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Abstract
Neurons are specialized cells with complex and extended architecture and high energy requirements. Energy in the form of
adenosine triphosphate, produced essentially bymitochondrial respiration, is necessary to preserve neuronal morphology, maintain
resting potential, fire action potentials, and ensure neurotransmission. Pools of functional mitochondria are required in all neuronal
compartments, including cell body and dendrites, nodes of Ranvier, growth cones, axons, and synapses. The mechanisms by
which old or damaged mitochondria are removed and replaced in neurons remain to be fully understood. Mitophagy has gained
considerable interest since the discovery of familial forms of Parkinson’s disease caused by dysfunction of PINK1 and Parkin, two
multifunctional proteins cooperating in the regulation of this process. Over the past 10 years, the molecular mechanisms by which
PINK1 and Parkin jointly promote the degradation of defective mitochondria by autophagy have been dissected. However, our
understanding of the relevance of mitophagy to mitochondrial homeostasis in neurons remains poor. Insight has been recently
gained thanks to the development of fluorescent reporter systems for tracking mitochondria in the acidic compartment of the
lysosome. Using these tools, mitophagy events have been visualized in primary neurons in culture and in vivo, under basal
conditions and in response to toxic insults. Despite these advances, whether PINK1 and Parkin play a major role in promoting
neuronal mitophagy under physiological conditions in adult animals and during aging remains a matter of debate. Future studies
will have to clarify in how far dysfunction of neuronal mitophagy is central to the pathophysiology of Parkinson’s disease.
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Introduction

Mitophagy is a form of cargo-selective autophagy removing
unnecessary mitochondria, or clearing aged or dysfunctional
mitochondria to protect the cells from their deleterious effects.
More than 50 years ago, electron microscopy images revealed
the presence of altered mitochondrial profiles in atypically en-
larged lysosomal vesicles in the liver and kidney, under patho-
logical conditions (Ashford and Porter 1962; De Duve and

Wattiaux 1966; Novikoff 1959; Novikoff and Essner 1962).
This phenomenon was interpreted as progressive mitochondrial
degeneration (Novikoff and Essner 1962). However, the term
mitophagy was coined more recently with the emergence of
evidence, initially from yeast, indicating that the autophagy of
mitochondria does not occur at random, but rather reflects a
selective program (Kissova et al. 2004; Lemasters 2005). The
term was then used to describe the autophagy-dependent deg-
radation of mitochondria in cultured hepatocytes, following
nutrient deprivation or laser-induced photodamage (Kim et al.
2007; Rodriguez-Enriquez et al. 2006). An earlier precursor
study in cultured primary sympathetic neurons reported com-
plete removal of mitochondria under conditions of apoptosis
induction in the presence of caspase inhibitors, presumably
associated with loss of mitochondrial membrane potential and
cytochrome c release (Tolkovsky et al. 2002). These studies
highlighted a role for mitophagy in the regulation of mitochon-
drial degradation under conditions of metabolic remodeling or
severe mitochondrial damage. Other types of programmed
mitophagy were recognized to be central to specific
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developmental programs: during the maturation of erythro-
cytes, whereby the cells get rid of their mitochondria to acquire
the ability to transport oxygen (Sandoval et al. 2008; Schweers
et al. 2007); following fertilization of the oocyte, a stagemarked
by the removal of paternal mitochondria, underlying the uni-
versal principle of maternal mitochondrial inheritance in ani-
mals (Al Rawi et al. 2011; Sato and Sato 2011); during cardio-
myocyte maturation in the neonatal period, whereby fetal mi-
tochondria are replaced by adult mitochondria to sustain the
transition from carbohydrates to fatty acid metabolism (Gong
et al. 2015); or during the differentiation of myoblasts into
maturemyotubes, during which a distinct network ofmitochon-
dria replaces the old population to support the metabolic switch
from glycolysis to oxidative phosphorylation (Sin et al. 2016).

It was not until 2008 that mitophagy emerged as a mito-
chondrial quality control mechanism of potential relevance to
neuronal cells, with the groundbreaking discovery of the in-
volvement of the RING-IBR-RING E3 ubiquitin ligase Parkin
in the clearance of severely damaged mitochondria (Narendra
et al. 2008). Parkin is encoded by the PARK2 gene, which
carries loss-of-function mutations in autosomal recessive
forms of Parkinson’s disease (PD), a common most often spo-
radic movement disorder caused by the progressive degener-
ation of the dopaminergic (DA) neurons in a region of the
midbrain termed substantia nigra pars compacta (SNc). Why
these neurons die in PD remains a mystery. However, mito-
chondrial dysfunction had been suspected to play a role since
the 1980s, when the mitochondrial neurotoxin MPTP was
identified as the cause of Parkinsonism in young people con-
suming drugs (Corti et al. 2011; Exner et al. 2012; Langston
and Ballard 1983; Schapira and Gegg 2011). The discovery of
Parkin-dependent mitophagy provided a cellular mechanism
leading to mitochondrial dysfunction in PD. The role of this
mechanism was strengthened a few years later, when work
from several laboratories demonstrated that the product of
another gene responsible of autosomal recessive PD, the mi-
tochondrial serine/threonine kinase PINK1, was central to the
activation of Parkin and its mitochondrial recruitment during
mitophagy (Geisler et al. 2010; Matsuda et al. 2010; Narendra
et al. 2010). Thanks to an unprecedented collective effort of
the scientific community in the field during the past 10 years,
enlightened by recent descriptions of the crystal structure of
Parkin (Byrd and Weissman 2013; Caulfield et al. 2015;
Gladkova et al. 2018; Kumar et al. 2017a; Riley et al. 2013;
Sauve et al. 2018; Seirafi et al. 2015; Spratt et al. 2014;
Trempe et al. 2013; Wauer and Komander 2013) and PINK1
(Kumar et al. 2017b; Okatsu et al. 2018; Schubert et al. 2017),
we have gained a comprehensive view of the molecular mech-
anisms underlying this specific mitophagy program, which
have been summarized in excellent recent reviews
(McWilliams and Muqit 2017; Truban et al. 2017).
Although other mitophagy programs have been studied at
the molecular level (Chu 2018; McWilliams and Muqit

2017), PINK1/Parkin-dependent mitochondrial clearance is
undoubtedly the best characterized. Comparatively, however,
our understanding of the relevance of PINK1/Parkin-
dependent mitophagy to mitochondrial homeostasis in neu-
rons, particularly in those that degenerate in PD, remains poor
(Jang et al. 2018; Palikaras et al. 2018).

PINK1/Parkin-Dependent Mitophagy in Brief

Our current understanding of PINK1/Parkin-dependent
mitophagy is that it is a program activated by specific stress-
related stimuli. Its activation depends on mitochondrial protein
import arrest, caused either by toxins leading to mitochondrial
depolarization, such as the protonophore carbonyl cyanide m-
chlorophenyl hydrazone (CCCP) (Geisler et al. 2010; Matsuda
et al. 2010; Narendra et al. 2008; Narendra et al. 2010), by
dysfunction of protein import components or proteases involved
in PINK1 processing (Bertolin et al. 2013; Greene et al. 2012;
Jin et al. 2010), or by unfolded protein stress in the mitochon-
drial matrix (Fiesel et al. 2017; Jin and Youle 2013). These
conditions interfere with the translocation of PINK1 into the
organelle; leading to its accumulation in proximity of the
translocase of outer mitochondrial membrane (Bertolin et al.
2013; Hasson et al. 2013; Lazarou et al. 2012; Okatsu et al.
2012; Okatsu et al. 2013); its dimerization and autophosphory-
lation; the phosphorylation of ubiquitin moieties associated with
the outer mitochondrial membrane (Koyano et al. 2014; Kane
et al. 2014; Kazlauskaite et al. 2014; Matsuda 2016); the recruit-
ment and activation of the otherwise inactive Parkin ligase
(Riley et al. 2013 Trempe et al. 2013; Wauer and Komander
2013), by binding to phospho-ubiquitin; and its stabilization in
an active state through the PINK1-dependent phosphorylation
of its N-terminal ubiquitin-like domain (Byrd and Weissman
2013; Caulfield et al. 2015; Chaugule et al. 2011; Gladkova
et al. 2018; Kazlauskaite and Muqit 2015; Kondapalli et al.
2012; Ordureau et al. 2015; Ordureau et al. 2014; Sauve et al.
2018; Shiba-Fukushima et al. 2012; Spratt et al. 2014; Yamano
et al. 2015). As a consequence, Parkin ubiquitylates a number of
proteins of the outer mitochondrial membrane by forming dif-
ferent types of ubiquitin chains, which are further phosphorylat-
ed by PINK1, recruiting additional Parkin molecules, and there-
by feeding an amplification loop (Okatsu et al. 2015; Ordureau
et al. 2015; Ordureau et al. 2014; Sarraf et al. 2013). This pro-
cess is negatively regulated by specific deubiquitylases (Bingol
et al. 2014; Cornelissen et al. 2014; Durcan et al. 2014). The
ubiquitylation of mitochondrial proteins leads to the recruitment
of specific ubiquitin-binding autophagy receptors, including
NDP52 and optineurin, which in turn promotes association of
upstream autophagy-related proteins, thereby priming mito-
chondria for autophagy (Heo et al. 2015; Itakura et al. 2012;
Lazarou et al. 2015; Wei et al. 2017; Yamano et al. 2018).
Evidence has been provided that mitophagy is initiated in
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proximity of contact sites between mitochondria and the endo-
plasmic reticulum (ER) (Gautier et al. 2016; Gelmetti et al.
2017; Yang and Yang 2013) and that it requires dissociation
between the two organelles to proceed efficiently (McLelland
et al. 2018). This is achieved by a rapid burst of ubiquitylation of
the Parkin substrate Mitofusin 2 (Mfn2), localized on both outer
mitochondrial and ER membranes, which in turn leads to disas-
sembly ofMfn2 complexes and destruction of themitochondria-
ER contact (McLelland et al. 2018).

Neurons: Cells on a Tight Energy Budget

The human brain does not exceed 2% of the body’s weight but
its energy budget represents 20% of that of the body (Harris
et al. 2012; Mink et al. 1981). While neural activity drives
ATP synthesis by both glycolysis and oxidative phosphoryla-
tion, most of the brain ATP is generated by oxidative phos-
phorylation (Hall et al. 2012; Rangaraju et al. 2014). This
makes brain cells highly reliant on mitochondria. Neurons
have a uniquely complex cellular architecture intimately
linked to their role in information processing and transmis-
sion. They are composed of a cell body containing the nucleus
and enriched in other essential organelles, including the Golgi
apparatus, the endoplasmic reticulum, lysosomes, and mito-
chondria. A system of highly branched dendrites that emerge
(or "emerging") from the cell body is adapted to receive infor-
mation from other neurons, and a single extension of variable
length, the axon, is responsible for transmitting the electrical
signal. The axon ramifies into several terminals that pass the
signal to the dendrites of other neurons through the specialized
compartment of the synapse. In recent years, thanks to the
development of techniques for single neurons tracing and 3-
dimensional reconstruction of neuronal morphology, it has
been calculated that individual neurons can generate axons
of tens of centimeters in length in the rodent brain (Matsuda
et al. 2009; Wu et al. 2014). Extrapolations based on these
studies and on available morphometric data predict that, in the
human brain, such axons reach lengths of up to tens of meters
(Bolam and Pissadaki 2012; Matsuda et al. 2009). DA neu-
rons of the SNc, in particular, have an unmyelinated, extreme-
ly large, and highly branched axonal arbor. In humans, the
average total length of the axonal arbor of a single DA neuron
of the SNc has been estimated to exceed 4.5 m (Bolam and
Pissadaki 2012). Such an axon can generate up to 2.4 million
synapses in the projection region of the striatum.

Neurons require a lot of energy to preserve their architec-
ture, maintain the resting potential, fire action potentials, and
ensure neurotransmission in the pre- and post-synaptic com-
partments (Attwell and Laughlin 2001). Based on a computa-
tional model for DA neurons, integrating their morphological
complexity and electrophysiological properties, it has been
calculated that the energy cost associated with axon potential

propagation and recovery of resting membrane potential in-
creases exponentially with the number of levels of branches of
the axon, and according to a power law of the axonal surface
area and number of branch points (Pissadaki and Bolam
2013). The disproportionately higher energy demand associ-
ated with the large and highly branched axonal arbor of the
SNcDA neurons compared with that of smaller axons, such as
those of the DA neurons in the less susceptible ventral teg-
mental area (VTA), may well be one of the determinants of the
special vulnerability of these neurons in PD. In a recent study,
it was indeed shown that cultured mouse SNc DA neuron
displayed larger axonal arbors than cultured DA neurons from
the VTA of the olfactory bulb (Pacelli et al. 2015). This prop-
erty correlated with higher density of mitochondria specifical-
ly in the axonal compartment, higher oxygen consumption
rates, higher levels of reactive oxygen species, and greater
sensitivity to mitochondrial neurotoxins. Strikingly, treatment
of the SNc DA neurons with Semaphorin 7A, a guidance
molecule known tomodulate axonal arborization in these neu-
rons, reduced the size of the axonal arbor and at the same time
diminished oxygen consumption rates and neuronal vulnera-
bility to toxins, highlighting the intimate relationship between
the complex morphological architecture of these neurons and
their energy requirement and special sensitivity.

Mitochondrial Homeostasis in Neurons: How
Are Mitochondria Rejuvenated?

In contrast to other cell types in the body, neurons do not
divide and are therefore destined to last a lifetime.
Mitochondria are required in different neuronal compartments
and have been shown to accumulate at nodes of Ranvier, in
growth cones, axonal branches, and synapses (Hollenbeck
and Saxton 2005). How do neurons manage to maintain ap-
propriate pools of healthy mitochondria throughout their com-
plex architecture and the lifespan of the organism? A combi-
nation of functionally intertwined mechanisms that are active
in other cell types are also at play here (Misgeld and Schwarz
2017; Rugarli and Langer 2012; Shutt and McBride 2013).
These include (1) transport from the cell soma to remote pe-
ripheral sites in the dendritic arbor, axon, and axonal termi-
nals; (2) fusion and fission cycles that shape the morphology
and size of the organelle to adapt them to metabolic demand,
transport, and clearance; (3) pathways for the degradation of
individual mitochondrial proteins, portions of mitochondria,
or whole organelle; and (4) biogenesis of individual compo-
nents and whole organelles. Studies in cultured neurons and in
various in vivo models, including C. elegans, Drosophila,
zebrafish, and mouse, have demonstrated that although most
mitochondria are stationary, a fraction of about 10–40%
moves along axons at any given time (Misgeld and Schwarz
2017). To enter the axon, a mitochondrion has to be separated
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from the network (Berthet et al. 2014; Verstreken et al. 2005)
and in the axon, it can move in both anterograde and retro-
grade directions. However, the proportion of mitochondria
moving from the soma to the peripheral arbor is higher than
that transported back from the periphery to the cell body
(Misgeld et al. 2007; Pilling et al. 2006; Plucinska et al.
2012; Wang et al. 2011), which lends support to the idea that
that Bold^ stationary mitochondria are, at least in part, turned
over at axonal terminals.

Calculations of protein turnover rates based on isotopic
labeling at the organism level suggest that mitochondria have
an average lifetime of several days, a duration that appears to
be conserved during evolution and longer in the brain than in
other organs (Price et al. 2010; Vincow et al. 2013). The
Brejuvenation^ of mitochondria through the replacement of
individual components or whole organelles, particularly at
distal sites, is probably operated by several parallel pathways.
It is admitted that mitochondrial biogenesis is not restricted to
the neuronal cell body (Harbauer 2017). Transcripts for
nucleus-encoded mitochondrial proteins are present in axons
(Aschrafi et al. 2016; Shigeoka et al. 2016), which are
endowed with the protein synthesis machinery (Koenig and
Giuditta 1999), and there is evidence for replication of mito-
chondrial DNA (mtDNA) in axons (Amiri and Hollenbeck
2008). Moreover, the smooth endoplasmic reticulum popu-
lates even the most remote neuronal compartments, including
the thin branches of the axon terminals, often interacting
closely with mitochondria, providing the capacity for local
membrane lipid biosynthesis (Berridge 1998; Wu et al.
2017). In principle, mitochondrial protein synthesis and mito-
chondrial biogenesis may thus occur in the neuronal periph-
ery, although the extent to which this is indeed the case has yet
to be fully appreciated (Saxton and Hollenbeck 2012). Fusion
with younger mitochondria is another key mechanism bywhich
mitochondrial competence is preserved in neurons, through the
redistribution of essential mitochondrial constituents and the
dilution of damaged components. The relevance of this process
to neurons is illustrated by the consequence of mutations in
genes encoding components of the mitochondrial fusion ma-
chinery, which cause neurodegenerative diseases in humans
(Chen and Chan 2010). Finally, new mitochondria may be sup-
plied in neurons by non-canonical pathways, such as through
the transfer of mitochondria from astrocytes (Hayakawa et al.
2016), although the extent to which this occurs awaits further
experimental corroboration (Berridge et al. 2016).

How are Bold^ or damaged mitochondrial components or
whole organelles degraded in neurons? Several complementary
pathways for the turnover of mitochondrial components have
been identified, and again, their importance to neuronal homeo-
stasis is underscored by the neurodegenerative diseases engen-
dered by their dysfunction linked to genetic mutations (Misgeld
and Schwarz 2017; Rugarli and Langer 2012). These involve
the removal of individual proteins by mitochondrial proteases

or by the cytosolic proteasome, the vesicular delivery of mito-
chondrial cargo to the lysosome through mitochondria-derived
vesicles (MDVs), intraneuronal mitophagy, and transcellular
mitophagy (Table 1). The relevance of each of these pathways,
the physiological circumstances in which they are solicited and
the specific subcellular compartments in which they take place,
remains to be fully understood. Notably, in addition to its role in
mitophagy, the PINK1/Parkin pathway has also been involved
in the regulation of the degradation of outer mitochondrial
membrane proteins by the ubiquitin-proteasome pathway
(Tanaka et al. 2010, Karbowski and Youle 2011) and in the
delivery of selected damaged mitochondrial components to
the lysosome by MDVs (McLelland et al. 2014; McLelland
et al. 2016; Sugiura et al. 2014) (Table 1).

Mitophagy in Cultured Neurons: Evidence
for or Against

Most studies investigated mitophagy in immortalized cell
lines, following treatment with chemical uncouplers or inhib-
itors of the mitochondrial respiratory chain. The question of
whether this process is relevant to primary cells, particularly to
neurons, under physiological conditions, has been highly de-
bated (Grenier et al. 2013). Relatively, quickly after the dis-
covery of Parkin-dependent mitophagy, studies in different
primary neuronal models, including DA neurons differentiat-
ed from induced pluripotent stem cells (iPSCs), provided ev-
idence for mitochondrial translocation of exogenously
expressed Parkin (Cai et al. 2012; Joselin et al. 2012; Seibler
et al. 2011; Wang et al. 2011) in cells treated with various
mitochondrial toxins. As in other cell types, recruitment of
Parkin to mitochondria was dependent on the presence of
PINK1 (Seibler et al. 2011). Very recently, it was also shown
that exposure to mitochondrial uncouplers stabilizes endoge-
nous PINK1 (Oh et al. 2017; Soutar et al. 2018) and activates
endogenous Parkin in primary rodent and human neurons,
according to the samemolecular mechanisms identified in cell
lines overexpressing Parkin (Barini et al. 2018; Oh et al. 2017;
Ordureau et al. 2018; McWilliams et al. 2018a).

Some studies provided direct evidence for mitophagic
events in neurons. By co-expressing fluorescent proteins
targeted to autophagic vesicles (GFP-LC3) or lysosomes
(GFP-LAMP1), it was shown that autophagosomes are co-
recruited to Parkin-positive mitochondria and that mitochon-
dria are engulfed by lysosomal vesicles in primary mouse
cortical neurons treated with the protonophore carbonyl cya-
nide m-chlorophenyl hydrazone (CCCP) (Cai et al. 2012).
These authors also showed accumulation of depolarized mi-
tochondria in cells silenced for endogenous Parkin, strongly
supporting the involvement of mitophagy in mitochondrial
maintenance in neurons subjected to acute mitochondrial
stress. At the same time, however, other researchers reported
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absence of Parkin translocation tomitochondria or recruitment
of autophagic vesicles in primary rat cortical neurons exposed
to a mitochondrial uncoupler, using similar approaches (Van
Laar et al. 2011). These authors proposed that the bioenergetic
properties of neurons, their strong reliance on oxidative phos-
phorylation and reluctance to switch to glycolytic metabolism
under mitochondrial stress, preclude the occurrence of
mitophagy. Consistent with this possibility, mitochondrial de-
polarization triggered by the potassium ionophore
valinomycin did not lead to appreciable loss of mitochondrial
markers in human iPSc-derived neurons, even following over-
expression of Parkin (Rakovic et al. 2013). However, reduc-
tions in mtDNA copy number were reported under these con-
ditions, a phenomenon that was not observed in neurons from
patients with PINK1 mutations (Seibler et al. 2011). Others
have confirmed that mitochondrial proteins are also cleared to
a certain extent in human iPSc-derived neurons treated with

CCCP (Soutar et al. 2018). Careful inspection of the culture
conditions across the different studies (Grenier et al. 2013)
revealed that authors reporting massive mitochondrial Parkin
translocation or signs of mitophagy in neurons had supple-
mented the medium with apoptosis inhibitors (Cai et al.
2012) or antioxidants (Joselin et al. 2012). Thus, massive neu-
ronal death may mask the occurrence of mitophagy, which is
in line with the recent discovery that Parkin not only promotes
mitophagy but also sensitized towards apoptosis under condi-
tions of acute mitochondrial stress (Carroll et al. 2014; Zhang
et al. 2014).

Global depolarization of the mitochondrial network is un-
likely to occur under physiological conditions. In such condi-
tions, mitophagy would rather occur as a local process remov-
ing depolarized mitochondrial fragments. To mimic such a
situation, some researchers used the mitochondrion-targeted
red fluorescent protein mt-KillerRed to photosensitize small

Table 1 Pathways for the
degradation of mitochondrial
components or whole
mitochondria

Pathway Description and key references

Mitochondrial proteases Proteolytic systems of the ATP-dependent AAA+ enzyme family, degrading
irreversibly misfolded, damaged, or oxidatively modified proteins in the
mitochondrial matrix and inner mitochondrial membrane. The genetic
alteration of these proteases causes neurological disorders in humans
(Rugarli and Langer 2012; Voos et al. 2016).

Ubiquitin-proteasome system This pathway is involved in the degradation of proteins of the outer
mitochondrial membrane, including pro- and anti-apoptotic proteins, such
as Mcl1, and proteins regulating mitochondrial dynamics, such as Mfn2
(Karbowski and Youle 2011). The degradation of some of these proteins is
regulated by PINK1 and Parkin (Carroll et al. 2014; McLelland et al.
2018; Tanaka et al. 2010).

MDV pathway A vesicular mitochondrial quality control pathway involving the
PINK1/Parkin-regulated formation of small vesicles emerging from mi-
tochondria (MDVs) under conditions of oxidative stress, transporting se-
lected oxidized proteins directly to the lysosome for degradation. Contrary
to mitophagy, this pathway does not require mitochondrial fission medi-
ated by dynamin-related protein 1 (Drp1) and is independent from ca-
nonical autophagy (Soubannier et al. 2012; McLelland et al. 2014, 2016;
Sugiura et al. 2014).

Mitophagy A term designating various mechanisms for the selective delivery of whole
mitochondria to the lysosome within autophagic vesicles. This pathway
operates under basal conditions, during specific developmental programs
or in response to stress or mitochondrial damage (McWilliams and Muqit
2017, Chu 2018). Among the different mitophagy mechanisms described
so far, PINK1/Parkin-dependent mitophagy is the most comprehensively
characterized at the molecular level (Geisler et al. 2010; Matsuda et al.
2010; McWilliams and Muqit 2017; Narendra et al. 2008; Narendra et al.
2010; Truban et al. 2017).

Transmitophagy A cell non-autonomous pathway for the autophagy-dependent degradation of
neuronal mitochondria by adjacent glial cells. The existence of this path-
way has been demonstrated in vivo at the optic nerve head, where pro-
trusions shed from axons originating from retinal ganglion cells were
found to be phagocytosed by neighboring astrocytes. Using a
mitochondrion-targeted fluorescent reporter combining an acid-labile
EGFP and mCherry, it was shown that mitochondria contained in these
axonal protrusions were degraded in lysosomal vesicles within the astro-
cytes (Davis et al. 2014).
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subsets of mitochondria in the axonal compartment of rat hip-
pocampal neurons cultured in microfluidic devices (Ashrafi
et al. 2014). Using time-lapse video microscopy, they ob-
served local recruitment of GFP-LC3-positive autophagic ves-
icles and LAMP1-YFP-positive lysosomes to damaged mito-
chondria as early as 20 min following irradiation. In some
cases, they also reported disappearance of single mitochondria
from these structures. These events were observed in the ab-
sence of antioxidants in the culture medium and occurred to a
much lesser extent in neurons from Parkin- or PINK1-
deficient mice, demonstrating reliance on the PINK1/Parkin
pathway. This study demonstrated that mitophagy occurs lo-
cally in the distal axonal compartment. Similar observations
were made more recently by Hsieh and colleagues in iPSC-
derived neurons exposed to the mitochondrial complex III
inhibitor antimycin A (Hsieh et al. 2016). These authors also
showed a delay in axonal mitophagy in neurons from PD
patients with mutations in LRRK2 or from sporadic PD pa-
tients. This contrasts with the conclusion drawn by Cai and
colleagues, who observed accumulation of Parkin-positive
mitochondria and associated autophagosomes essentially in
the somatodendritic compartment of neurons treated with
CCCP for 24 h (Cai et al. 2012). Based on these observations,
it was suggested that autophagic vesicles containing damaged
mitochondria are transported back to the soma to be degraded
by cytoplasmic lysosomes. This later response may however
reflect a compensatory mechanism due to the overwhelming
of the axonal lysosomes.

All studies mentioned above investigated mitophagy under
conditions of acute and severe mitochondrial stress, but what
about neuronal mitophagy under conditions ofmildmitochon-
drial stress, which is more relevant to the chronic progressive
mitochondrial dysfunction that characterizes neurodegenera-
tive diseases? Lin and colleagues (Lin et al. 2017) recently
proposed that mitophagy may not be the main mechanism
by which defective mitochondria are removed from axons
under conditions of reversible mitochondrial depolarization
triggered by low doses of antimycin A. In this case, damaged
mitochondria were removed from axons by retrograde trans-
port to the soma, a process that was enhanced by the release
from mitochondria of the axonal mitochondrial-anchoring
protein syntaphilin. Finally, basal mitophagy was explored
in cultured hippocampal neurons, using the ratiometric
mitochondrion-targeted pH-sensitive biosensor mt-Keima,
enabling differentiation between mitochondria in the cyto-
plasm and mitochondria in the acidic microenvironment of
the lysosome (Bingol et al. 2014). This study showed progres-
sive accumulation of the biosensor in lysosomes, mostly in the
neuronal soma, consistent with ongoing mitophagy in the ab-
sence of Parkin overexpression or toxins. The delivery of mi-
tochondria to lysosomes was reduced upon silencing of
PINK1 or Parkin using small hairpin RNAs, suggesting that
these proteins are required for basal mitophagy, in addition to

stress-induced mitophagy. However, this view has been chal-
lenged by recent in vivo studies, as will be discussed in the
next section.

In Vivo Mitophagy in the Nervous System: A
Controversial Issue

Early attempts to determine the turnover rates of mitochondria
in different tissues in the 1960s were based on the in vivo
radiolabeling of protein and lipid components in rats.
Although some of these reports investigated the turnover of
different categories of mitochondrial proteins, e.g., water-sol-
uble, water-insoluble, structural, and contractile, and/or in-
cluded the analysis of cytochrome c (Fletcher and Sanadi
1961; Beattie et al. 1967), in general, these studies did not
take into account the half-lives of individual mitochondrial
proteins. Based on the observation that insoluble and soluble
protein, lipid, and cytochrome c from rat liver mitochondria
turned over at near identical rates, Fletcher and Sanadi pro-
posed for the first time that mitochondria are synthesized and
broken down as discrete entities (Fletcher and Sanadi 1961).
Later reports of some heterogeneity in the turnover of mito-
chondrial components in different tissues, including the brain,
lend support to the possibility that individual mitochondrial
components may be degraded independently, but did not fun-
damentally challenge the idea that a mitochondrial structural
unit is turned over as an entity (Beattie et al. 1967; Cuzner
et al. 1966; Gross and Rabinowitz 1968). Together with first
observations of mitochondria inside lysosomes by electron
microscopy (Ashford and Porter 1962; De Duve and
Wattiaux 1966; Novikoff 1959; Novikoff and Essner 1962;
Swift and Hruban 1964), these pioneering studies anticipated
the discovery of mitophagy and strongly supported the exis-
tence of a mechanism for the degradation of mitochondrial
entities in vivo. This issue was reinvestigated more recently
in Drosophila melanogaster, in a proteomic assay based on
the feeding of adult flies with deuterated leucine and the use of
mass spectrometry analyses to monitor simultaneously the
half-lives of numerous mitochondrial and non-mitochondrial
proteins (Vincow et al. 2013). Parallel studies in wild-type,
parkin null, and autophagy-deficient Atg7 null flies showed
prolonged half-lives for nearly 150 mitochondrial proteins in
both mutant strains and significant correlation between the
effects of Atg7 and parkin mutations, specifically for this set
of proteins, and not for proteins targeted to other organelles
known to be degraded by autophagy. This study provided the
first evidence for a role of parkin in the regulation of
mitophagy in vivo. Intriguingly, the turnover of a subset of
40 mitochondrial proteins, including 19 subunits of respirato-
ry chain components representative of the five respiratory
complexes, appeared to depend more on Parkin than on
Atg7, and there was strong correlation between the effect of
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parkin mutation and the effect of pink1 mutation on the turn-
over of these components (Vincow et al. 2013). This sug-
gested the existence of a degradation process dependent on
PINK1 and Parkin but independent of autophagy, possibly
involving the MDV pathway (Vincow et al. 2013). On the
other hand, no change in mitochondrial density was observed
in Drosophila larval motor neuron axons or cell bodies, as
would have been predicted by the reported role of the
PINK1/Parkin pathway in mitophagy (Devireddy et al.
2015). Abnormally large, discrete mitochondria did, however,
accumulate in the neuronal cell bodies, suggesting that mito-
chondrial degradation may be limited to this neuronal com-
partment in the nervous system in vivo.

Several groups made efforts towards clarifying the rele-
vance of PINK1/Parkin-dependent mitophagy to dopaminer-
gic neurons in mouse models, specifically in the context of
accelerated accumulation of mtDNA defects (Pickrell et al.
2015; Pinto et al. 2018; Song et al. 2017; Sterky et al. 2011).
The rationale for these studies came from the observation that
nigral DA neurons in humans are more prone to accumulate
mtDNA deletions than neurons in other brain regions (Bender
et al. 2006; Kraytsberg et al. 2006). Such defects are compen-
sated for by an increase in the number of normal mtDNA
copies in neurologically healthy individuals but not in PD
patients (Dolle et al. 2016), possibly due to alterations in mi-
tochondrial biogenesis (Grunewald et al. 2016). It has thus
been suggested that PINK1/Parkin-dependent mitophagy
may play a key role in counterselecting mitochondria with
high mtDNA mutational loads.

To address the relevance of this mechanism in vivo,
Parkin-knockout mice were crossed with different transgenic
mice modeling the accumulation of mtDNA deletions or mu-
tations: the MitoPark mouse, with SN DA neuron-specific
knockout of mitochondrial transcription factor A, an integral
component of the basal mitochondrial transcription machinery
with an additional role in the regulation of mtDNA copy num-
ber (Sterky et al. 2011); the mutator mouse, homozygous for a
mutation affecting the proofreading activity of DNA polymer-
ase γ, responsible for mtDNA replication (Pickrell et al.
2015); a mouse model expressing a mutant version of the
Twinkle helicase, involved in mtDNA replication, specifically
in SN DA neurons (Song et al. 2017); and the PD-mito-Pst I
mouse, in which a mitochondrion-targeted version of the re-
striction enzyme PstI is selectively expressed in SN DA neu-
rons (Pinto et al. 2018). While the MitoPark, mutant Twinkle,
and PD-mito-Pst I models developed age-dependent PD-like
phenotypes associated with progressive degeneration of SN
DA neurons and defects in locomotor behavior (Ekstrand
et al. 2007; Pickrell et al. 2011; Song et al. 2012), the accu-
mulation of somatic mtDNAmutations in mutator mice led to
premature aging in the absence of overt neurodegeneration
(Kujoth et al. 2005; Trifunovic et al. 2004). Surprisingly,
Parkin deficiency affected differently the phenotypes in these

mice. There was no modification of the mitochondrial mor-
phological alterations or neurodegenerative process character-
istic of the MitoPark model (Sterky et al. 2011). In contrast,
mtDNA mutation load or predicted pathogenicity, mitochon-
drial dysfunction, DA neurodegeneration, and behavioral de-
fects were anticipated or exacerbated in the three other
models. Despite different interpretations about whether the
observed effects reflected or not a physiological role of
Parkin in the clearance of mitochondria with high mtDNA
mutation loads, none of these studies were based on the direct
exploration of the mitophagy process.

Direct investigation of mitophagy in vivo has only recently
been rendered possible by the development of specific fluo-
rescent reporters with acid-labile components, including the
already mentioned mt-Keima and mito-QC, a mitochondrion-
targeted tandem mCherry-GFP protein (Rodger et al. 2018).
These reporters have been used to generate transgenic
Drosophila and mouse models and explore the presence of
mitochondria within lysosomes under basal conditions across
organs and tissues (Cornelissen et al. 2018; Lee et al. 2018;
McWilliams et al. 2016; Sun et al. 2015). It should be noted,
however, that these reporters cannot formally discriminate be-
tween autophagy-dependent and autophagy-independent
events, such as those mediated by the MDV pathway, unless
systematic parallel analyses are performed in corresponding
autophagy-deficient models (Table 1). Nevertheless, in all
these studies, quenching of the acid-labile fluorescent compo-
nent in the lysosome has been exclusively interpreted in terms
ofmitophagy. InDrosophila, such structures were abundant in
various tissues during development, including in the nervous
tissue, and were not observed following deletion of Atg5 or
overexpression of a kinase-dead version of Atg1 (Cornelissen
et al. 2018; Lee et al. 2018). Importantly, in the adult brain,
mitophagy events were readily detected in DA neuron clusters
reported to degenerate in pink1 and parkinmutant flies, albeit
with some differences depending on the reporter used. For
example, using mito-QC, the steady-state levels of the sup-
posed mitophagy were found to be stable during aging in the
DA neurons from the PPL1 cluster of the posterior inferior
lateral protocerebrum (Lee et al. 2018), whereas in mt-Keima
flies, the mitophagy index increased by 30% between 1 and
4 weeks of age (Cornelissen et al. 2018). In addition, in mito-
QC flies, mitophagy events were not detectable in muscle
tissue, which is also affected in pink1 and parkin mutants
(Lee et al. 2018). In contrast, mitolysosomes were observed
in the indirect flight muscles of mt-Keima flies, where they
were also found to increase fourfold in abundance between
week 1 and week 4 (Cornelissen et al. 2018). These discrep-
ancies highlight potential differences in the sensitivities of the
biosensors used to track mitochondria in lysosomes.
Consistent with this possibility, the use of mt-Keima revealed
a 20-fold higher mitophagy index in the DA neurons of the
PPL1 cluster than that in the indirect flight muscles
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(Cornelissen et al. 2018), indicating that mitophagy occurs
only rarely in muscles, where it may remain below the detec-
tion limit when monitored with mito-QC (Lee et al. 2018).
Notably, mt-Keima is a mitochondrial matrix protein, whereas
mito-QC is targeted to the outer mitochondrial membrane. As
reported for proteins of this submitochondrial compartment
(Karbowski and Youle 2011), mito-QC may thus be subject
to degradation by the ubiquitin-proteasome system in addition
to mitophagy, which could act as another source of bias. For
example, mitophagy may be artificially underestimated, as a
subset of mitochondrial units, potentially undergoing
mitophagy will be missed because of prior degradation of
the fusion protein. On the other hand, mt-Keima cannot be
analyzed in fixed samples, because fixation compromises the
lysosomal pH gradient, and this may engender signal variabil-
ity. Moreover, there is partial overlap in the Keima excitation
spectrums for red and green fluorescence, which can compli-
cate the interpretation of the data obtained with this probe.

In mice, events interpreted as mitophagy were detected using
the same reporters in a range of tissues with high metabolic
activity, such as the heart and skeletal muscle, kidney, liver,
pancreas, and brain (McWilliams et al. 2016, 2018b; Sun et al.
2015). Here, mitolysosomes were particularly abundant in the
Purkinje cell layer of the cerebellum and in regions enriched
with neural stem cells, such as the lateral ventricle and the den-
tate gyrus in the hippocampus (McWilliams et al. 2016; Sun
et al. 2015). Moreover, mitolysosomes were abundant in differ-
ent DA neuron populations, including the highly vulnerable A9
SNc neurons that degenerate in PD, but also the less susceptible
A10 DA neurons of the VTA, and the A16 periglomerular DA
neurons of the olfactory bulb, known to increase in number in
PD (McWilliams et al. 2018b). In these neurons, mitolysosomes
were rare in the axonal arbors, whereas theywere enriched in the
somata and axon initial segments. In slices of the mesencepha-
lon prepared ex vivo frommice following viral vector–mediated
delivery of mt-Keima, the basal rate of mitophagy turned out to
be significantly higher in DA neurons of the SNc than in DA
neurons of the VTA, or in other basal ganglia neurons (Guzman
et al. 2018). Remarkably, chronic treatment of the mice with the
Cav1 channel inhibitor isradipine significantly reduced basal
mitophagy in SNc DA neurons. Cav1 channel-mediated calci-
um entry into the somatodendritic compartment stimulates mi-
tochondrial intermediary metabolism and oxidative phosphory-
lation in these neurons to sustain the bioenergetic demand asso-
ciated with their characteristic autonomous pacemaking activity;
this occurs at the cost of an increase in the generation of mito-
chondrial reactive oxygen species (Dragicevic et al. 2015). In
addition to normalizing basal mitophagy, isradipine mitigated
oxidative stress in SNc neuron, suggesting that this mechanism
acts as a key determinant of vulnerability in SNc DA neurons
(Guzman et al. 2018).

In mito-QC mice, the levels of basal mitophagy did not
appear to be affected by loss-of-function mutations of

PINK1 or PARK2, supporting the idea that the PINK1/
Parkin-dependent mitochondrial clearance program is not ac-
tive under basal conditions (McWilliams et al. 2018a, b).
Alternatively, complementary mitophagy pathways may be
activated in the absence of PINK1, as previously suggested
(Dagda et al. 2009; Vincow et al. 2013). However, future
studies will have to more carefully investigate the possible
impact of PINK1/Parkin deficiency on basal mitophagy, par-
ticularly during aging and under stress. Sun et al. reported a
70% decrease in mitophagy in dentate gyrus neurons in 21-
month-old mice compared with 3-month-old animals (Sun
et al. 2015), but mitophagy in the absence of PINK1 was only
investigated up to 9.5 months of age (McWilliams et al.
2018b). Moreover, although Lee and colleagues did not ob-
serve changes in basal mitophagy in the absence of PINK1 in
Drosophila (Lee et al. 2018), Cornelissen and his team report-
ed impairment of the age-dependent increase in mitolysosome
abundance in flight muscles and dopaminergic neurons of
pink1 and parkin mutant flies (Cornelissen et al. 2018).

Conclusions

Since early studies in the 1960s postulating the existence of a
mechanism ensuring the degradation of mitochondria as dis-
crete entities based on classical in vivo radiolabeling ap-
proaches in rodents to investigate the turnover of protein and
lipid components, this hypothesis has been verified in the past
15 years by the identification of specific programs for the
autophagy-dependent destruction of mitochondria. One of
these programs is activated in cell culture by mitochondrial
stress and regulated by the protein products of two genes
responsible for familial forms of one of the most common
neurodegenerative diseases, providing the impetus for the di-
rect investigation of mitophagy in neuronal cells. Despite
many debates, fueled by the idea that the metabolic and bio-
energetic properties of neurons are not compatible with such a
mechanism, several laboratories have provided evidence for
its occurrence, not only in cultured neurons exposed to toxins
but also in neurons in the brain of model organisms under
basal conditions. Many open questions still persist: what is
the relative contribution of mitophagy to mitochondrial qual-
ity control in neurons, compared with other mechanisms in-
volving degradation of mitochondrial components by
intramitochondrial proteases, or direct delivery to the lyso-
some through the MDV pathway (Sugiura et al. 2014)?
What are the physiological conditions that activate this pro-
cess in neurons, and what are the mechanisms that regulate
basal versus evoked mitophagy? How is mitophagy intercon-
nected with mitochondrial biogenesis and how is it linked to
mitochondrial transport fusion and fission in neurons? In
which neuronal compartments does it occur primarily? Does
it contribute in any way to the modulation of neuronal activity,
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for example, by limiting energy supply to fundamental pro-
cesses, such as synaptic vesicle recycling?

Finally, with respect to PINK1/Parkin-dependentmitophagy,
we still need to understand in how far this pathway is central to
neuronal degeneration in Parkinson’s disease. This will imply
solving present controversies as to the involvement of this spe-
cific mechanism in whole organisms, particularly during aging,
which is acknowledged to be the greatest risk factor for
Parkinson’s disease (Collier et al. 2017), or under stress condi-
tions. These studies will have to be paralleled by the in-depth
investigation of the mitophagy-independent functions of the
PINK1/Parkin signaling pathway (Jang et al. 2018; Palikaras
et al. 2018). PINK1 and Parkin have been reported to exert
other functions in relation to mitochondrial maintenance, be it
cooperatively or independently, including in mitochondrial bio-
genesis and the derepression of transcripts encoding specific
mitochondrial respiratory chain subunits on the outer mitochon-
drial membrane, the regulation of the activity of mitochondrial
respiratory chain complex I and the MDV pathway (reviewed
by Alves da Costa and Checler 2012, Charan and LaVoie 2015,
Scarffe et al. 2014, Sugiura et al. 2014, Voigt et al. 2016,
Winklhofer 2014, Mouton-Liger et al. 2017, Chu 2018).
Importantly, PINK1 and Parkin play also central roles in main-
taining neuronal viability in response to stress by various, only
partially elucidated mechanisms, independent of their roles in
mitochondrial quality control (Alves Alves da Costa and
Checler 2012, Charan and LaVoie 2015, Winklhofer 2014),
and they can even exert proapoptotic functions under specific
circumstances (Carroll et al. 2014, Zhang et al. 2014).
Considering this complexity, there is still a long way to go
before we can fully appreciate the relative contribution of each
of these specific mechanisms to the pathophysiology of
Parkinson’s disease.
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