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Abstract
Microglia are innate immune system cells which reside in the central nervous system (CNS). Resting microglia regulate the
homeostasis of the CNS via phagocytic activity to clear pathogens and cell debris. Sometimes, however, to protect neurons and
fight invading pathogens, resting microglia transform to an activated-form, producing inflammatory mediators, such as cyto-
kines, chemokines, iNOS/NO and cyclooxygenase-2 (COX-2). Excessive inflammation, however, leads to damaged neurons and
neurodegenerative diseases (NDs), such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD),
multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Curcumin is a phytochemical isolated fromCurcuma longa. It is
widely used in Asia and has many therapeutic properties, including antioxidant, anti-viral, anti-bacterial, anti-mutagenic, anti-
amyloidogenic and anti-inflammatory, especially with respect to neuroinflammation and neurological disorders (NDs).
Curcumin is a pleiotropic molecule that inhibits microglia transformation, inflammatory mediators and subsequent NDs. In this
mini-review, we discuss the effects of curcumin on microglia and explore the underlying mechanisms.
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Introduction

Turmeric (Curcuma longa) is a rhizomatous herbaceous
flowering plant in the Ginger family (Zingiberaceae) (Hesari
et al. 2018). Turmeric is widely produced in India, China, and
other Asian countries and has been effectively used for centu-
ries in traditional medicine as a remedy to cure and treat var-
ious diseases, disorders, and injuries. In addition to its use in
medicine, it has been employed in the food, beverage, and
cosmetic industries as a coloring agent.

Various compounds have been isolated from turmeric: the
curcuminoid group (2–9%), including the three compounds
curcumin/diferuloylmethane (77%), desmethoxycurcumin

(18%), and bisdemethoxycurcumin (5%). Curcumin is the
most bioactive compound, and while first extracted in 1815
(Gupta et al. 2013), its chemical structure was not known until
1910 (Agrawal and Mishra 2010; Hesari et al. 2018; Hosseini
et al. 2018; Miłob dzka et al. 1910). Curcumin (1,7-
bis-(hydroxy-3-methoxyphenyl)-1,6-heptadiena-3,5-dione) is
a phenolic compound and a phytochemical yellowish pig-
ment. It is hydrophobic and soluble in dimethyl-sulfoxide,
organic solvents, or oils (Hesari et al. 2018). The presence of
an active methylene group and a β-diketone moiety leads to
instability and degradation by aldo-keto reductase in the liver
(Liang et al. 2008). A large limitation in the clinical use of
curcumin is its low bioavailability, chemical instability, rapid
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metabolism, and short half-life. Therefore, researchers have
been investigating the use of various formulations in vivo,
including nanoparticles, to overcome some of these chal-
lenges and improve efficacy.

Curcumin is a safe and highly pleiotropic molecule with
numerous targets that have been widely studied in vivo and
in vitro. Its broad range of activities include anti-tumor
(Hamzehzadeh et al. 2018; Mirzaei et al. 2016), anti-
inflammatory (Ghandadi and Sahebkar 2017; Karimian et al.
2017b; Panahi et al. 2015; Sahebkar et al. 2016), anti-
angiogenic (Shakeri et al. 2018), neuroprotective (Ghosh
et al. 2015; Hu et al. 2015), anti-ischemic (Bavarsad et al.
2018; Mokhtari-Zaer et al. 2018; Sahebkar 2010), anti-tumor
(Hamzehzadeh et al. 2018; Iranshahi et al. 2009; Momtazi and
Sahebkar 2016; Teymouri et al. 2017), lipid-modifying
(Cicero et al. 2017; Ganjali et al. 2017; Panahi et al. 2014;
Panahi et al. 2016b), antidiabetic (Panahi et al. 2018;
Parsamanesh et al. 2018), hepatoprotective (Panahi et al.
2017b; Zabihi et al. 2017), analgesic (Shakeri and Sahebkar
2016), antioxidant (Panahi et al. 2016a, 2017a; Sahebkar et al.
2015), vasculoprotective (Bianconi et al. 2018; Karimian et al.
2017a), anti- thrombotic (Keihanian et al . 2018),
cardioprotective (Saeidinia et al. 2018), pulmonoprotective
(Lelli et al. 2017), and immunomodulatory (Abdollahi et al.
2018) effects. There is particularly strong evidence of
curcumins protective effects in the context of neuroinflamma-
tion (Ameruoso et al. 2017; Hesari et al. 2018; Hosseini et al.
2018; Morales et al. 2014; Mukherjee et al. 2018; Parada et al.
2015; Sawikr et al. 2017; Venigalla et al. 2016; Wang et al.
2015; Yue et al. 2014). Curcumin can affect the MAPK,
NF-κB, WNT/β-catenin, PI3K/Akt, active protein 1 (AP-1),
and STAT3 signaling pathways, plus influence a diverse range
of microRNAs (Hesari et al. 2018; Momtazi et al. 2016a, b).

Microglia are similar to tissue macrophages but reside in
the CNS. Besides their well-known role in the immune sys-
tem, they have a fundamental role in regulating neuronal ho-
meostasis by degrading and clearing apoptotic debris
(Karlstetter et al. 2011; Napoli and Neumann 2009; Sorrenti
et al. 2018). In order to protect the CNS from neuronal damage
or exposure to pathogenic invaders with subsequent
neuroinflammatory responses, microglia transform from a
ramified form to an activated form. Activated-microglia me-
diate neuroinflammatory responses by releasing chemokines,
cytokines, reactive oxygen species (ROS), and reactive nitro-
gen species (RNS) (Hidalgo-Lanussa et al. 2018; Lanussa
et al. 2016). However, excessive production of inflammatory
mediators can cause serious neuronal damage and death.
Recent studies have shown that microglial cells are associated
with neurological disorders (NDs), such as Parkinson’s dis-
ease (PD), Alzheimer’s disease (AD), Huntington disease
(HD), multiple sclerosis (MS), amyotrophic lateral sclerosis
(ALS), and stroke, specifically ischemic stroke (Liu et al.
2017; Sawikr et al. 2017; Yue et al. 2014). Although

neuroinflammation is associated with many NDs, clinical
drug trials have proven disappointing (Imbimbo et al. 2010).

In the last decade, accumulating evidence suggests
curcumin is a potential therapeutic agent for myriad diseases
and disorders, including viral infections, cancer, rheumatoid
arthritis, atherosclerosis prevention, ischemic stroke, GulfWar
illness, cardiovascular diseases, intracerebral hemorrhage, and
NDs induced by microglia (Agrawal and Mishra 2010; Avan
et al. 2016; Choi et al. 2011; Hesari et al. 2018; Kaur et al.
2015; Kodali et al. 2018; Lee et al. 2012; Valverde et al. 2016;
Zhang et al. 2017). Neuroinflammation is the initial critical
step of neurodegenerative diseases (Alexiou et al. 2018). The
progressive damage is induced by activation of microglia with
consequent production of excessive pro-inflammatory cyto-
kines and neurotoxic factors, such as ROS, iNOS, IL-1β, tu-
mor necrosis factor-α (TNF-α), PGE2, and IL-6, leading to
neuronal damage and cognitive deficits (Kaur et al. 2015).
Due to its lipid solubility, curcumin crosses the blood-brain
barrier (BBB) and inhibits microglia activation by suppressing
the expression of inducible nitric oxide synthase (iNOS). This
reduction in NO production and the associated signaling path-
ways by curcumin, as well as blocking cytokines and oxida-
tive stress, leads to anti-neuroinflammatory effects on microg-
lia (Akaishi and Abe 2018; Eun et al. 2017; Parada et al. 2015;
Sharma et al. 2017). Moreover, curcumin has neuroprotective
effects on both neuronal cells and microglia via inhibition of
apoptosis, PI3k/Akt and iNOS, lipoxygenase (LOX), COX-2
and HSP60/HSF-1 expression, and inducing activation of
heme-oxygenase-1 (HO-1), nuclear factor erythroid 2-related
factor 2 (Nrf-2), and the antioxidant response element (ARE)
mechanism (Abdollahi et al. 2018; Cianciulli et al. 2016; Ding
et al. 2016). Thus, utilizing curcumin as an anti-
neuroinflammatory agent with inhibitory effects on microglia
transformation could be a promising approach for the treat-
ment of neurodegenerative disorders. Here, we review the
effects and underlying mechanisms of curcumin on microglia
in vitro, in vivo, and in clinical trials.

Microglia as the Resident Immune Cells
in the CNS

Microglia are the major innate immune cells resident in the
CNS. In a healthy normal brain, microglia display unique
molecular homeostasis, including transcription activity and
surface protein expression patterns which differ from tissue
macrophages (Hanisch 2013). Recent studies have defined
the molecular homeostatic and disease-associated signatures
of microglia and how these cells are regulated, including how
they contribute to healthy and morbid brain conditions
(Bennett et al. 2016). Microglia scavenge dead neuronal cells
and other CNS debris. Importantly, they also protect neuronal
cells from invading pathogens (Bennett et al. 2016).
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Microglia arise from early colonization of the CNS by the
mesoderm layer originating from yolk sac-primitive macro-
phages (Alliot et al. 1999; Ginhoux et al. 2010). Although
adult microglia are independent of hematopoietic stem cells
for their maintenance, the mechanism of their differentiation is
not yet fully understood. Unlike other hematopoietic lineages,
microglia cells live about 4.2 years and have an annual turn-
over of approximately 28% (Réu et al. 2017). Microglia have
a notable self-renewal capacity, exemplified by a recent study
showing that following elimination of 99% of microglia cells
in the CNS, newborn microglia can replenish and repopulate
from residual microglia cell proliferation rather than from new
progenitors (Huang et al. 2018; Rossi and Lewis 2018). In
certain circumstances, peripherally derived macrophages can
replace the eliminated microglia and perhaps these
translocated macrophages play a role in the progression or
development of neurological diseases. In mice, a lack of
transforming growth factor-β1 (TGF-β1) signaling in periph-
erally recruited cells (to replace the deficient microglia cells)
has been shown to produce a progressive and fatal demyelin-
ating disease (Lund et al. 2018), such as multiple sclerosis.

Microglia exist in two different forms: resting (or ramified)
and activated. Depending upon the normal or pathological
brain condition, microglia can transform from ramified to acti-
vated. Moreover, they can exhibit both functional and pheno-
typic activities in both healthy and morbid brain (Colonna and
Butovsky 2017; Hanisch 2013; Kettenmann et al. 2011;
Ransohoff and Cardona 2010). Formerly, activated microglia
were classified as M1-like (exhibiting pro-inflammatory and
neurotoxicity signaling) and M2-like (inflammatory-
participant cells) based on the surface molecule and cytokine
expression profiles (Mantovani et al. 2005; Martinez and
Gordon 2014). However, new technologies, such as epigenetic
studies, RNA sequencing, and quantitative proteomics have
revealed a more complex picture (Kettenmann et al. 2011;
Ransohoff 2016) (Fig. 1). These technologies have revealed
that microglia fundamentally differ from peripheral myeloid
cells (Bennett et al. 2016). Microglia express common macro-
phages markers, although the amount of marker expression is
different and can be used to identify microglia from macro-
phages. Furthermore, targeting these marks could be used in
the treatment of neurological diseases. For example, microglia
have a lower expression of receptor-type tyrosine-protein phos-
phatase C (PTPRC or known as CD45) when compared with
monocytes and differing expression of scavenger receptor
cysteine-rich type 1 protein M130 (CD163) (Bennett et al.
2016; Sousa et al. 2017; Vainchtein et al. 2014). Colony-stim-
ulating factor 1 (CSF1 or macrophage colony-stimulating fac-
tor) and its receptor (CSF1R) play an important role in microg-
lia development. In addition, activation of CSF1 promotes dif-
ferentiation of the tissue-specific signaling pathway of myeloid
cells and microglia in the CNS (Ginhoux et al. 2010).
Following infection or injury, microglia can be polarized to

the pro-inflammatory M1 phenotype, where they start produc-
ing TNF-α and IL-1β. This state is associated with neuronal
damage and has been implicated in the pathology of neurode-
generative disorders. In diseases such as PD, AD, and ALS,
there is a shift in the ratio of M1:M2 microglia phenotypes
towards a pro-inflammatory state. This further demonstrates
the potential for targeting microglia in NDs, specifically, ther-
apeutics which enhance polarization towards the M2 state
would promote tissue repair.

Curcumin has been shown to have a profound regulatory
effect on microglial responses. Liu et al. (2017) investigated
the neuroprotective effect of curcumin (150 mg/kg curcumin
ip) in a mouse model of ischemic stroke and demonstrated that
curcumin promoted M2 polarization leading to suppress in-
flammation, reduce neuronal damage, and improve function
tests. This research demonstrates that by inhibiting microglia-
mediated pro-inflammatory responses, curcumin has the po-
tential to reduce the progression of neurodegeneration in dis-
eases such as PD and AD.

The Role of Microglia in Neuroinflammation
and NDs

In many ND diseases, microglia lose or alter their molecular
homeostatic function, resulting in impaired synaptic transmis-
sion and plasticity, and the development of neuroinflammation
(Riazi et al. 2015). Consequently, chronic activated-microglia
have been identified in ND diseases such as AD, PD, HD, MS,
and ALS (Hesari et al. 2018; Kaur et al. 2015;Maiti et al. 2018;
Sawikr et al. 2017; Tripanichkul and Jaroensuppaperch 2012;
Venigalla et al. 2016). Researchers are now investigating how
unique microglia signatures and forms alter across the devel-
opment of specific neurodegenerative diseases. To understand
microglial plasticity, it is first important to understand the
mechanism of homeostatic microglial regulation and its pheno-
type. Ramified microglia have branches and consistently scan
the environment in search of pathogens and cellular debris, in
order to maintain CNS homeostasis (Colonna and Butovsky
2017; Kettenmann et al. 2011). Microglia, like other innate
immune cells, express pattern recognition receptors (PRRs) that
can bind to the damage-associated molecular patterns
(DAMPs) and pattern-associated molecular patterns
(PAMPs), prime examples being lipopolysaccharide (LPS)
and lipoteichoic acid (LTA) (Jack et al. 2005). Toll-like recep-
tors (TLRs) are important PRRs and are the main receptors in
immune cells, especially microglia (Jack et al. 2005;
Kettenmann et al. 2011). TLRs can bind to molecules from
pathogens and protect local cells; they can also bind to LPS
and LTA, triggering the transformation of microglia from the
resting to the activated form.

Signal transduction and binding of TLRs to PAMPs and
DAMPs are mediated through various adaptor proteins,

14 Neurotox Res (2019) 36:12–26



including MyD88 (Deguine and Barton 2014). MyD88 is the
major component of the innate immune system and is a down-
stream member of signaling pathways in the TLR and
interleukin-1 receptor (IL-1R) families. It can promote tran-
scription factor activation of NF-κB andMAPK, thereby lead-
ing to the expression of inflammatory mediators (Deguine and
Barton 2014). In the normal healthy brain, microglia are in the
resting ramified form. However, when pathogens, like Gram-
negative bacteria, invade the brain, LPS, or LTA promote mi-
croglia transformation to the activated form. To fight patho-
gens, the activated-form of microglia secretes pro-
inflammatory cytokines, chemokines, and neurotoxic factors
(Yu et al. 2018; Zhou et al. 2017), which produce neuroin-
flammation leading to neuronal damage and death (Bennett
et al. 2016; Hesari et al. 2018; Zhou et al. 2017). Inflammation
and oxidative stress processes are the major protagonists in
neurodegeneration and are highly co-dependent (Cabezas
et al. 2018; Cabezas et al. 2012). Oxidative stress is critical
in the pathology of NDs and has many destructive effects
related to the generation of ROS and RNS, which can lead
to neuronal DNA damage and death. This excessive oxidative
stress also promotes the release of pro-inflammatory cyto-
kines, such as TNF-α, IL-1, and IL-6, contributing to the
development of NDs such as AD, MS, PD, ALS, and HD
(Bennett et al. 2016; Hesari et al. 2018; Zhou et al. 2017).

Molecular Targets of Curcumin in Reducing
Microglial Activation and Associated
Neuroinflammation

Curcumin is able to cross the BBB and directly affect microglia
activation (Tsai et al. 2011). Accumulating evidence has dem-
onstrated promising pharmacological properties of curcumin,
such as anti-inflammatory, immune-modulatory, and neuropro-
tective effects. The main anti-neurodegenerative effect of
curcumin is via inhibition of apoptosis, TNF-α, iNOS, RNS,
COX-2, and LOX.

Oxidative and pro-inflammatory molecules activate Keap-
NRF2 (Kelch-like ECH-associated protein (Yu et al. 2018).
Thereupon, the separated NRF2 translocates to the nucleus
and binds to antioxidant stress condition (ARE) that can protect
cells by activating antioxidant genes (Tocharus et al. 2012).
NRF2 activates many antioxidant genes, the primary one being
HO-1. Recent studies have shown the therapeutic potential in
NDs of targeting NRF-2 and HO-1 (Eun et al. 2017). Curcumin
activates NRF-2 andHO-1 in microglia, consequently reducing
oxidative stress and neuroinflammation. Thus, curcumin can be
considered as a potential neuroprotective agent working
through the NRF-2 pathway (Bhattacharjee et al. 2016). In
certain circumstances, LPS can cross the BBB and mediate
the release of TNF-α in microglia and neuronal cells, inducing

Fig. 1 Microglia activation. Some molecules such as disease-related
DAMPs, extracellular matrix-derived DAMPs, neuronal injury-derived
DAMPs, LPS, LTA, Tat, and gp120 can trigger microglia activation.
Upon activation, microglia release some molecules including, NO,

ROS, RNS, CXCL1/Fractalkine, IL-1β, IL-6, IL-12, TNF-α, TNF-β,
IFN-γ, PGE2, MMP-3, and MMP-9. These molecules subsequently af-
fect the CNS and neurons and trigger NDs
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inflammatory responses and pro-apoptotic activity via the
NF-κB and MAPK pathways. Additionally, curcumin inhibits
TNF-α and other pro-inflammatory cytokines contributing to
its neuroprotective effects.

The STAT3 signaling pathway has been widely studied for
its role in immunity and growth regulation, early embryonic
development and inflammation (Hillmer et al. 2016;
Subramaniam et al. 2013). STAT3 activation is mediated by
the JAK family of tyrosine-kinases, especially JAK1
(Tripanichkul and Jaroensuppaperch 2012). Activation of
STAT3 by v-src leads to activation of the NF-κB signaling
pathway which, subsequently, produces inflammatory cyto-
kines, such as IL-6 (Hillmer et al. 2016). Additionally, persis-
tent STAT3 activation is associated with various diseases, such
as immunodeficiency, autoimmunity, and cancer (Hillmer et al.
2016). Curcumin modulates NF-κB activation via STAT3 inhi-
bition. The PI3K/Akt pathway plays a considerable role in
activating the microglia. Suppression of the PI3K/Akt pathway
with curcumin caused a significant downregulation of pro-
inflammatory mediators and microglia activation.

Peroxisome proliferation-activated receptor-γ (PPARγ) is a
transcription factor and nuclear receptor protein that regulates
inflammatory responses in microglia, astrocytes (Iglesias et al.
2017), and in the CNS (Jacob et al. 2007). Activated-PPARγ
binds to the peroxisome proliferator response element (PPRE)
and subsequently suppresses the production of pro-
inflammatory cytokines and inflammatory pathways (Jacob
et al. 2007). Curcumin activates PPARγ which reduces
NF-κB cytokine production in a mouse model of AD, in rat
hippocampal primary cell lines (Liu et al. 2016b), and primary
astrocytes (Wang et al. 2010). Curcumin also suppresses
neuroinflammatory signaling via reduced AP-1 activation, re-
ducing neuronal apoptosis (Ref). Heat shock protein 60
(HSP60) is a ligand for TLR-4 and promotes microglia activa-
tion; the level of heat shock factor-1 (HSF-1) is upregulated
under LPS stimulation which increases the expression of
HSP60 (Ding et al. 2016). Finally, curcumin suppresses
NF-κB, MAPK/JNK, STAT3, iNOS, PI3K/Akt, and NADPH
oxidase (NOX), HSP60, HSF-1, as well as beta-amyloid (Aβ),
COX-2, and NO production. In addition, curcumin induces
anti-inflammatory mediators, such as HO-1/NRF-2,
PPARα-γ, and IL-4 (Ding et al. 2016; Hosseini et al. 2018;
Jacob et al. 2007; Karlstetter et al. 2011).

Effects of Curcumin on Microglial Function
In Vitro

Under normal conditions, microglia protect and regulate the
homeostasis of neuronal cells. At times, in an effort to protect,
activated-microglia produce excessive factors, such as pro-
inflammatory cytokines, chemokines, ROS, and RNS. These
pro-inflammatory components lead to the development of NDs

(Yu et al. 2018). Curcumin exerts a therapeutic effect on mi-
croglia and NDs which have been reported in both in vitro and
in vivo research.

In a 2011 report by Karlstetter et al., curcumin treatment
altered the expression of 49 different transcriptional elements
in LPS-activated microglia BV-2 cells. Curcumin demonstrated
anti-inflammatory effects by causing diverse alterations in the
transcriptome, such as inhibiting NOS2, IL-6, and COX-2,
which are related to the NF-κB, AP-1, and STAT3 target path-
ways. In addition, curcumin reduced TLR-2 expression in rest-
ing microglia and after microglia activation and induced IL-4
and PPARα expression. This study supported the pleiotropic,
anti-neuroinflammatory, neuroprotective, and antioxidant ef-
fects of curcumin (Karlstetter et al. 2011). A 2014 study dem-
onstrated that curcumin has antioxidant and neuroprotective
(specifically axon protective) effects via inhibition of MyD88/
p38 MAPK (Tegenge et al. 2014). While Shi et al. (2015) used
primary BALB/c microglia cultures to demonstrate that
curcumin suppresses ERK1/2 and p38 MAPK, attenuating in-
flammatory responses (Shi et al. 2015).

In 2016, Bhattacharjee et al. reported that curcumin
inhibited miRNA-34a promotor-luciferase activity. MiRNA-
34a targets the triggering receptor expressed in myeloid/
microglial cells-2 (TREM2), which is crucial for Aβ42-
peptide clearance, and this targeting leads to NDs
(Bhattacharjee et al. 2016). Cianciulli et al. used BV-2 LPS-
stimulated microglia to demonstrate that curcumin attenuates
LPS-induced inflammatory responses and downregulates the
PI3K/Akt pathway in microglia (Cianciulli et al. 2016).
Another study with LPS-activated BV-2 microglia demonstrat-
ed that curcumin has neuroprotective and anti-inflammatory
properties via inhibition of HSF-1, HSP60, TLR-4, MyD88,
and NF-κB (Ding et al. 2016). Curcumin was shown to ame-
liorate the phagocytic and anti-inflammatory effects of N9 mi-
croglia cells. In addition, curcumin had direct regulatory effects
on phagocytosis of Aβ42-peptide, as well as attenuating effects
on PGE2-stimulated N9 cells (He et al. 2016). Liu et al. used a
neuroprotective potential algorithm to suggest that curcumin’s
neuroprotective and anti-neuroinflammation effects could pro-
duce a therapeutic benefit in AD (Liu et al. 2016a).

Previously, it has been shown thatmicroglia play an important
role in the pathogenesis of HIV-associated neurodegenerative
disorders. Virus products, such as gp-120 and Tat, can activate
microglia producing subsequent neuronal damage. Additionally,
curcumin reduced inflammation caused by gp-120 on BV-2 mi-
croglia cells via inhibiting the phosphorylation of p-PI3K, p-Akt,
and p-IKK and downregulating NF-κB (Chen et al. 2018a). A
recent study on LTA-induced BV-2 microglia reported that
curcumin inhibits iNOS, NO, PGE2, and TNF-α. Additionally,
curcumin inhibited the MAPK phosphorylation and NF-κB
translocation, as well as activating the HO-1 protecting neuronal
cells against oxidative stress (Yu et al. 2018). A summary on the
in vitro effects of curcumin are displayed in Table 1.
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Effects of Curcumin on Microglial Function
In Vivo

In vivo studies using curcumin have been performed to study
the effects in animal models. Several studies have utilized
in vitro and in vivo models. In 2010, He et al. showed that
curcumin inhibits pre-oligodendrocyte (preOL) apoptosis and
decreases iNOS, NOX, and microglia activation in preOL
culture with microglia. Using neonatal (P2) Sprague-Dawley
rats, they showed that curcumin (100 mg/kg, intraperitoneally,
ip) ameliorates whitematter injury and preOL death, as well as
inhibiting iNOS expression and NOX (p67phox and
gp91phox) in microglia (He et al. 2010). Indeed, employing
exosome-encapsulated curcumin on the glioblastoma cell line
GL26 and in C57BL/6j mice inhibited tumor growth and mi-
croglia apoptosis. Intranasal administration of exosome-
encapsulated curcumin (1.5 nmol) reduced the development
of lipopolysaccharide (LPS)-induced brain inflammation, ex-
perimental autoimmune encephalitis, and delayed the growth
of GL26 brain tumors in C57BL/6j mice (Zhuang et al. 2011).
This method produced rapid drug delivery, which is a nonin-
vasive therapeutic strategy for inflammatory-associated CNS
diseases (Zhuang et al. 2011).

Tripanichkul and Jaroensuppaperch assessed the effect of
curcumin on nigrostriatal dopaminergic (DA) neurons and glial
responses in 31 male ICR mice with 6-hydroxydopamine (6-
OHDA)-induced Parkinson’s disease. Curcumin (200 mg/kg, ip)
protected the DA neurons, as well as reducing lesions and glial/
microglia activation (Tripanichkul and Jaroensuppaperch 2012).
As previously noted, gp-120 from HIV-1 can induce microglia
activation and neuronal death. Indeed, gp-120 induced the N9
microglia cells to produce ROS, TNF-α, and monocyte
chemoattractant protein-1 (MCP-1). HIV-1 gp-120 promoted ap-
optosis in cortical neurons of 1-day-old Sprague-Dawley rats
whichwere attenuated by curcumin treatment. Curcumin inhibited
ROS, TNF-α, andMCP-1 production in gp-120-induced microg-
lia and protected cortical neurons (Guo et al. 2013).

In order to improve the pharmacokinetic profile of
curcumin, Hoppe et al. (2013) developed a lipid-core
nanocapsule loaded with curcumin, whereby low dose
nanocapsulate curcumin (2.5mg/kg, ip) showed a similar neu-
roprotective result to free high dose (50 mg/kg, ip) in an ani-
mal model of AD (Hoppe et al. 2013). Furthermore, in 2017,
Liu et al. demonstrated that curcumin can reduce the expres-
sion of pro-inflammatory cytokines, such as TNF-α, IL-6, and
IL-12, and lead to survival of microglia in a mouse model of
ischemic stroke (Liu et al. 2017). Curcumin delays retinal
degeneration via suppression of microglia activation in retinas
of rd1 mice (Wang et al. 2017). In a similar way, Niskanen
et al., in 2016, examined boron nitride nanotubes (BNNTs) as
mechanisms for intracellular delivery of fluorescent drugs,
including curcumin, to the microglia (Niskanen et al. 2016).
Curcumin-loaded BNNTs readily entered the microglia and

reduced the pro-inflammatory factors such as NO, TNF-α,
and IL-6 (Niskanen et al. 2016). Recently, Maiti et al. (2018)
suggested that solid lipid curcumin particles have better neu-
roprotective, anti-inflammatory, and anti-amyloidogenic ef-
fects than curcumin in a 5xFAD (B6SJL-Tg) mouse model
of AD (Maiti et al. 2018).

Fractalkine (FKN) promotes neuroinflammation in diet-
induced models of obesity (Xu et al. 2016). Fructose feeding
induces hippocampal microglia activation with neuroinflam-
mation via activation of TLR-4 and NF-κB, which led to
reduced neurogenesis (Xu et al. 2016). Moreover, the FKN
level and CX3CR1 expression increased in fructose-induced
mice, leading to neuroinflammation (Xu et al. 2016).
Curcumin protects the fructose-induced mice via inhibition
of microglia activation and suppression of FKN/CX3CR1 up-
regulation in the CNS (Xu et al. 2016). In a clinical trial,
Mazzolani et al. utilized Meriva, a curcumin-phospholipid
(lecithin) delivery system (Norflo tablet), to avoid poor bio-
availability and treat central serous chorioretinopathy
(Mazzolani and Togni 2013). The main effects of curcumin
on microglia in vivo are summarized in Table 2.

The Promise of Curcumin for ND Therapy

As previously noted, curcumin has many properties which can
be utilized in the treatment of NDs. Although curcumin can
inhibit microglia activation via various signaling pathways, it
is controversial because of a lack of robust pharmacokinetic
activity. Nonetheless, curcumin has a safe profile without side
effects and can be used in high doses. The use of drug delivery
systems, such as nanoencapsulating, is able to compensate for
curcumins poor pharmacokinetics, leading to enhanced effec-
tiveness at low doses. LPS, LTA, and gp120 promote microg-
lia activation which is central to the release of pro-
inflammatory factors and excessive production of the media-
tors is implicated in the pathology of NDs. Curcumin is a
pleiotropic molecule that affects many signaling pathways
with effects on microglia. Curcumin is a very promising ther-
apeutic agent that can be used in the treatment of NDs.
Although recent studies demonstrate significant amelioration
in treating NDs and other microglia-associated disorders and
injuries. Further in vivo studies still need to be undertaken to
assess various curcumin formulations and delivery mecha-
nisms in models of neurodegenerative disease. The use of
formulations, such as liposomal curcumin, polymeric
nanocurcumin, and polylactic glycolic acid co-polymer
(PLGA)–curcumin (Chiu et al. 2011), has resulted in the dif-
ferential distribution of intravenous curcumin formulations in
the rat brain and improved pharmacokinetics. However,
curcumin levels detected in the brain remain low (< 0.5%),
emphasizing the importance of assessing the long-term effects
of curcumin on the pathology of NDs. It is also important that
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animal studies also assess the effect of curcumin on behavioral
phenotypes in animal models of NDs, as this is important for
determining whether curcumin could help improve the quality
of life in patients with neurodegenerative diseases. Based on
the US clinicaltrials.gov website, clinical trials are being
performed to assess the effectiveness of curcumin in a
variety of disorders, including cancer, Alzheimer’s disease,
dementia, and schizophrenia. High doses of curcumin (3.6–
12 g/day for 3–4 months) have been proved to be safe in phase
1 clinical studies, with mild nausea and diarrhea reported in
some cases (Cheng et al. 2001; Lao et al. 2006; Sharma et al.
2004). A 6-month pilot clinical trial assessed the effect of
curcumin in patients with AD and found that it was well tol-
erated and produced an increase in plasma A-beta deposits
which the authors suggested was a consequence of disaggre-
gation of A-beta deposits in the brain. Although promising,
the short length of this trial and limited use of AD behavioral
scales demonstrates the need for further pre-clinical and clin-
ical trials to assess the effectiveness of curcumin in NDs.

Curcumin Analogs

Curcumin is a natural phytochemical isolated from turmeric
and has been utilized for centuries (Hesari et al. 2018;
Hosseini et al. 2018). Curcumin is known worldwide, and par-
ticularly in Asia, for its therapeutic properties especially in NDs
(Hesari et al. 2018; Yu et al. 2018; Zhu et al. 2014). However, it
has poor bioavailability/pharmacokinetics and is readily de-
graded in the body. Modified curcumin has been shown to
improve the pharmacokinetics. Curcumin analogs, such as
BDMC33, demethoxycurcumin, CNB-001, and bis-demetho-
xycurcumin, have been produced to circumvent the issues of
poor bioavailability/pharmacokinetics (Akaishi and Abe 2018;
Lee et al. 2012; Zhang et al. 2010; Zusso et al. 2017).

Conclusions

Microglia are the primary immune cells in the CNS. In order
to regulate homeostasis and fight pathogens, microglia can

produce inflammatory cytokines. Excessive production of in-
flammatory cytokines can lead to neuronal inflammation,
causing neuronal injury and death.Moreover, neuroinflamma-
tion is the major initial step in NDs.

Curcumin has the ability to treat and potentially cure many
diseases, especially NDs (Fig. 2). It is a pleiotropic molecule
involved in many signaling pathways. Curcumin inhibits/
reduces the inflammatory factor production via inhibiting ac-
tivation of microglia. However, curcumin has poor pharmaco-
kinetics and is readily degraded by aldo-keto reductase in the
liver. Curcumin is, however, safe and can be used in a high
dose to ameliorate its poor pharmacokinetics. Overall,
curcumin is a promising therapeutic agent to reduce inflam-
matory and apoptotic mediators in microglia.
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