) is considered as a central protein degradation system in all eukaryotes. The UPS
comprises of several factors such as Ub and Ub-like molecules, Ub hydrolases, E3 Ub ligases, and the proteasome itself. Numerous
studies have demonstrated that the dysfunction of UPS plays an essential role in the pathogenesis and progression of Alzheimer’s
disease (AD). Furthermore, current evidence has suggested that the UPS components can be connected with the initial stage of AD
that is characterized by synaptic dysfunction, and to the late phases of AD, marked by neurodegeneration. In AD patients, the
accumulations of insoluble protein in the brain can be caused by overload or dysfunction of the UPS, or by conformational alterations
in the protein substrates that prevent their degradation and recognition by the UPS. Synaptic dysfunction is also caused by defective
proteolysis that has found in the initial stage in AD as the UPS is widely recognized to play a pivotal role in the regular activities of
synapses. Conversely, its precise cause and pathogenesis are unclear. Presently accepted medicines for AD give symptomatic relief,
though they are unable to stop the progression of the disease. Besides, the components of the cellular quality control system
demonstrate a significant emphasis on the advancement of targeted and effective treatments for AD. In this review, we focus on

the role of UPS in the pathogenesis of AD and highlight how the UPS-linked treatments influence in the management of AD.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder of the central nervous system (CNS), which is fea-
tured by gradual loss of cognitive functions such as memory,
attention, judgment, comprehension, language, and reasoning,
ultimately resulting in severe dementia (Uddin et al. 2019a,
2019b; Kabir et al. 2019a, 2019b). Intracellular neurofibrillary
tangles (NFTs) and extracellular beta-amyloid (A3) plaques
are the main pathological hallmarks of AD (Price and Sisodia
1998; Uddin et al. 2019¢, 2019d; Hossain et al. 2019; Mathew
et al. 2019; Mamun et al. 2020). The A3 plaques result from
precise proteolytic processing of amyloid precursor protein
(APP) that is positively controlled by the presenilins 1 (PS1)
and presenilins 2 (PS2) (De Strooper et al. 1998; Al Mamun
and Uddin 2020). Currently, PS/ and PS2 have been revealed
to be substrates of the ubiquitin (Ub)-proteasome system
(UPS) (Kim et al. 1997; Marambaud et al. 1998; Steiner
et al. 1998; Johnston et al. 1998). Additionally, UPS is ac-
countable for expressing various fundamental cellular
functions.
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Numerous neurodegenerative diseases such as AD, trans-
missible spongiform encephalopathies, Parkinson’s disease,
Huntington’s disease, neurodegeneration following spinal
cord injury, and amyotrophic lateral sclerosis are connected
with the UPS dysfunction (LEIGH et al. 1991; Neumann et al.
2006; Uddin et al. 2018a, 2020b). In these neurodegenerative
disorders, the influence of the UPS may be linked to deficits in
the removal of misfolded proteins leading to the intracellular
accumulation of protein, neuronal cell death, and cytotoxicity
(Demuro et al. 2005; Schwartz and Ciechanover 2009; Sahab
Uddin and Ashraf 2020).

The UPS also plays a central role in neuronal signal-
ing pathways that control the release of neurotransmit-
ter, synaptic plasticity, and synaptic membrane receptor
turnover (Zhao et al. 2003; Patrick 2006). In this article,
we discuss the role of UPS in the pathogenesis of AD
and emphasize how the UPS-associated treatments to
combat AD pathogenesis.

Molecular Biology of Ubiquitin-Proteasome
System

The UPS is situated in the cytosol and the nucleus. Ub is a
protein of 76-amino acid residues that are vastly evolutionari-
ly conserved in all eukaryotes (Hershko and Ciechanover
1998; Nandi et al. 2006). Moreover, the ubiquitination process
is involved in 3 successive stages concerning 3 enzymes
known as activating (E1), conjugating (E2), and ligating
(E3) enzymes (Fig. 1). Furthermore, the 26S proteasome is a
large multi-subunit complex that plays a pivotal role in the
degradation of the Ub-conjugated proteins. The Ub chain is
prepared by E1 and E2 enzymes, which are subsequently at-
tached to target proteins with the help of the E3 enzyme. The
ubiquitination process starts when the Ub-activating enzyme
E1 triggers an Ub molecule through an adenosine triphosphate
(ATP)—dependent mode. Ub is then bound with an internal E1
Cys moiety through an intermediate thiolester bond producing
E1-S~Ub. Subsequently, Ub is shifted to one of the various E2
forms. Afterward, the attachment of Ub to the protein sub-
strate is catalyzed by several E3s—a large and different set
of proteins with discrete motifs (Ciechanover 1994).

The variety of diverse Ub protein ligase E3s could distin-
guish a precise substrate due to its high specificity as well as
the selectivity to the UPS (Ciechanover 1998). Furthermore,
the most significant recognition pattern is the destabilizing N-
terminus amino acids including lysine and arginine. This dis-
tinctive N-terminus destabilizing residues could assess the
half-life of an intracellular protein which is known as the N-
end rule. Subsequently, multiple cycles of ubiquitylation take
place to form a polyubiquitin chain on the substrate. Then,
polyubiquitinated proteins are recognized and degraded by
the 26S proteasome. Then, the polyubiquitin chain is

disassembled by deubiquitinating enzymes (DUBs), and the
free ubiquitin monomers can be reused to tag other substrates.

Ubiquitin-Proteasome System
in the Pathogenesis of Alzheimer’s Disease

Degradation of protein is mainly carried out by proteasomes in
the cytosol and the nucleus of all cells (Lecker et al. 2006;
Uddin et al. 2018b). In the nervous system, these processes are
regulated by the Ub-proteasome pathway (UPP). The damage
of the UPP-dependent protein degradation system leads to the
development of several neurodegenerative diseases such as
AD. In recent times, many researchers have observed that
UPS has an impact on the AD pathogenesis, and ubiquitinated
proteins are greatly present in AD patients (Gentier and van
Leeuwen 2015; Tramutola et al. 2016). UPS controls not only
the metabolism of A but also the degradation of tau through
the 26S proteasome. Conversely, the malfunction of these
proteins in the neurons can cause both the aggregation of
ubiquitinated proteins and the modifications in the combina-
tion of proteasome subunits, which reduces the function of
proteasome and o-secretase, triggering the generation of
Af3. Nonetheless, the precise fundamental mechanism of this
progression remains unclear. The activity of proteasome is
reduced in the diverse parts of the AD brain including, the
inferior parietal lobe, the superior and middle temporal gyri,
and the parahippocampal gyrus, which specifies the functional
failure of UPP throughout the AD pathogenesis (Necchi et al.
2011).

Furthermore, the relationship between the impairment of
synaptic plasticity and the UPP is more widely investigated
in AD (Vriend et al. 2015; Cheng et al. 2016). There are some
cellular events such as the oxidation of DUBs, the aggregation
of mutated Ub, the changes of proteasome subunits, and the
downregulation of El and E2 enzymes are found both in
transgenic mice with A and in AD patients (Choi et al.
2015). The accumulations of A3 and the
hyperphosphorylation of tau, as well as neurodegeneration
in AD, are closely connected with the dysfunction of UPS
(Fig. 2). The impairment of UPS leads to the generation of
A by inducing the activity of «-secretase in AD neurons
(Gentier and van Leeuwen 2015). Normally toxic Af3 is gen-
erated by inducing 3-secretase targeted APP cleavage and
produces a C-terminus portion (Uddin and Kabir 2019).
Then the y-secretase plays an essential role in the cleavage
of this portion and generates toxic A(340 and A[342 portions
(Uddin et al. 2020a). The inhibitors of the proteasome can
reduce the activity of {3-secretase by the upregulation of
APP-C99 (Renzichausen et al. 2015). The primary sign for
the pathological connection between UPS and tau is resulting
from the recurrent colocalization and the aggregation of Ub in
paired helical filaments (PHFs) and NFTs. Research detected
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Fig. 1 General overview of the ubiquitin (Ub)-proteasome system. The
ubiquitination process starts when the Ub-activating enzyme E1 triggers a
Ub molecule through adenosine triphosphate (ATP)-dependent mode. Ub
is then bound with an internal E1 Cys moiety through an intermediate
thiolester producing E1-S~Ub. Subsequently, Ub is shifted to one of the
various E2 forms. Then, the E2 interacts with a substrate-bound E3 Ub
ligase, which catalyzes the transfer of Ub to a lysine residue in the

that polyubiquitinated tau within PHF is primarily in the
Lys48-related poly-Ub form, which is the most recognized
degradation signal. Moreover, this powerfully advocates the
role of UPS-targeted tau removal in defense against the path-
ogenesis of AD (Cripps et al. 2006).

However, the direct connection between the UPS and
the AD pathogenesis was acknowledged with the detection
of a frameshift mutation in the Ub transcript that leads to
the elongation of the molecule with 20 amino acids moiety
UBB + 1 (Fig. 2), which had been selectively found in AD
patients who were affecting with late-onset AD (van
Leeuwen et al. 1998). UBB +1 is an effective acceptor
for polyubiquitination, although it could not be activated
by El (because of the absence of vital G76 moiety) and be
shifted to a substrate or to another Ub portion. The resul-
tant chain of poly-Ub is difficult to disassemble by DUBs,
especially isopeptidase T (Lam et al. 2000) which needs
for its function in a manifested G76 moiety at the proximal
Ub portion. Moreover, the aggregated poly-Ub chains
block the degradation of the proteasome (Lindsten et al.
2002) that leads to the apoptosis of neurons (Bardag-
Gorce et al. 2002). Hence, UBB + 1 expression rises no-
ticeably with aging in the brain, which can possibly result
in dominant suppression of the UPS, leading to the aggre-
gation of toxic proteins with the neuropathologic outcome
including AD.
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substrate to generate a stable isopeptide bond. Multiple cycles of
ubiquitylation can take place to form a polyubiquitin chain on the sub-
strate. Polyubiquinated proteins are recognized and degraded by the 26S
proteasome. The polyubiquitin chain is disassembled by DUBs. The free
ubiquitin monomers can be reused to tag other substrates. Abbreviations
used are Ub, ubiquitin; DUBs, deubiquitinating enzymes

Prospective Targets of Ubiquitin-Proteasome
System for Alzheimer’s Disease

Numerous ubiquitination enzymes are prospective targets
for AD therapies that control not only the A3 metabolism
but also the UPS in AD brains. E2-25K is one of the
distinctive Ub-conjugating enzymes that is upregulated
and leads to the toxicity of AP (Song et al. 2008). Af3
raises the E2-25K/Hip-2 expression that subsequently sta-
bilizes the caspase-12 and apoptotic protein by suppress-
ing the activity of proteasome (Song et al. 2003, 2008).
The expression of E2-25K/Hip-2 knockdown inhibits neu-
ronal cell death in AD mice model and in cultured neu-
rons. In a study, Lonskaya et al. revealed that the intra-
cellular aggregation of A3 and damaged proteasome ac-
tivity could be restored by the Ub E3 ligase parkin
(Lonskaya et al. 2012, 2014). Furthermore, parkin has
the capability to defend neurons against diverse insults,
which leads to the prevention of AD (Fig. 3). The expres-
sion of parkin can decrease the level of Af3, and it also
reverses damaged long-term potentiation and behavioral
aberrations of the AD model mouse by reversing the del-
eterious effects of A3 on the proteasome.

Moreover, parkin increases beclin-dependent autopha-
gy by which it helps the removal of A (Khandelwal
et al. 2011). Conversely, Ub carboxyl-terminal hydrolase
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Fig. 2 The ubiquitin-proteasome system in the pathogenesis of
Alzheimer’s disease. Intracellular neurofibrillary tangles (NFTs) and ex-
tracellular beta-amyloid (Af3) plaques are the main pathological hall-
marks of AD. The figure shows only increased generation of A342 (a
splice variant of A3) due to the mutations of APP and PS gene, whereas
the formation of tau takes place owing to the mutations of MPAT and GRN
gene. The roles of the UPS in the steps leading to AD pathogenesis are

1 (UCHLI1) has been found in Ub-enriched inclusion bod-
ies in AD brains. According to the study by Zhang et al.,

shown in blue boxes. Furthermore, the ubiquitin mutant UBB + 1 is also
connected with AD, although it is vague that how the mutation contrib-
utes to discrete pathologies in many patients remains mysterious.
Abbreviations used are: Af3, amyloid beta; AD, Alzheimer’s disease;
APP, amyloid precursor protein; GRN, progranulin, MAPT,
microtubule-associated protein tau; PHFs, paired helical filaments; PS,
presenilin; Ub, ubiquitin; UPS, ubiquitin-proteasome system

the overexpression of UCHL1 enhances contextual mem-
ory and recovers synaptic activities in APP/PS1 model
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Fig. 3 Potential therapeutic targets of ubiquitin-proteasome system for
AD. Ubiquitin proteasomal dysfunction causes the accumulation of Af3
and tau, which leads to neuronal cell death and ultimately resulting in
Alzheimer’s disease. The polyubiquitinated tail is the best potential ther-
apeutic targets for parkin, UCHLI1, CHIP, HRD1 because it

mouse (Zhang et al. 2015) by decreasing the [3-secretase
enzyme 1 (BACE1) levels and subsequently reduces the
cleavage products of BACE1 (APPC-end portion C99 and
AP) (Zhang et al. 2012; Guglielmotto et al. 2012).
BACE] is a novel substrate of E3 ligase C-terminus of
Hsc70-interacting protein (CHIP) that advocates the de-
stabilization of BACE1 by attaching through the U-box
domain of CHIP (Singh and Pati 2015). Additionally,
CHIP decreases the level of BACE1 by enhancing its
ubiquitination and proteasomal degradation that subse-
quently reduces the processing of APP and A3 generation
in neurons. Moreover, the level of HMG-CoA reductase
degradation protein 1 (HRD1) is considerably reduced in
the cerebral cortex of AD human model, which is inverse-
ly connected with the generation of A3 (Saito et al. 2010;
Gerakis et al. 2016). The increased expression of HRD1
also enhances the ubiquitination and degradation of APP
that results in reduced A generation (Kaneko et al.
2010).
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predominantly regulates substrate specificity and selectivity and plays
an important in the management of AD. Abbreviations used are AD,
Alzheimer’s disease; A3, amyloid beta; UCHLI1, ubiquitin carboxy-
terminal hydrolase L1; CHIP, C-terminus of HSC70-interacting protein;
HRD1, The HMG-CoA reductase degradation protein 1

Crosstalk of Alzheimer’s Targets
and Ligands—Ubiquitin-Proteasome System
Components

Advancement of drugs and treatment strategies that target
UPS components would need a well comprehending of the
role of proteolysis in the progression of AD. The proteasome,
Ub-conjugating enzymes, and DUBs are potential drug targets
in the UPS. Furthermore, E3s are excellent prospective thera-
peutic targets amid other enzymes since they predominantly
regulate substrate specificity (Fig. 3). As the substrate-binding
area possesses specificity to E3s and allosteric modification of
this area using small molecules can cause specificity to E3s
either increase or decrease affinity to specific substrates,
which is one of the ways of regulating aggregation of the
ubiquitylated substrate (Upadhya and Hegde 2005).
Moreover, selective engineering of the UPS components al-
lows modification of their transfer to a precise affected area
and consequent degradation of particular aggregated
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ubiquitylated proteins or protein accumulates could offer a
substitute strategy to small allosteric molecules (Upadhya
and Hegde 2005). Conversely, no robust E3 agent has been
applied in AD until now.

In addition, DUBs can be prospective drug targets when
a specific role for these enzymes in AD is recognized. The
regulation of specific DUBs by small molecules improves
the deubiquitylation of poly-Ub chains of mutant UBB + 1
that can be an additional probability since these chains
suppress proteasomes in the AD brains (Lam et al. 2000).
Activation of the proteasome is another uninvestigated are-
na for novel drug discovery. Even though numerous pro-
teasome inhibitors are available, however, there are no po-
tent drugs that can improve the proteasome activity. As the
aberrant accumulation of protein and the inhibition of pro-
teasome are the usual hallmarks of AD and other neurode-
generative disorders, improvement of proteasome function
with the aid of small molecules can be an effective method
to eliminate the accumulations that aggregate in the AD
brain (Upadhya and Hegde 2005). Resveratrol is a natural-
ly occurring polyphenol found abundantly in grapes, grape
juice, and red wine, which is suspected to possess antiox-
idant and neuroprotective activities (Savaskan et al. 2003;
Jang and Surh 2003; Han et al. 2004). Numerous re-
searches demonstrated that resveratrol has a strong anti-
amyloidogenic activity by decreasing the levels of Ap-
produced and delays Af-induced toxicity in different ex-
perimental models (Savaskan et al. 2003; Jang and Surh
2003; Han et al. 2004; Marambaud et al. 2005). It has also
been reported that resveratrol works by enhancing the in-
tracellular degradation of A} using a mechanism that con-
nects the proteasome (Marambaud et al. 2005). Ultimately,
these investigations recommend a potential application for
this compound in the management of AD.

Targeting the Ubiquitin-Mediated Protein
Degradation in Alzheimer’s Disease

The aggregation of toxic A3 is controlled by the quality con-
trol systems of the cell (autophagy, molecular chaperones, and
the components of UPS) (Morawe et al. 2012). Ub-mediated
protein degradation takes place through two chief catabolic
systems, for instance, the autophagy (endosomal/lysosomal
system) and the ATP-dependent, non-lysosomal proteolysis
system termed UPS.

Autophagy

Lysosomes damage normal and accumulated proteins through
autophagy, which are generally observed under injury or stress
conditions. Autonomous changes in the endocytic pathway
trigger the lysosomal system and raise the quantity and density

of lysosomes as well as the expression of the gene (Cai and
Yan 2013). Furthermore, the latter effect plays a central role in
the synthesis of all types of lysosomal hydrolases, such as
cathepsin (Nixon et al. 2001). Lysosomal cathepsin B is up-
regulated both by the modulator 2-Phe-Ala-diazomethyl ke-
tone (PADK) and by the accumulation of protein. Moreover,
systemic administration of PADK enhances the activity of
cathepsin B that raises the removal of intracellular A3 and
reduces its extracellular aggregation. Therefore, regulators of
lysosomal activity exhibit great potential for treating neurode-
generative disorders including AD.

Autophagy decreases the aggregation and expedites the
removal of regular/mutant A3 (Cai and Yan 2013). The A3,
which is produced in endosomes and autophagic vacuoles, is
transferred to lysosomes wherein it is removed through lyso-
somal proteolysis under standard conditions (Yang et al.
2011). In a study by Yang et al., reported that in TgCRNDS
transgenic mice (Yang et al. 2011), increasing lysosomal pro-
teolysis enhanced the removal of autophagy substrates that
decreased extracellular and intracellular levels of A3 and re-
covered many cognitive dysfunctions. Furthermore, Cecarini
et al. (Cecarini et al. 2012) exposed in human SH-SY5Y neu-
roblastoma cells stably transfected either 717 valine-to-
glycine APP-mutated gene or with wild-type APP gene
(Cecarini et al. 2012), and increased expression of the APP
mutant isoform associated with a rise in oxidative stress as
well as a remodeled pattern of protein degradation, with both
significant suppression of proteasome activities as well as im-
pairment in the autophagic flux.

In addition, rapamycin suppresses motor activity and in-
creases autophagy; thereby it could be beneficial in stopping
or recovering AD pathology. Rapamycin also suppresses the
formation of NFT and the phosphorylation of tau, as well as
decreases cognitive dysfunctions (Cai and Yan 2013).
Therefore, agents that trigger autophagy can decrease or re-
move protein accumulations (Lane et al. 2012). The two pro-
teolytic systems including UPS and autophagy-lysosomal
pathway (ALP) are primarily accountable for the quality con-
trol of cellular protein in neurons and their significant roles in
the pathogenesis of AD. Both the UPS and ALP pathways
control proteostasis, forming a single network to maintain
the homeostasis of protein (Balch et al. 2008). Even though
the UPS and ALP are deliberated for a long time as indepen-
dent mechanisms, numerous studies show close crosstalk as
well as coordination between both pathways (Korolchuk et al.
2010). Likewise, A3 and C-terminal membrane fragment 3
are the two main detrimental proteins for neuronal function,
and these two proteins are removed by the UPS and ALP
pathways (Bustamante et al. 2013; Xiao et al. 2015; Wang
et al. 2017; Gonzalez et al. 2017; Yang et al. 2017).
Moreover, the growing number of evidence stated that some
specific enzymes of the ubiquitylation machinery play a piv-
otal role in both degradation pathways. Any interferences in
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normal molecular features of the UPS and ALP pathways are
predominantly related to pathophysiological conditions that
instigate the aggregation of abnormal proteins, for example
in various neurodegenerative disorders, like AD.

Molecular Chaperones—Heat Shock Proteins

Molecular chaperones and the UPS are considered as the first
and the second lines of defense against misfolded protein and
accumulation. Chaperones control the folding of freshly syn-
thesized proteins as well as the refolding or transport of
misfolded proteins to protein degradation systems (Morawe
et al. 2012). Higher molecular weight heat shock proteins
(Hsps) (>43 kD) is ATP-dependent, while lower molecular
weight Hsps (1243 kD) is ATP-independent. Numerous in-
vestigations (Wilhelmus et al. 2007; Salminen et al. 2011;
Takalo et al. 2013; Ou et al. 2014; Blair et al. 2014) have
revealed that the chaperone system can be targeted to advance
treatment approaches for controlling AD (Jinwal et al. 2010).
Generally, chaperones attach to tau and A3 toxic protein and
control their degradation. In addition, not only Hsp90 but also
Hsp70 takes part in the metabolism of APP (Gao and Hu
2008).

Hsp70 is ATP-dependent and the main target for treating
AD. Elevated levels of Hsp70 suppress its ATPase activity and
maybe a successful treatment approach for AD (Jinwal et al.
2010). Bobkova et al. showed that the recombinant human
Hsp70 decreased the formation of A plaque in SXFAD trans-
genic mice (Bobkova et al. 2013). Furthermore, methylene
blue suppresses Hsp70 and raises the removal of tau at very
high concentrations (O’Leary et al. 2010). Many studies dem-
onstrated that curcumin was able to enhance the activity of
Hsp70 and Hsp90 that could suppress or linger the formation
of amyloid and decrease neuronal cell death (Mishra and
Palanivelu 2008; Maiti et al. 2014). Moreover, Bcl2-linked
athanogene proteins are a family of co-chaperones that forms
a complex with tau and Hsp70 and can suppress the degrada-
tion of tau in cell cultures, raising the levels of both APP and
tau (Elliott et al. 2007, 2009).

In addition, Hsp90 controls the stabilization and the
misfolding of neurotoxic proteins and expedites tau pathology
in AD (Sarah Kishinevsky et al. 2013). Suppressing Hsp90
decreases the levels of Ser/Thr-mutated tau,
hyperphosphorylated tau, and the kinases, which are involved
in continuous hyperphosphorylation (Jinwal et al. 2011).
Furthermore, the inhibition of Hsp90 triggers small Hsps,
Hsp70, and heat shock factors. This suppression also expe-
dites the binding of Hsp70 with aberrant proteins to produce a
complex that is ubiquitinated by CHIP and damaged via pro-
teolysis. Therefore, the suppression of Hsp90 raises the deg-
radation of tau and maybe a prospective therapeutic approach
for tau-based neurodegeneration in AD (Sarah Kishinevsky
etal. 2013).
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Conclusions

The components of UPS are the key factors for the treatment
of AD. The UPS also influences in the AD pathology through
several mechanisms. Comprehensive knowledge of the mech-
anisms of proteasomal function is crucial for the advancement
of novel therapeutic as well as diagnostic approaches for the
management of AD. Additionally, for the advancement of
effective medicines also needs in-depth knowledge of the role
of proteasome inhibition and how neuronal cell death takes
place in AD brains. Although, A{3 inhibits proteasomes
in vitro, however, it remains unclear whether AD patients
exhibit the same pattern. Moreover, future treatments of AD
may decrease the accumulation of protein (both A3 and tau)
by targeting specific UPS components such as the Ub,
polyubiquitinated tail, DUBs, and 26S proteasome. Finally,
for the development of novel treatments of AD, we need to
entirely comprehend in what way the UPS components inter-
act in the degradation of the protein.
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