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Abstract
Mitochondria are the major site of adenosine triphosphate (ATP) production in mammalian cells. Moreover, mitochondria
produce most of the reactive oxygen species (ROS) in nucleated cells. Redox and bioenergetic abnormalities have been seen
in mitochondria during the onset and progression of neurodegenerative diseases. In that context, excitotoxicity induced by
glutamate (GLU) plays an important role in mediating neurotoxicity. Several drugs have been used in the treatment of diseases
involving excitotoxicity. Nonetheless, some patients (20–30%) present drug resistance. Thus, it is necessary to find chemicals
able to attenuate mitochondrial dysfunction in the case of excitotoxicity. In this work, we treated the human neuroblastoma SH-
SY5Y cell line with the diterpene carnosic acid (CA) at 1 μM for 12 h prior to the exposure to GLU for further 24 h. We found
that CA prevented the GLU-induced mitochondrion-related redox impairment and bioenergetic decline in SH-SY5Y cells. CA
also downregulated the pro-apoptotic stimulus elicited by GLU in this experimental model. CA exerted mitochondrial protection
by a mechanism associated with the transcription factor nuclear factor erythroid 2–related factor 2 (Nrf2), since silencing of this
protein with small interfering RNA (siRNA) suppressed the CA-induced protective effects. Future directions include investigat-
ing whether CA would be able to modulate mitochondrial function and/or dynamics in in vivo experimental models of
excitotoxicity.
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Introduction

The production of adenosine triphosphate (ATP) occurs main-
ly in the mitochondria in mammalian cells. These organelles

are specialized in the oxidation of different metabolic sub-
strates, leading to the conservation of the energy and posterior
synthesis of ATP (Brown 1992). Mitochondria utilize oxygen
(O2) gas as a final acceptor of electrons in the respiratory
chain, which is composed by complex I (NADH dehydroge-
nase), complex II (succinate dehydrogenase (SDH)), complex
III (ubiquinol-cytochrome c reductase), and complex IV (cy-
tochrome c oxidase) (Chance and Williams 1955;
Korzeniewski 1996; Papa et al. 2012). The complexes I, III,
and IV pump protons from the mitochondrial matrix to the
intermembrane space (IMS), which is located between the
inner mitochondrial membrane (IMM) and the outer mito-
chondrial membrane (OMM) (Alvarez-Paggi et al. 2017;
Genova et al. 2005; Genova and Lenaz 2011; Gibson et al.
2005; Nohl et al. 2003). The electrochemical gradient gener-
ated by the proton pumping is used by complex V to produce
ATP from adenosine diphosphate (ADP) and inorganic phos-
phate (Pi) (Papa et al. 2012; Solaini et al. 2007). Even though
this is a crucial process regarding the maintenance of the
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energetic status virtually in any nucleated human cell, there is
evidence that the respiratory chain is a major source of reac-
tive oxygen species (ROS), such as superoxide anion radical
(O2

−•) (Naoi et al. 2005; Tsujimoto et al. 2006). Actually,
mitochondria have been viewed as the major site of reactive
species production (Naoi et al. 2005).

The physiological level of reactive species produced by the
mitochondria may be enhanced during intoxication in patho-
logical conditions (Blajszczak and Bonini 2017; de Oliveira
2015; de Oliveira 2016a; de Oliveira and Jardim 2016), as is
the case in diseases affecting brain cells (Naoi et al. 2005; Yan
et al. 1997). Abnormalities in the metabolism of the excitatory
neurotransmitter glutamate are associated with epilepsy,
Alzheimer’s disease (AD), and Huntington’s disease (HD),
among others (Hamilton et al. 2017; Pchitskaya et al. 2018;
Silva et al. 2017). Increased levels of extracellular glutamate
(GLU) cause abnormal excitation of neurons and consequent
hyperproduction of ROS by a mechanism related to calcium
ions (Ca2+) and mitochondrial dysfunction (Pchitskaya et al.
2018). The mechanism underlying the GLU-induced
excitotoxicity is not completely understood, but pharmacolog-
ical strategies aiming to reduce the impact of GLU on the
brain cells also focus on mitochondrial protection, since these
organelles take a central role in the maintenance of bioener-
getics and redox states in animal cells, as well as modulate cell
fate by the intrinsic apoptotic pathway (Green et al. 2014; Lai
et al. 2014; Olloquequi et al. 2018). Importantly, some indi-
viduals (20–30%) present drug resistance during the treat-
ment, decreasing the chance of success (Schmidt and
Schachter 2014). Besides, different drugs are prescribed ac-
cording to the seizure type, as is the case of carbamazepine
and lamotrigine, which are indicated to treat patients with
partial onset seizures (Nevitt et al. 2017). On the other hand,
sodium valproate is the first-line treatment for subjects with
generalized tonic-clonic seizure (Nevitt et al. 2017).

The mitochondria contain a series of enzymatic and non-
enzymatic defenses, such as the Mn superoxide dismutase
(Mn-SOD) and glutathione peroxidase (GPx) enzymes and
the reduced glutathione (GSH), the major non-enzymatic an-
tioxidant in mammalian cells (Sies et al. 2017). Mn-SOD con-
verts O2

−• into hydrogen peroxide (H2O2), a non-radical,
which generates water after reacting with GPx or catalase
(CAT) (Sies et al. 2017). GPx consumes GSH in order to
reduce H2O2, and this reaction is crucial in the mitochondria
to avoid the diffusion of H2O2 to other cellular compartments
(Lu 2013;Morris et al. 2014; Sies et al. 2017). Themodulation
of these antioxidant defenses depends on, at least partially, the
transcription factor nuclear factor erythroid 2–related factor 2
(Nrf2), the redox master regulator in mammalian cells
(Nguyen et al. 2009; Sies et al. 2017). Furthermore, Nrf2
presents a role in modulating mitochondrial function and dy-
namics (Dinkova-Kostova and Abramov 2015; Negrette-
Guzmán et al. 2013). Nrf2 activity is controlled by different

signaling pathways, according to the cell type (Nguyen et al.
2009). Some dietary factors, such as sulforaphane (de Oliveira
et al. 2017a; Negrette-Guzmán et al. 2013; Tarozzi et al.
2013), resveratrol (Ahmed et al. 2017; Jardim et al. 2018),
pinocembrin (de Oliveira et al. 2017b, 2018a), naringenin
(de Oliveira et al. 2017c; Lou et al. 2014), and others
(Chandrasekhar et al. 2018; de Oliveira et al. 2017d; Jing
et al. 2016; Jo et al. 2018), may be listed as stimulators of
Nrf2. In this context, the diterpene carnosic acid (CA;
C20H28O4) has been reported as a potent Nrf2 inducer, causing
cytoprotection at low concentrations (i.e., 1–5 μM) in several
experimental models (de Oliveira 2016b, 2018). CA is isolat-
ed from Rosmarinus officinalis (known as rosemary or
Balecrim^) and Salvia officinalis and exhibits antioxidant, an-
ti-inflammatory, and antitumor actions, among others (Birtić
et al. 2015; de Oliveira 2016b). In addition to CA, such veg-
etal species contain also rosmarinic acid (RA), among other
cytoprotective agents, that exert antioxidant effects in different
experimental models (Amoah et al. 2016). However, CA ex-
hibits a more potent action when compared to RA, since CA at
1 μM can significantly attenuate loss of cell viability, for ex-
ample in some cell types exposed to a myriad of chemical
stressors (de Oliveira 2018). On the other hand, some research
groups have demonstrated that RA at 56 μM caused
cytoprotection in experimental models involving disruption
in the redox environment (Lee et al. 2008).

Even though CA is a widely known inducer of Nrf2 and a
mitochondrial protective agent, it was not previously investi-
gated whether and how CA would be able to protect mito-
chondria of neuronal cells exposed to GLU in an experimental
model of excitotoxicity. Therefore, we analyzed here whether
a pretreatment with CA would be effective in preventing the
mitochondrial disturbances induced by GLU-elicited
excitotoxicity in the human neuroblastoma SH-SY5Y cell
line.

Materials and Methods

Materials

Plastic materials used to maintain cell culture were acquired
from Corning, Inc. (NY, USA) and Becton Dickson (NJ,
USA). We obtained CA and the culture analytical grade re-
agents from Sigma (MO, USA). Other chemicals and assay
kits were obtained as described here.

Cell Culture

The human dopaminergic neuroblastoma SH-SY5Y cells
were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA) and were cultured in
Dulbecco’s modified Eagle’s medium (DMEM)/F-12 HAM
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nutrient medium (1:1 mixture) containing 10% fetal bovine
serum, 2 mM L-glutamine, penicillin (1000 units/mL), strep-
tomycin (1000 μg/mL), and amphotericin B (2.5 μg/mL) in a
5% CO2-humidified incubator at 37 °C. The SH-SY5Y cells
were trypsinized after reaching an 80–90% confluence.

Chemical Treatments

We utilized glutamate at 10–80 mM in order to obtain the
concentration of this neurotransmitter able to reduce the via-
bility of the cells by 50%. After this initial step, glutamate was
used at 80 mM in the other assays. The cells were incubated
with glutamate for 3–24 h, depending on the assay. CA (dis-
solved in 0.1% DMSO) at 0.1–2 μMwas administrated to the
cells 12 h before the chemical challenge with GLU. Detailed
information regarding the experimental design may be obtain-
ed also in the figure legends.

Analysis of Cell Viability and Cytotoxicity Assay

We analyzed the viability of SH-SY5Y cells through the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay (Mosmann 1983). Cytotoxicity was inves-
tigated by measuring the activity of lactate dehydrogenase
(LDH) in the medium using a commercial kit, according to
the instructions of the manufacturer (CytoTox 96
NonRadioactive Cytotoxicity Assay, Promega).

Measurement of Mitochondrion-Related Apoptotic
Factors

We quantified the immunocontents of Bax, cytosolic cyto-
chrome c, mitochondrial cytochrome c, and cleaved PARP by
utilizing ELISA kits based on the instructions of the manufac-
turer (Abcam, MA, USA). Caspase-9 and caspase-3 enzyme
activities were evaluated by using fluorimetric assay kits follow-
ing the instructions of the manufacturer (Abcam, MA, USA).
The levels of DNA fragmentation in cell lysates were quantified
by using an ELISA kit following the manufacturer’s instructions
(Roche, Germany) (de Oliveira et al. 2017c, 2018b).

Measurement of the Generation of Intracellular ROS

The non-polar compound 2′-7′-dichlorodihydrofluorescein
diaceta te (DCFH-DA) was used to quant i fy the
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Fig. 1 a, b The effects of glutamate (GLU) and/or carnosic acid (CA) on
the viability of SH-SY5Y cells. CA (0.1–2 μM) was administrated for
12 h before induction of excitotoxicity with GLU at 80mM for additional
24 h. The results are presented as the mean ± SEM of three or five
independent experiments each done in triplicate. One-way ANOVA
followed by post hoc Tukey’s test (*p < 0.05 vs control cells; #p < 0.05
vs GLU-treated cells)
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Fig. 2 The effects of a pretreatment with CA at 1 μM for 12 h on the
levels of cleaved PARP (a) andDNA fragmentation (b) in SH-SY5Y cells
exposed to glutamate (GLU) at 80 mM for further 24 h. The results are
presented as the mean ± SEM of three or five independent experiments
each done in triplicate. One-way ANOVA followed by post hoc Tukey’s
test (*p < 0.05 vs control cells; #p < 0.05 vs GLU-treated cells)
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intracellular production of ROS in SH-SY5Y cells (LeBel
et al. 1992).

Evaluation of Nitric Oxide Production

The production of nitric oxide (NO•) was measured by
using an assay kit, as indicated by the manufacturer
(Abcam, MA, USA).

Quantification of MDA, Protein Carbonyl, Protein
Thiol Groups, and 8-Oxo-dG Levels

The levels of MDA, protein carbonyl, protein thiol groups,
and 8-oxo-dG were measured by using commercial kits
(Abcam, MA, USA) (de Oliveira et al. 2015; de Oliveira
et al. 2017b).

Evaluation of 3-Nitrotyrosine Levels

The immunocontent of 3-nitrotyrosine in total samples and
mitochondrial membranes was measured by using a polyclon-
al antibody to 3-nitrotyrosine (Calbiochem, Germany), which
was diluted 1:2000 in phosphate-buffered saline (PBS)
(pH 7.4) with 5% albumin in an indirect ELISA assay, as
previously reported (de Oliveira et al. 2015).

Isolation of Mitochondria

Mitochondria were isolated from SH-SY5Y cells by utiliz-
ing a protocol published by Wang et al. (2014). The cells
were washed and resuspended in a buffer (250 mM su-
crose, 10 mM KCl, 1 mM EDTA, 1 mM MgCl2, 1 mM
EGTA, 1 mM DTT, 1 mM PMSF, 1 mM benzamidine,
1 mM pepstatin A, 10 mg/mL leupeptin, 2 mg/mL
aprotinin, and 20 mM HEPES, pH 7.4). After differential
centrifugations, we obtained purified mitochondria, which
were used in specific assays.

Isolation of Submitochondrial Particles

The purified mitochondria were frozen and thawed (three
times), leading to the rupture of mitochondrial membranes
and leakage of mitochondrial matrix–located enzymes,
such as Mn superoxide dismutase. Thus, the submito-
chondrial particles (SMPs) were washed (twice) with a
buffer (140 mM KCl, 20 mM Tris-HCl, pH 7.4), causing
the complete leakage of Mn superoxide dismutase from
mitochondria. We utilized this protocol in order to mea-
sure the production of O2

−• by mitochondria and to assess
the redox-related effects of glutamate and/or CA in mito-
chondrial membranes (Poderoso et al. 1996).

Evaluation of Enzyme Activities

We analyzed the activity of the mitochondrial enzymes
aconitase, α-ketoglutarate dehydrogenase (α-KGDH),
SDH, complex I, and complex V by using commercial kits,
as recommended by the manufacturer (Abcam, MA, USA).

Quantification of ATP Levels

In order to evaluate the levels of ATP, we utilized a commer-
cial kit according to the instructions of the manufacturer
(Abcam, MA, USA).

Determination of Mitochondrial Membrane Potential

We analyzed mitochondrial membrane potential (MMP) by
u t i l i z i n g a c o m m e r c i a l k i t b a s e d o n
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Fig. 3 The effects of a pretreatment with CA at 1 μM for 12 h on the
production of O2

−• (a), NO• (b), and general reactive species (c) in SH-
SY5Y cells exposed to glutamate (GLU) at 80 mM for further 6 h. The
results are presented as the mean ± SEM of three or five independent
experiments each done in triplicate. One-way ANOVA followed by post
hoc Tukey’s test (*p < 0.05 vs control cells; #p < 0.05 vs GLU-treated
cells)
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tetraethylbenzimidazolylcarbocyanine iodine (JC-1), as de-
scribed by the manufacturer (Abcam, MA, USA).

Isolation of Cell Nucleus

Isolation of the cell nucleus was performed by using the
Nuclear Extraction Kit (Cayman Chemical, MI, USA). The
cells (1 × 107; 80–90% confluence) were collected in ice-cold
PBS (pH 7.4). The cells were centrifuged at 300×g for 5min at
4 °C and resuspended in ice-cold hypotonic buffer, in order to
cause cell swelling. Cell membranes were dissolved by using
Nonidet P-40 reagent at 10%, which favored the access to the
cytoplasmic fraction without damaging the nuclear mem-
brane. The samples were centrifuged at 13,000×g for 30 s at
4 °C to obtain purified nuclei, whose lysis was performed by
using the ice-cold extraction buffer. The nuclear extracts were
obtained after a centrifugation at 14,000×g for 10 min at 4 °C.
These samples were utilized to measure the activity of the
transcription factor Nrf2.

Analysis of the Activity of Nrf2

Nrf2 activity was quantified by using a commercial assay kit
following the instructions of the manufacturer (Active Motif,
CA, USA).

Silencing of Nrf2

We have transfected the SH-SY5Y cells by using small inter-
fering RNA (siRNA) targeting the Nrf2 sequence (5′-CCCA
TTGATGTTTCTGATCTA-3′) or siRNA against non-target
mRNA (scrambled sequence) as a negative control (NC), as
recommended by the manufacturer (Santa Cruz, CA, USA)
and as previously described (de Oliveira et al. 2016; Jin et al.
2015; Quesada et al. 2011).

Statistical Analyses

The GraphPad 5.0 software was used in order to perform
statistical analyses in this work. Data are exhibited here as
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Fig. 4 The effects of a pretreatment with CA at 1 μM for 12 h on the total
levels of lipid peroxidation (a), protein carbonylation (b), protein thiol (c),
protein nitration (d), and 8-oxo-dG (e) in SH-SY5Y cells exposed to
glutamate (GLU) at 80 mM for further 24 h. The results are presented

as the mean ± SEM of three or five independent experiments each done in
triplicate. One-way ANOVA followed by post hoc Tukey’s test (*p < 0.05
vs control cells; #p < 0.05 vs GLU-treated cells)

Neurotox Res (2019) 36:551–562 555



the mean ± standard error of the mean (SEM) of three or five
independent experiments, each done in triplicate. The p values
were considered significant when p is < 0.05. The differences
between the experimental groups were analyzed by one-way
ANOVA, followed by post hoc Tukey’s test.

Results

CA Prevented the Decrease in the Viability
and the Mitochondrion-Related Apoptotic Cell Death
in SH-SY5Y Exposed to GLU

According to Fig. 1a, GLU at 80 mM induced a 50% decrease
in the viability of SH-SY5Y cells (p < 0.05). In order to ana-
lyze whether CA would be able to prevent the GLU-elicited
decrease in cell viability, we have treated the SH-SY5Y cells

with CA at 0.1–2 μM for 12 h before a challenge with gluta-
mate. As depicted in Fig. 1b, CA at 0.1 μM and 0.5 μM was
not effective in preventing the decrease in cell viability in-
duced by GLU. However, CA pretreatment at 1 μM and
2 μM significantly reduced the impact of GLU on the viability
of SH-SY5Y cells (p < 0.05). Based on these data, we decided
to utilize CA at 1 μM in the other analyzes we have
performed.

In this regard, we next examined whether CA would be
effective in preventing the mitochondrion-related apoptotic
cell death induced by GLU in this experimental model. As
demonstrated in Fig. S1A, CA prevented the GLU-induced
upregulation in the levels of the pro-apoptotic protein Bax
(p < 0.05). Also, CA blocked the release of cytochrome c from
the mitochondria (p < 0.05; Fig. S1B), preventing the GLU-
induced loss of cytochrome c in the organelles (p < 0.05;
Fig. S1C). In this context, CA prevented the upregulation of
the pro-apoptotic enzymes caspase-9 and caspase-3 in the SH-
SY5Y cells exposed to GLU (p < 0.05; Fig. S1D and
Fig. S1E, respectively). The cleavage of PARP and the frag-
mentation of DNA, two hallmarks of the apoptotic cell death,
were downregulated by CA (p < 0.05), as may be observed in
Fig. 2a, b, respectively.

CA Induced an Antioxidant Effect in GLU-Treated
SH-SY5Y Cells

We next evaluated whether a pretreatment with CA at 1 μM
would prevent the GLU-induced redox impairment in SH-
SY5Y cells experiencing excitotoxicity. According to Fig. 4,
CA pretreatment decreased the production of O2

−• (p < 0.05;
Fig. 3a) in SMP obtained from SH-SY5Y cells, as well as
reduced the generation of NO• (p < 0.05; Fig. 3b) and other
reactive species (p < 0.05; Fig. 3c) in this experimental model.
Interestingly, CAwas not able to affect the auto-oxidation of
epinephrine and pyrogallol (data not shown).

Based on these data, we investigated the effects of a pre-
treatment with CA on the levels of the markers of redox im-
pairment in GLU-treated SH-SY5Y cells. As depicted in
Fig. 4, CA pretreatment significantly reduced the total levels
of lipid peroxidation (p < 0.05; Fig. 4a), protein carbonylation
(p < 0.05; Fig. 4b), protein thiol oxidation (p < 0.05; Fig. 4c),
and protein nitration (p < 0.05; Fig. 4d) in SH-SY5Y chal-
lenged with GLU. Moreover, CA pretreatment was effective
in reducing the levels of 8-oxo-dG, a marker of DNA oxida-
tive damage (p < 0.05; Fig. 4e). Next, we examined the effects
of a pretreatment with CA on the levels of the markers of
redox impairment in the membranes of mitochondria isolated
from SH-SY5Y cells. According to Fig. 5, CA prevented mi-
tochondrial lipid peroxidation (p < 0.05; Fig. 5a), protein car-
bonylation (p < 0.05; Fig. 5b), and protein nitration (p < 0.05;
Fig. 5c) in GLU-treated SH-SY5Y cells.
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Fig. 5 The effects of a pretreatment with CA at 1 μM for 12 h on the
levels of lipid peroxidation (a), protein carbonylation (b), and protein
nitration (c) in mitochondrial membranes obtained from SH-SY5Y cells
exposed to glutamate (GLU) at 80 mM for further 24 h. The results are
presented as the mean ± SEM of three or five independent experiments
each done in triplicate. One-way ANOVA followed by post hoc Tukey’s
test (*p < 0.05 vs control cells; #p < 0.05 vs GLU-treated cells)
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CA Suppressed the Bioenergetics Decline Induced
by Glutamate in SH-SY5Y Cells

Based on the previous data, we next examined whether CA
would prevent the bioenergetic decline induced by GLU in
SH-SY5Y cells. As may observed in Fig. 6, CA suppressed
the GLU-induced reduction in the activity of the complex I
(p < 0.05; Fig. 6a) and complex V (p < 0.05; Fig. 6b), as well
as prevented the GLU-elicited decrease in the levels of ATP
(p < 0.05; Fig. 6c) in SH-SY5Y cells. As expected, CA
prevented the loss of MMP induced by GLU in SH-SY5Y
cells (p < 0.05; Fig. 6d). CA was effective also in preventing
the GLU-mediated inhibition of the tricarboxylic acid cycle
aconitase (p < 0.05; Fig. 7a),α-KGDH (p < 0.05; Fig. 7b), and
SDH (p < 0.05; Fig. 7c).

CA Induced Cytoprotection by an Nrf2-Dependent
Mechanism in SH-SY5Y Exposed to Glutamate

Aiming to investigate the mechanism underlying the
cytoprotection induced by CA in GLU-treated SH-SY5Y
cells, we silenced the Nrf2 transcription factor by using
siRNA targeting Nrf2. The knockdown of Nrf2 abolished
the preventive effect induced by CA on the activities of
aconitase (p < 0.05; Fig. 8a) and complex I (p < 0.05;
Fig. 8b). Moreover, Nrf2 silencing abrogated the effect of
CA pretreatment on MMP in this experimental model
(p < 0.05; Fig. 9a). Nrf2 knockdown also suppressed the

effects induced by CA regarding the viability of SH-SY5Y
cells challenged with GLU (p < 0.05; Fig. 9b). The effects of
CA at 1 μMon the activity of the transcription factor Nrf2 was
checked and may be viewed in Fig. S2. Moreover, data re-
garding the activity of Nrf2 in SH-SY5Y cells transfected with
siRNA targeting Nrf2 are presented in Fig. S3.

Discussion

GLU-induced redox impairment has been seen in different
neurological disturbances and may present a link with in-
creased cell death rates observed in such maladies (Bondy
and LeBel 1993). Indeed, the utilization of antioxidants in
experimental models of excitotoxicity demonstrated that re-
dox impairment and apoptosis are strongly correlated in cul-
tured cells and tissue protocols and in experimental animals
(Rebai et al. 2017; Zádori et al. 2018). In this scenario, mito-
chondria are central figures due to their role in both energetic
maintenance and cell fate modulation (Jodeiri Farshbaf and
Kiani-Esfahani 2017). The production of ROS by mitochon-
dria is a natural consequence of the flux of electrons in the
respiratory chain, which is part of the oxidative phosphoryla-
tion system, the main site of ATP production, in mammalian
cells (Sies et al. 2017). Moreover, damaged mitochondria pro-
duce reactive species at higher rates when compared to normal
organelles (Sies et al. 2017). Thus, mitochondrial damage
leads to impaired redox biology, decreased ATP synthesis,
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Fig. 6 The effects of a pretreatment with CA at 1 μM for 12 h on the
activities of the mitochondrial complexes I (a) and V (b) and on the levels
of ATP (c) and MMP (d) in SH-SY5Y cells exposed to glutamate (GLU)
at 80mM for further 24 h. The results are presented as themean ± SEMof
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and increased rates of cell death (Sies et al. 2017). Actually,
these three consequences resulting from mitochondrial dam-
age have been observed in conditions in which glutamate is
mediating excitotoxicity (Lai et al. 2014; Nevitt et al. 2017;
Olloquequi et al. 2018; Schmidt and Schachter 2014).
Therefore, the investigation of potential mitochondrial protec-
tive agents in the case of glutamate-induced neuronal dysfunc-
tion is of pharmacological interest.

In the present work, we demonstrate that a pretreatment
with CA induced mitochondrial protection in SH-SY5Y cells
exposed to GLU in an experimental model of excitotoxicity.
CA pretreatment suppressed the GLU-induced disturbances in
mitochondrial function, causing a reduction in the generation
of ROS and in the triggering of apoptosis in this experimental
model. The mechanism by which CA elicited mitochondrial
protection involved the Nrf2 transcription factor, since the

silencing of this protein attenuated the effects induced by
CA seen here. The diterpene CA is a potent activator of
Nrf2, which is not only a regulator of the redox environment,
but it also controls mitochondrial function (Holmström et al.
2016). CA upregulates the levels of two important
mitochondrion-located antioxidants, namely Mn-SOD and
GSH, by an Nrf2-dependent manner, as previously reported
by our research group (de Oliveira et al. 2016) and by others
(Chen et al. 2012). Importantly, it was elegantly demonstrated
by Miller et al. (2013) that an in vivo treatment with CA
attenuated the effects of a challenge with 4-hydroxynonenal
on mitochondria in an ex vivo experimental model, indicating
that CA elicited mitochondrial protection in vivo, causing a
decrease in the mitochondrial vulnerability to a pro-oxidant
agent. Thus, it is apparent that CA possesses the ability to
modulate mitochondrion-related protective pathways, which
may become useful in the case of neurodegenerative
processes.

It was previously demonstrated that CA induces neuropro-
tection without consuming GSH, as occurs with other xeno-
biotics during the phase II detoxification reactions (Satoh et al.
2008). Actually, CA upregulates the synthesis of GSH by an
Nrf2-dependent mechanism involving the expression of the γ-
glutamate-cysteine ligase (γ-GCL) enzyme subunits (Nguyen
et al. 2009). Therefore, CA contributes with the maintenance
of the redox environment by promoting an increase in the
levels of the major non-enzymatic antioxidant in mammalian
cells. This is particularly important during excitotoxicity, since
excessive extracellular concentrations of GLU affect the trans-
port of components necessary for the synthesis of GSH, such
as cystine, into the cells (Lewerenz et al. 2013). Further anal-
yses would be necessary to confirm that CA elicits mitochon-
drial protection in glutamate-treated cells by a mechanism
involving GSH.

Cunha et al. (2016) have reported that GLU at 80 mM
induces cytotoxicity in undifferentiated SH-SY5Y cells by a
mechanism associated with increased production of NO•. The
same research group also demonstrated that GLU impaired the
redox environment and upregulated caspase-3 activity in SH-
SY5Y cells in a similar manner when compared to the present
work. The administration of creatine at 10mM,which exhibits
mitochondrion-related protectant activity, attenuated the
GLU-induced cytotoxicity by decreasing NO• production
and general ROS generation, as well as blocking caspase-3
activation in SH-SY5Y cells in a pretreatment experimental
model. Accordingly, Sun et al. (2010) have shown that
tanshinone IIA, a major antioxidant agent found in the plant
Salvia miltiorrhiza Bunge, reduced the production of ROS
and blocked nuclear condensation, an index of apoptotic cell
death, in SH-SY5Y cells undergoing redox impairment–
related excitotoxicity mediated by GLU. Therefore, the ad-
ministration of antioxidant agents may be useful in the pre-
vention of toxicity in the case of GLU-induced excitotoxicity.
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Actually, pretreatment with CA attenuated the production of
O2

−• and NO•, as well as suppressed the mitochondrial dys-
function seen here in SH-SY5Y cells challenged with GLU.

In conclusion, CA prevented mitochondrial dysfunction by
a mechanism associated with the transcription factor Nrf2 in

SH-SY5Y cells exposed to GLU. It is particularly recom-
mended to perform in vivo experimental models aiming to
analyze whether the cytoprotective effects of CA would be
observed in a similar way, since CA bioavailability may affect
the levels of this diterpene in the mammalian brain.
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