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Abstract
Paraquat (PQ), a widely characterized neurotoxicant, has been generally accepted as one of the environmental factors in the
etiology of Parkinson’s disease (PD). Despite the direct evidence that PQ could induce inflammatory responses in central nervous
system, the putative adverse effects of PQ on the neuroimmune interactions have rarely been investigated. High-mobility group
box 1 (HMGB1) has been proven to be relevant to the neuroinflammation involved in PD; however, whether and how HMGB1
exerts modulatory effects in nervous system upon PQ exposure remain elusive. Therefore, the present study investigated the
underlying association between HMGB1 and PQ exposure in SH-SY5Y cells, which is a well-established in vitro model for PD
research. We observed that HMGB1 was markedly increased in a concentration and time-dependent manner upon PQ exposure,
and the elevated HMGB1 could be translocated into cytosol and then released to the extracellular milieu of SH-SY5Y cells.
Knockdown of HMGB1 inhibited the activation of RAGE-P38-NF-κB signaling pathway and the expression of inflammation
cytokines such as TNF-α and IL-6. These results suggested that HMGB1 is involved in the PQ-induced neuron death via
activating RAGE signaling pathways and promoting neuroinflammatory responses.
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Introduction

Parkinson’s disease (PD) is a typical progressive neurodegener-
ative disorder characterized by selective loss of dopaminergic
neurons (Bertram and Tanzi 2005; Brichta andGreengard 2014;
Mamelak 2018). Except for familial inheritance, genetic suscep-
tibility, aging, and environmental chemical exposure have been
reported to be involved in the multifactorial pathogenesis of PD
(Ball et al. 2019; Chen andRitz 2018). Paraquat (1, 1′-dimethyl-
4, 4′-bipyridinium, PQ) is a widely used nonselective herbicide;

its neurotoxicity associated with PD has been generally accept-
ed (Lou et al. 2016; Tanner et al. 2011). Despite most of the
current mechanisms underlying PQ-induced PD were mainly
focused on oxidative stress, mitochondrial dysfunction, as well
as α-synuclein aggregation (Brichta and Greengard 2014;
Chang et al. 2013; Lou et al. 2012), mounting interests in study-
ing neuroimmune interactions considered neuroinflammation as
a crucial mediator in understanding the pathogenesis of PD
(Barcia 2013). However, the adverse effects of PQ on the
neuroimmune interactions and how they contribute to PD path-
ogenesis have rarely been reported yet.

High-mobility group box 1 (HMGB1) is a highly con-
served nonhistone DNA-binding protein and serves as a struc-
tural component to facilitate the assembly of nucleoprotein
complexes (Sims et al. 2010). HMGB1 could be actively se-
creted from inflammatory cells or passively released from
apoptotic or necrotic cells and function as a cytokine to initiate
inflammatory responses (Bell et al. 2006). This mechanism
might be particularly relevant to PD as increased levels of
HMGB1 were detected in human postmortem substantia nigra
specimens as well as in the cerebrospinal fluid and serum of
PD patients (Santoro et al. 2016).
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Both in vitro and in vivo evidence showed that HMGB1
are affected by those neurotoxins that could induce PD.
HMGB1 expression level was found to be altered by pesticide
rotenone and could interact with α-synuclein and perturb the
autophagy process to induce dopaminergic neuron death
(Huang et al. 2017). MPTP, a classical PD-related toxicant,
could upregulate HMGB1mRNA and protein levels in mouse
models (Santoro et al. 2016). Furthermore, HMGB1 translo-
cation was observed in dopaminergic neurons in 6-OHDA-
treated rat models (Sasaki et al. 2016). Notably, systemic ad-
ministration of neutralizing antibodies to HMGB1 could re-
lieve dopaminergic neuron death in PD models via inhibition
of microglial activation and subsequent neuroinflammation
(Santoro et al. 2016; Sasaki et al. 2016). Previous research
also reported that HMGB1 could activate TLR4-IL23-
IL17A to promote inflammatory responses in PQ-induced
acute lung injury (Yan et al. 2017). All these evidences sug-
gested that HMGB1might play a vital role in the pathogenesis
of PD, and PQ exposure probably induce certain alterations in
the concentration or location of HMGB1, thereby contributing
to the pathogenesis of PD. Thus in the present study, the hu-
man neuroblastoma cells (SH-SY5Y) were applied to under-
stand whether and how HMGB1 was affected upon PQ expo-
sure. We first detected HMGB1 expression after PQ treatment
and observed that HMGB1 could translocate into cytosol and
then release to extracellular environment. We also found that
HMGB1 could activate RAGE signaling pathway to promote
the neuroinflammatory responses. Moreover, the interaction
between HMGB1 and RAGE signaling pathway was con-
firmed by knocking down HMGB1 in SH-SY5Y cells with
or without PQ exposure. Our results demonstrated that
HMGB1 mediates the neuroinflammatory responses via
disrupting RAGE signaling pathway in PQ-treated SH-
SY5Y cells.

Materials and Methods

Chemicals and Reagents

Paraquat dichloride (molecular weight 257.16 g/mol, analyti-
cal standard, PQ) (#36541, Sigma-Aldrich, St. Louis, MO,
USA) was purchased from Sigma-Aldrich. Dosing solutions
were prepared by dissolving the calculated amount of PQ in
cell culture medium, following the approved standard operat-
ing procedures for handling toxic agents. All other reagents
were obtained from commercial sources and were of the
highest available grade.

Cell Culture and Treatments

SH-SY5Y cells were purchased from Chinese Academy of
Sciences Cell Bank in Kunming. Frozen cells were thawed

and expanded in DMEM/F12 medium (#11320082, Gibco
Life Technologies Corporation, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum (FBS) (#04–001-1A,
Biological Industries, Israel Beit), 100 units/ml penicillin
and100 μg/ml streptomycin (#P1400, Beijing Solarbio Science
& Technology Co., Ltd., China), 4.5 g/l glucose, 3.7 g/l
NaHCO3, and 4 mM L-glutamine. Cells were incubated in a
humidified atmosphere with 5% CO2 at 37 °C and then pas-
saged by 0.25% trypsin (#25200056, Gibco Life Technologies
Corporation, Carlsbad, CA, USA) at about 80% confluence.

Cell Viability Measurement by Trypan Bule Staining

Cell viability was first measured with trypan blue (#C0040,
Beijing Solarbio Science & Technology Co., Ltd., China)
staining. SH-SY5Y cells growing at exponential phase were
seeded in 96-well plates with a density of 105 cells/mL. After
treated with various dosages of PQ (0, 75, 150, 300,
600 μmol/L) for 24 h or 150 μmol/L PQ for different dura-
tions (0, 12, 24, 48, 72, 96 h), cells were harvested and resus-
pended. By mixing with 0.4% trypan blue solution, viable and
dead cells were counted manually using a hematocytometer.
Cell survival rate in each treatment group was calculated as a
percentage of viable cells. Relative cell viability was obtained
as a percentage of the cell survival rate in the control groups.

Cell Viability Measurement by MTT Assay

Cell viability was determined by MTT assay. SH-SY5Y cells
growing at exponential phase were seeded in 96-well plates
with a density of 105 cells/mL. After treated with various
dosages of PQ (0, 75, 150, 300, 600 μmol/L) for 24 h or
150 μmol/L PQ for different durations (0, 12, 24, 48, 72,
96 h), 50 μl MTT solution was added to each well and incu-
bated for another 4 h. Remove the supernatant from each well,
add 150 μl DMSO (#D2650, Sigma-Aldrich, St. Louis, MO,
USA), and mix well. Absorbance was then detected at 490 nm
using a spectrophotometer. Each treatment group has five rep-
licates. Cell viability was obtained as a percentage of the value
of survival cells in the control groups.

Measurement of HMGB1 Level in the Cell Culture
Medium by ELISA

SH-SY5Y cells were plated in 10 cm dishes at a density of
5x106 cells/mL and treated with different doses of PQ (0, 75,
150, 300 μmol/L) for 24 h or treated with150μmol/L PQ for
different durations (0, 12, 24, 36, 48 h). The supernatants were
collected and stored at − 80 °C until assay for HMGB1 was
performed. HMGB1 levels were determined by human
ELISA kits (#SEA399Hu, CLOUD-CLONE CORP., CCC,
USA) according to the procedures provided by the
manufacturers.
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Western Blotting Assay

SH-SY5Y cells with different treatments were washed with
ice-cold PBS (#32194, HyClone, USA) and then were incu-
bated with lysis buffer on ice for 10 min. The cell lysates were
centrifuged at 12000 x g for 5 min at 4 °C. Protein concentra-
tions were determined by BCA method (#KGPBCA,
KeyGEN BioTECH, Nanjing, China). Nuclear and cytoplas-
mic extracts (#BB31122, Shanghai BestBio Science, China)
and whole cell lysis (#KGP2100, KeyGEN BioTECH,
Nanjing, China) were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to PVDF membranes. The membranes were probed
with HMGB1 (1:1000, #ab79823, Abcam, USA), RAGE
(1:500, #16346–1-AP, Wuhan Proteintech, China), p38
MAPK (P38, 1:500, #14064–1-AP, Wuhan Proteintech,
China), p-p38 MAPK (p-P38, 1:500, #AF4001, Affinity
Biosciences, OH, USA), TNF-α (1:1000, #60291–1-Ig,
Wuhan Progeintech, China), IL-6 (1:1000, #21865–1-AP,
Wuhan Proteintech, China), NF-κB/p65 (1:1000, #10745–1-
AP, Wuhan Progeintech, China), p-ΙκBα (1:1000,,
#ab133462, Abcam, MA, USA), ΙκBα (1:1000, #10268–1-
AP, Wuhan Proteintech, China), and β-actin (1:10000, #TA-
09, Beijing ZSGB-BIO, China) antibodies at 4 °C overnight.
After washing with TBST (#P25133, Shanghai Double-helix
biotech CO. Ltd., China) for 1 h, membranes were incubated
with alkaline phosphatase goat anti-rabbit IgG (1:2000, #ZB-
2308, Beijing ZSGB-BIO, China) or peroxidase-conjugated
goat anti-mouse IgG (1:2000, #ZB-2305, Beijing ZSGB-
BIO, China)and then imaged using New Super ESL Assay
(#KGP1128, KeyGEN BioTECH, Nanjing, China) on
Thermo Fisher iBright Imaging System. Quantification of
the band density was determined by densitometric analysis.

HMGB1 Protein Expression Detected
by Immunofluorescence Assay

SH-SY5Y cells were plated in 24-well plates at a density of
5x105 cells/mL and incubated overnight. After treated with
150 μmol/L PQ for different durations (0, 12, 24, 36 h), cells
were then fixed with 4% paraformaldehyde (#Top0382,
Beijing Biotoppted Science & Technology Co., Ltd., China)
for 15 min, blocked with 5% BSA (#A6010, Beijing
Biotoppted Science & Technology Co., Ltd., China) for 1 h,
incubated with anti-HMGB1 antibody (1:250, #66525–1-Ig,
Wuhan Proteintech, China) at 4 °C overnight, and then incu-
bated with rhodamine (TRITC)-conjugated goat anti-mouse
IgG (1:50, #SA00007–1, Wuhan Proteintech, China) for 1 h.
Finally, cover slips were then incubated with DAPI (#C0065,
Beijing Solarbio Science & Technology Co., Ltd., China) for
double staining and then mounted on glass slides. The fluo-
rescence intensity was detected by using an inverted fluores-
cent microscope (IX-81, Olympus).

HMGB1-shRNA Design and Cell Transfection

shRNA ta rge t i ng HMGB1 mRNA (shHMGB1)
(GGACAAGGCCCGTTATGAAAG) or negative control
mRNA sequence (shNC) (TTCTCCGAACGTGTCACGT)
were designed and synthesized by using pGMLV-SC5 RNAi
lentiviral vector. Synthesized oligonucleotides were annealed
and ligated to the BamHI/EcoRI sites of pGMLV-eGFP to
produce pGMLV-eGFP-shHMGB1 or pGMLV-eGFP-shNC.
eGFP expression was used to detect the transfection of lenti-
virus. SH-SY5Y cells were plated in 6-well plates at a density
of 5x104 cells/mL and incubated overnight. The other day,
cells were cultured in complete culture medium (control
group), complete culture medium containing shHMGB1 dil-
uent (HMGB1 shRNA group), or complete culture medium
containing shNC diluent (NC shRNA group), respectively.
After transfected for 12 h, the culture medium was replaced
with complete culture medium, and cells were incubated for
72 h and screened in media containing 2 mg/l puromycin
(#P8230, Beijing Solarbio Science & Technology Co., Ltd.,
China). Since pGMLV-SC5 RNAi lentiviral vector contains
eGFP and anti-puromycin gene, the SH-SY5Y cells
transfected with lentiviral vector can be observed with green
fluorescent. Cells were harvested to determine the HMGB1
protein level by western blotting assay. After successful trans-
fection, cells in these three groups were further treated with
different concentrations of PQ (0, 75, 150, 300 μmol/L) for
24 h.

Statistical Analysis

Data were shown by the means ± SE of at least three indepen-
dent experiments. Statistical differences between experimen-
tal groups were determined by ANOVA followed by Tukey
post hoc test. Significance level was set at p < 0.05.

Results

Effects of PQ Exposure on SH-SY5Y Cell Viability

The effects of PQ on the viability of SH-SY5Y cells were
determined by both Trypan blue staining and MTT assay.
Cell viability upon PQ treatment was expressed as the percent-
age of viability from control group. There was no significant
change in cell survival rate when treated with 75 μmol/L PQ
for 24 h. After treated with 150 μmol/L PQ for 24 h, cell
viability was significantly reduced (p < 0.05). With the in-
crease of PQ concentration, the reduction of cell viability be-
came more severe, showing a dose-dependent manner (r =
−0.909) (Fig. 1A and C).

We further observed the time-course effects of PQ expo-
sure on SH-SY5Y cell viability. Upon treatment with
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150 μmol/L PQ for 24 h, cell viability was significantly de-
creased (p < 0.05). With prolonged exposure, cell viability
was dramatically reduced, indicating a time-dependent man-
ner (r = −0.937) (Fig. 1B and D).

Alteration of Extracellular HMGB1 Level in PQ-Treated
SH-SY5Y Cells

To investigate the effects of PQ exposure on HMGB1 release in
SH-SY5Y cells, we treated cells with different doses of PQ (0,
75, 150, 300 μmol/L) for 24 h and determined the extracellular
HMGB1 level in the cell culture supernatants by using ELISA.
These results showed that HMGB1 level was significantly in-
creased upon treatment with 150 μmol/L or higher concentra-
tion of PQ (Fig. 2), indicating that PQ to some extent stimulates
SH-SY5Y cells to release HMGB1 outside the cells.

Massive HMGB1 Release Following PQ Exposure
in SH-SY5Y Cells

To further explore the dynamic impacts of PQ exposure on
HMGB1 release in SH-SY5Y cells, we treated cells with
150 μmol/L PQ and determined the HMGB1 levels in

different locations at multiple time points (0, 12, 24, 36, 48,
60 h). Specifically, HMGB1 protein levels in nucleus and
cytoplasm were detected by both western blotting and
ELISA, whereas HMGB1 protein levels in the cell culture
media were detected by ELISA.

Fig. 1 Cell viability was demonstrated as percentage in viability from the negative control in SH-SY5Y cells treated with various dosages (A and C) or
durations (B and D) of PQ. Columns, mean (n = 3); bars, ±SE; * p < 0.05, vehicle control versus PQ treatment

Fig. 2 Alteration of extracellular HMGB1 level in PQ-treated SH-SY5Y
cells. SH-SY5Y cells were treated with different doses of PQ (0, 75, 150,
300 μmol/L) for 24 h, and then cell culture supernatants were collected.
Levels of HMGB1in cell culture media were determined by ELISA. Data
are presented as mean ± SE (n = 5). * p < 0.05, vehicle control versus PQ
treatment
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We observed that HMGB1 protein levels in nucleus first
increased and then decreased during the PQ exposure (Fig. 3A
and B). HMGB1 accumulated to a high level after 12 h expo-
sure and dramatically decreased afterward. Interestingly,
HMGB1 protein levels in cytoplasm also showed a first-
increase-then-decrease pattern. However, in cytoplasm,
HMGB1 increased to the highest level until 24 h exposure
and then start to decrease afterward (Fig. 3C and D). In addi-
tion, HMGB1 protein levels in the cell culture supernatants
were found to be continuously increased until 48 h exposure
(Fig. 3E). These results indicated that HMGB1 was rapidly

released from nucleus to cytoplasm and finally accumulated in
extracellular culture media after PQ-induced cell impairment.

Translocation of HMGB1 from SH-SY5Y Nuclei
to Cytoplasm Following PQ Exposure

Translocation of HMGB1 from nucleus to cytoplasm and its
subsequent extracellular release were further confirmed by
using immunofluorescence method. Under normal conditions,
HMGB1 was exclusively located in the nuclei of SH-SY5Y
cells (Fig. 4A and C). A significant increase of the

Fig. 3 Massive release of HMGB1 from nucleus to cytoplasm and its
accumulation in PQ-treated SH-SY5Y cell culture medium. SH-SY5Y
cells were treated with 150 μmol/L PQ and harvested at multiple time
points (0, 12, 24, 36, 48, 60 h). Levels of HMGB1 in cell nucleus (A) and
cytoplasm (C) were determined by western blotting with anti-HMGB1 at
various time points after PQ exposure. Lamin B1 and β-actin were used

as the internal control for normalization of nucleus and cytoplasm, re-
spectively. Histogram showed the quantitative evaluation of HMGB1
bands in nucleus (B) and cytoplasm (D) by densitometry. (E) Levels of
HMGB1 in nucleus/cytoplasm/cell culture media were determined by
ELISA. Data are presented as mean ± SE (n = 5). * p < 0.05, vehicle
control versus PQ treatment
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fluorescence intensity of HMGB1 was observed at 12 h after
PQ treatment (Fig. 4D). In the meantime, some HMGB1was
also found in the cytoplasm (Fig. 4F), suggesting that PQ
induced a massive production of HMGB1 in SH-SY5Y nu-
cleus and some of them start translocating to the cytoplasm.

After 24 h of PQ exposure, the fluorescence intensity of
HMGB1 in the nuclei is reduced, whereas the fluorescence
intensity of HMGB1 in the cytoplasm increased (Fig. 4G
and I), indicating that HMGB1 produced in nucleus induced
by PQ is continuously translocated to cytoplasm.

After 36 h of PQ exposure, intracellular (either in nuclei or
in cytoplasm) HMGB1 immunoreactivity appeared to be
much weaker than earlier time points (Fig. 4J and L),

suggesting that most of the HMGB1 induced by PQ has been
released to the outside of SH-SY5Y cells at this moment.

PQ-Activated RAGE Signaling Pathway in SH-SY5Y
Cells

HMGB1 can be associated with cellular biological processes
through the differential engagement of multiple surface recep-
tors including TLR and RAGE ligands (Sims et al. 2010). Since
RAGE activation has been implicated in sterile inflammation
and neurological diseases (Chen et al. 2007), we would like to
clarify whether PQ-induced HMGB1 release initiate the activa-
tion of RAGE signaling pathway in SH-SY5Y cells. We

Fig. 4 PQ-induced translocation of HMGB1 from nucleus to cytoplasm
in SH-SY5Y cells. SH-SY5Y cells were treated with 150 μmol/L PQ and
harvested at multiple time points (0, 12, 24, 36, 48, 60 h). (A–L) HMGB1
localizations in cells were visualized by immunostaining with anti-
HMGB1 (red), and nuclei were visualized by staining with DAPI (blue).

Scale bar = 100 μm. (M–N) Quantification of the HMGB1
fluorescence intensity in different time points after PQ exposure. Data
are presented as mean ± SE (n = 3). * p < 0.05, vehicle control versus
PQ treatment

Neurotox Res (2020) 37:913–925918



Fig. 5 Effects of PQ on RAGE signaling pathway in SH-SY5Y cells.
Cells were treated with different doses of PQ (0, 75, 150, 300 μmol/L) or
500μmol/L ofMPP+ for 24 h. (A) Total protein lysates were evaluated by
western blot analysis for the expression levels of RAGE, RAS, P38, and
p-P38 protein. β-actin was used as the internal control for normalization.

(B–D) Histogram showed the quantitative evaluation of each protein
band by densitometry. The data are presented as mean ± SE. * p < 0.05,
compared with the vehicle control. MPP+, known to affect RAGE
signaling pathways, was used as a positive control

Fig. 6 Knockdown of HMGB1 by lentivirus-mediated shRNA in SH-
SY5Y cells. Cells were transfected with HMGB1 shRNA or NC shRNA.
(A) Total protein lysate was evaluated by western blot analysis for the
expression level of HMGB1 protein in each group. β-actin was used as

the internal control for normalization. (B) Histogram showed the
quantitative evaluation of protein band by densitometry. The data are
presented as mean ± SE. * p < 0.05, compared with the vehicle control

Neurotox Res (2020) 37:913–925 919



explored the effects of different concentrations of PQ (0, 75,
150, 300 μmol/L) on SH-SY5Y cells for 24 h by western blot-
ting assay. Our results showed that the expression level of
RAGE protein was significantly increased after PQ treatment
(Fig. 5A and B). In addition, PQ treatment significantly

increased the levels of RAS protein and phosphorylated P38
protein (p-P38) (Fig. 5A, C, and D). These results indicated that
accumulated extracellular HMGB1 induced by PQ bind to the
cell surface receptor RAGE and activate the RAGE signaling
pathway.With the increase dosage of PQ exposure, the increase
of these molecular expressions became more obvious, showing
a dose-dependent manner.

Lentivirus-Mediated shRNA Downregulated HMGB1
in SH-SY5Y Cells

Western blot was used to evaluate the efficiency of HMGB1
knockdown by lentivirus-mediated shRNA. The results
showed that the expression of HMGB1 protein was signifi-
cantly suppressed in HMGB1 shRNA group when compared
with control group (Fig. 6). In contrast, the HMGB1 protein
level in NC shRNA group exhibited no significant difference
when compared with control group, confirming the role of
scrambled shRNA as a negative control (Fig. 6).

Knockdown of HMGB1 Reduces PQ Toxicity
on SH-SY5Y Cells

We next investigated whether the knockdown of HMGB1 has
any protective effects on PQ-treated SH-SY5Y cells. The vi-
ability of SH-SY5Y cells in different groups were determined
by MTT assay and were expressed as the percentage of via-
bility from control group. Figure 7 showed that transfection
with scrambled shRNA or HMGB1-shRNA has no obvious

Fig. 7 Knockdown of HMGB1 rescues SH-SY5Y cells from PQ toxicity.
SH-SY5Y cells transfected with HMGB1 shRNA or NC shRNA were
treated with 150 μmol/L PQ for 24 h. Cell viability was demonstrated as
percentage in viability from the negative control. Columns, mean (n = 3);
bars, ±SE; * p < 0.05, compared with the vehicle control; #: p < 0.05,
compared with the NC shRNA+ PQ group

Fig. 8 Knockdown of HMGB1-inhibited RAGE signaling pathway in
PQ-treated SH-SY5Y. SH-SY5Y cells transfected with HMGB1
shRNA or NC shRNA were treated with 150 μmol/L PQ for 24 h. (A)
Total protein lysates were evaluated by western blot analysis for the
expression level of HMGB1, RAGE, RAS, p-P38, and P38 protein. β-

actin was used as the internal control for normalization. (B–E) Histogram
showed the quantitative evaluation of protein band by densitometry. The
data are presented as mean ± SE. * p < 0.05, compared with the vehicle
control. a p < 0.05, compared with the vehicle control; b p < 0.05,
compared with the PQ treatment group
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effects on cell viability (NC shRNA and HMGB1 shRNA in
Fig. 7). After treated with 150 μmol/L PQ for 24 h, the via-
bility of SH-SY5Y cells was significantly reduced by ~ 22.6%
(PQ in Fig. 7) when compared with the control group (control
in Fig. 7). However, knockdown of HMGB1 attenuated the
reduction of cell viability in SH-SY5Y cells after PQ exposure
(HMGB1 shRNA+ PQ in Fig. 7) when compared with PQ-
treated cells without HMGB1 knockdown (NC shRNA+ PQ
in Fig. 7).

Knockdown of HMGB1-Inhibited RAGE Signaling
Pathway in PQ-Treated SH-SY5Y Cells

To further illustrate the relationship between HMGB1 and
RAGE signaling pathway, we first knockdown the HMGB1
in SH-SY5Y cells and treated them with 150 μmol/L PQ for
24 h. By checking the HMGB1 protein expression by western
blot assay, we confirmed that lentivirus-mediated HMGB1
shRNA dramatically attenuated the increase of HMGB1 pro-
tein induced by PQ exposure (Fig. 8A and B). It is worth
mentioning that our preliminary data showed that there was
no significant difference between cells treated with PQ (PQ
group) and scrambled shRNA-transfected cells treated with
PQ (NC shRNA + PQ group), so we can confirm that there
is no obvious interaction between PQ and scrambled shRNA.
Thus, in this manuscript, we did not present data from NC
shRNA+ PQ group, as they are the same with PQ group.

Subsequently, the expression levels of PQ-activated key
molecules along RAGE signaling pathway like RAGE and
RAS were both inhibited by HMGB1 knockdown (Fig. 8A,

C, and D). In addition, PQ-increased phosphorylated P38 pro-
tein expression was also attenuated by HMGB1 knockdown
(Fig. 8A and E). These results revealed that HMGB1 plays a
vital role in the process of activating RAGE signaling pathway
in SH-SY5Y cells treated by PQ. Upon PQ exposure, SH-
SY5Y cells released large amount of HMGB1 which accumu-
lated in extracellular environment. By knockdown of
HMGB1, PQ exposure was not able to produce enough extra-
cellular HMBG1 to bind the cell surface receptor RAGE,
thereby inhibiting the RAGE signaling pathway.

Knockdown of HMGB1 Alleviates NF-κB p65
Expression and the Intensity of Inflammation
in PQ-Treated SH-SY5Y Cells

To further illustrate the role of HMGB1 in NF-κB signaling
and related inflammation responses, validation of activation or
inhibition of protein expression level after PQ treatment in
SH-SY5Y cells (both wild type and HMGB1 knockdown)
was performed by using western blotting. As shown in
Fig. 9, NF-κB p65 subunit expression was significantly in-
creased after PQ exposure. However, knockdown of
HMGB1 reduced the level of NF-κB p65 after being exposed
to PQ when compared with PQ-treated cells without HMGB1
knockdown. NF-κB p65 elevation is always accompanied by
the phosphorylation of ΙκBα (p-ΙκBα), which could dissoci-
ate itself from NF-κB in cytoplasm, thereby releasing
the NF-κB p65 subunit. Here we also confirmed that the ex-
pression level of p-ΙκBα was also markedly increased after
PQ treatment, and this increase was significantly attenuated by

Fig. 9 Knockdown of HMGB1 alleviates NF-κB p65 expression and the
intensity of inflammation in PQ-treated SH-SY5Y cells. SH-SY5Y cells
transfected with HMGB1 shRNA or NC shRNA were treated with
150 μmol/L PQ for 24 h. (A) Total protein lysates were evaluated by
western blot analysis for the expression level of NF-κB/p65, ΙκBα, p-

ΙκBα, TNF-α, and IL-6 protein. β-actin was used as the internal control
for normalization. (B–E) Histogram showed the quantitative evaluation
of protein band by densitometry. The data are presented as mean ± SE. a
p < 0.05, compared with the vehicle control; b p < 0.05, compared with
the PQ treatment group
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HMGB1 knockdown. The protein expression of pro-
inflammatory cytokines (TNF-α, IL-6), which was signifi-
cantly increased upon PQ exposure, was decreased signifi-
cantly in the presence of HMGB1 shRNA. These results indi-
cated that knockdown of HMGB1 could alleviate the upregu-
lated NF-κB signaling and inflammatory responses in SH-
SY5Y cells treated with PQ.

Discussion

Paraquat (1, 1′-dimethyl-4, 4′-bipyridinium, PQ) is a widely
characterized neurotoxicant capable of inducing a series of
nervous system disorders, including neurobehavioral defects
and neurodegenerative diseases such as Parkinson’s disease
(Lou et al. 2016; Tanner et al. 2011). Neuroinflammation
has been considered to be a crucial mediator between progres-
sive neural degeneration and neurotoxicant exposures (Barcia
2013; Gagne and Power 2010). However, the adverse effects
of PQ on the neuroimmune interactions and how they contrib-
ute to pathogenesis and progression of PD have rarely been
reported so far.

HMGB1, a highly conserved nonhistone DNA-binding
protein, could be actively released to cytosol and extracellular
environment and function as a cytokine to initiate inflamma-
tory responses (Bell et al. 2006; Sims et al. 2010). Recent
studies have demonstrated that HMGB1 is associated with
several neurodegenerative disorders such as amyotrophic lat-
eral sclerosis (ALS), Alzheimer’s disease (AD), and PD
(Hwang et al. 2013; Jang et al. 2013; Lo Coco et al. 2007;
Santoro et al. 2016; Sasaki et al. 2016). For example, HMGB1
was proven to be able to promote ALS progression by induc-
ing neuroinflammation and damaging motor neurons in mice
(Lo Coco et al. 2007). In AD animal models, HMGB1 secre-
tion was induced by β-amyloid peptide (Aβ) and could accel-
erate neuronal cell death (Jang et al. 2013). HMGB1 might be
particularly relevant to PD as elevated cerebrospinal fluid and
serum HMGB1 were detected in PD patients (Santoro et al.
2016). In addition, HMGB1 alterations were found in both
in vivo and in vitro PDmodels, suggesting that HMGB1 plays
an important role in the pathogenesis of PD (Guan et al. 2018;
Huang et al. 2017; Santoro et al. 2016; Sasaki et al. 2016).

Previous research has reported that acute PQ exposure
could increase the level of HMGB1 in bronchoalveolar lavage
fluid, thus activating TLR4 signaling pathway to promote
lung injury. Reactive oxygen species (ROS) production in-
duced by PQ exposure is also involved in HMGB1 release.
HMGB1 released from apoptosis cells is oxidized on Cys106
in a process that requires reactive oxygen species (ROS),
which play as a primary trigger in affecting the HMGB1 ac-
cumulation (Kazama et al. 2008). However, whether and how
HMGB1 exert modulatory effects upon lower-dose PQ expo-
sure in nervous system still remain to be illustrated. Thus, in

the present study, we selected the human neuroblastoma cell
line (SH-SY5Y), a widely used in vitro model for PD research
to investigate the underlying association between HMGB1
and PQ neurotoxicity (Xicoy et al. 2017).

Dose-dependent impacts of PQ on SH-SY5Y cells were
initially explored. When SH-SY5Y cells were treated with
PQ (≥ 150 μmol/L) for longer than 24 h, cell viability mark-
edly decreased compared to untreated cells. As expected, ex-
tracellular HMGB1 content was significantly increased upon
treatment with 150 μmol/L or higher concentration of PQ.
These results confirmed that a certain concentration of PQ
(≥ 150 μmol/L) could stimulate SH-SY5Y cells to release
HMGB1 to extracellular environment, which is somehow rel-
evant to the reduced cell viability. Since HMGB1 is predom-
inantly located in the nucleus, we further investigated the im-
pacts of PQ exposure on the dynamic translocation process of
HMGB1. Our results revealed that HMGB1 protein level in
nucleus first increased to the peak level after 12 h exposure
and dramatically decreased afterward. Similarly, HMGB1 in
cytoplasm accumulated to a peak level after 24 h exposure and
hereafter start to decrease. In contrast, extracellular HMGB1
continuously increased during the first 48 h exposure. It has
been reported that both neurons and astrocytes could secrete
HMGB1 under several pathological circumstances, such as
cerebral ischemia or subarachnoid hemorrhage (Qiu et al.
2008; Sun et al. 2014; Zhang et al. 2011). Sasaki et al. ob-
served HMGB1 translocation in dopaminergic neurons in PD
rat models (Sasaki et al. 2016). These findings supported our
hypothesis that PQ exposure induced a massive production of
HMGB1 in nucleus whereas HMGB1 rapidly translocated
from nucleus to cytoplasm and is thus continuously released
to the outside of SH-SY5Y cells.

To further illustrate the role of HMGB1 in PQ-induced
neurotoxic effects, we knock down HMGB1 in SH-SY5Y
cells by using lentivirus-mediated RNA interference tech-
nique. Our results showed that the deleterious effects induced
by PQ can be inhibited by knockdown of HMGB1, demon-
strating a role of HMGB1 in causing damage to the SH-SY5Y
cells upon PQ treatment. In consistent with our findings, re-
cent studies reported that systemic administration of neutral-
izing antibodies to HMGB1 could relieve dopaminergic neu-
ron death in PD models (Santoro et al. 2016; Sasaki et al.
2016).

HMGB1 has been reported to be associated with cellular
biological processes through the differential engagement of
multiple surface receptors including TLRs (TLR2, TLR4)
and RAGE (receptor for advanced glycation end products)
ligands (Sims et al. 2010). Although interactions between
HMGB1 and TLRs may also be important, we found that
the effects of HMGB1 were, at least partially, exerted through
activation of the multiligand receptor RAGE. RAGE has been
described to bind to a diverse array of damage-associated mo-
lecular patterns (DAMPs) such as HMGB1 (Sims et al. 2010).
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Knockdown of HMGB1 in the PQ-treated SH-SY5Y cells led
to reduced expression of RAGE in combination with reduced
cell death, indicating that the downstream signaling cascades
of RAGE contribute to the damaging effects of HMGB1.
HMGB1-RAGE interaction has been shown to be pathogenic
in models of ischemic injury and Alzheimer’s disease (Kim
et al. 2006; Mazarati et al. 2011). Previous studies have re-
vealed that HMGB1 exposure upregulated RAGE (Andersson
and Tracey 2011; Schmidt et al. 2001), supporting our find-
ings that knockdown of HMGB1 is the possible reason for the
reduced expression of RAGE. Our investigation on further
downstream cascade known to be activated upon RAGE-
ligand interaction revealed that the expression levels of
RAS, P38, and NF-κB P65 protein are increased after PQ
treatment, which could be suppressed by HMGB1 knock-
down (Bierhaus et al. 2005; Downs et al. 2015; Xu et al.
2010). NF-κB activation triggered by engagement of Aβ
and RAGE via MAPK pathway was also observed in AD
models (Kierdorf and Fritz 2013). In primary neuronal cell
culture, activation of RAGE leads to the production of
MAPK pathway and Ras (Huttunen et al. 1999). In addition,
p38MAPK signaling pathway is involved in PQ-induced neu-
ron death and lung injury (Niso-Santano et al. 2006; Pei et al.
2014). Together with these evidences, we confirmed that
RAGE-P38-NF-κB signaling pathways are likely to contrib-
ute to the HMGB1-mediated effects upon PQ exposure.

In addition, our results also demonstrated the involvement
of significant upregulation of TNF-α and IL-6 in the neuroin-
flammation upon PQ exposure. In characterizing pro-
inflammatory effects of HMGB1, we showed that knockdown
of HMGB1 suppressed the increase of TNF-α and IL-6 in SH-
SY5Ycells after PQ treatment. Multiple studies have reported
that HMGB1 could elicit the upregulation of pro-
inflammation cytokines. Sasaki et al. found that anti-
HMGB1 mAb suppresses the increase of IL-6 and IL-1β in
the striatum in rat model of PD (Sasaki et al. 2016). Santoro
et al. found that neutralization of HMGB1 lowers TNF-α level
in MPTP-treated mice (Santoro et al. 2016). These findings
provided further evidence that HMGB1 may be a key mole-
cule in the neuroinflammatory responses induced by PQ
exposure.

It is worth noting that mechanisms beyond RAGE receptor
activation may contribute to the HMGB1-mediated neurotox-
ic effects of PQ. NF-κB pathway could be activated by mul-
tiple upstream signals. ROS produced by PQ exposure may
behave as an intrinsic signal transduction molecule and mod-
ulate NF-κB activity (Lambeth 2004; Wang et al. 2014). On
the other hand, Mac1, an adhesion molecule broadly
expressed on microglia, can also react to DAMPs in neuronal
tissues (Block and Hong 2007; Floden et al. 2005). Binding of
HMGB1 tomicroglialMac1 could activate NF-κB pathway to
induce neuroinflammation in microglia, which form a vicious
cycle to drive chronic, progressive neurodegeneration (Gao

et al. 2011). Meanwhile, HMGB1 may also act on neuron
Mac1 to mediate chronic neuroinflammation in neurons
themselves.

Taken together, our study found that HMGB1 was mark-
edly increased in a concentration or time-dependent manner
upon PQ exposure and the elevated HMGB1 could be
translocated into cytosol and then released to the extracellular
milieu of SH-SY5Y cells. Moreover, we demonstrated that
HMGB1 plays a major role in PQ-induced neuroinflammation
and that the RAGE-P38-NF-κB signaling pathways contrib-
ute to the HMGB1-mediated effects upon PQ exposure.

Conclusions

The results in the present study showed that paraquat (PQ)
exposure could induce a massive translocation of HMGB1
protein from nuclei to the extracellular milieu of SH-SY5Y
cells. We also demonstrated that HMGB1 contributes to the
neurotoxicity of PQ by activating RAGE-P38-NF-κB signal-
ing pathways and promoting the secretion of pro-
inflammatory cytokines.
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