
ORIGINAL ARTICLE

Dynasore Suppresses mTORC1 Activity and Induces Autophagy
to Regulate the Clearance of Protein Aggregates
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Abstract
Autophagy is an important cellular protein control process, which plays a key role in the regulation of cell homeostasis and
pathogenesis of many human diseases including neurodegenerative diseases. Reduced autophagic activity and abnormal protein
aggregation are common features of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotro-
phic lateral sclerosis, and Huntington’s disease. Therefore, pharmacological regulation of overall autophagy may be helpful for
effective treatment of neurodegenerative diseases. In the present study, we find Dynasore, a potent inhibitor of dynamin, can
repress the lysosomal localization of mTOR and block the activity of mTORC1, which in turn enhances the nuclear translocation
of the master regulators of autophagy including TFE3 and TFEB.We find that autophagic flux is upregulated in Dynasore-treated
cells. Moreover, treatment of Dynasore significantly promotes the clearance of protein aggregates formed by mutant huntingtin
protein containing expanded polyglutamine (polyQ), but not damaged mitochondria. In contrast, treatment with Dynasore has no
effect on the clearance of polyQ aggregates of mutant huntingtin in ATG5-depleted cells, in which autophagy is defective. Taken
together, our results indicate that Dynasore affects autophagic degradation of neurodegenerative disease-associated proteins by
regulating mTORC1-TFEB signaling.

Keywords Autophagy . TFEB . Lysosome . mTORC1 . Neurodegenerative disease

Introduction

The damage of neurons and cognitive ability is a common
cause of neurodegenerative diseases. The lack of effective
disease-modifying therapies and rising incidence rate bring a
huge burden to society. Most neurodegenerative diseases
share the common features that the patients’ brains contain
disease-related protein aggregates and inclusions (Kopito
2000; Ross and Poirier 2005). For example, Aβ peptides
and hyper-phosphorylated tau form aggregates or plaques
are often found in the brains of Alzheimer disease patients;
α-Synuclein is another type of aggregate-prone protein which
is often observed in the neurons of substantia nigra in
Parkinson disease patients; Huntington disease is an autoso-
mal dominant neurodegenerative disorder caused by expand-
ed CAG repeats in theHuntingtin gene. In Huntington disease
(HD), the CAG expansion in the huntingtin gene results in the
aggregation of huntingtin (Htt) protein, and mutant Htt is the
only disease-associated protein known to cause Huntington
disease (Ross and Poirier 2005). Htt is expressed throughout
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the body and is crucial for the development of the brain. The
N-terminal fragments of Htt protein containing polyglutamine
(polyQ) tract are degraded in the cells mainly through autoph-
agy (Wong and Cuervo 2010). The normal number of CAG
repeats in huntingtin gene is less than 36 in normal people and
pathogenic CAG expansion is found in the Huntington disease
patients. Previous studies have shown that longer CAG re-
peats in the huntingtin gene result in longer polyQ expansion
in Htt protein and the aggregate-prone feature of mutant Htt
(Jana et al. 2001).

It has been well known that autophagy is a selective
degradation pathway which is responsible for the clearance
of misfolded proteins, protein aggregates, and damaged
organelles (Dikic and Elazar 2018). Previous studies have
revealed that mTORC1 signaling can regulate autophagic
flux via the mTOR activity according to the levels of nu-
trient, energy, or redox. And recent studies show that
TFEB and TFE3 are the master transcription factors, and
they can regulate the biogenesis of lysosomes and
autophagosomes when localized in the nucleus (Sardiello
et al. 2009; Settembre et al. 2011). Under normal physio-
logic condition, the mTORC1 stays active and mainly lo-
cates on the lysosomes. Active mTORC1 phosphorylates
TFEB thereby inhibiting the nuclear transportation of
TFEB (Martina and Puertollano 2013); thus, autophagy is
inhibited. Under nutrient-deficient conditions, including
starvation, the mTORC1 is inactive, and TFEB is released
from the lysosomes and thereafter transported into the nu-
cleus; thus, autophagosomal and lysosomal biogenesis is
increased. Therefore, nuclear TFEB promotes the autoph-
agic flux and increases the clearance of protein aggregates
(Laplante and Sabatini 2012; Zoncu et al. 2011).

Dynasore is a potent inhibitor of dynamin which is crucial
for clathrin-dependent endocytosis (Macia et al. 2006; Preta
et al. 2015). It can inhibit the activity of GTPase of dynamin1,
dynamin2, and Drp1 and prevent the formation of vesicles
from the membrane. In this study, we found Dynasore can
increase autophagic flux through the inhibition of mTORC1
and nuclear translocation of TFEB/TFE3, the master regula-
tors of autophagy and lysosomal biogenesis. Importantly,
Dynasore treatment increases the clearance of protein aggre-
gates of mutant Htt in cells through autophagy.

Results

Dynasore Treatment Induces Autophagy in Cells

Given that Dynasore has a strong effect on endocytosis and
membrane-associated intracellular trafficking, we hypothe-
sized that it may regulate autophagy. To examine the effect
of Dynasore on autophagy, we treated HEK 293 cells with
different concentrations of Dynasore and observed the

morphologic change of EGFP-LC3, a commonly used marker
of autophagy. When the cells were treated with Dynasore,
EGFP-LC3 formed punctum structures in the cytoplasm
(Fig. 1a). These puncta are LC3 II, the lipid-modified form
of LC3 located on autophagosomal membranes, which can
promote the expansion and fusion of autophagosome and is
considered to be the reporter of autophagy. Next, we used the
autophagic flux reporter, mCherry-EGFP-LC3, to test whether
Dynasore could enhance the overall function of autophagy.
Since EGFP is more easily quenched than mCherry in acidic
lysosomes, red dots were considered to be autolysosomes that
can reflect the overall function of autophagy, whereas yellow
dots (red dots and green dots overlapped) were considered to
be autophagosomes that did not fuse with the lysosomes.
When treated with Dynasore, the number of autolysosomes
was strikingly increased (Fig. 1b). Given that LC3 II level
reflects the number of autophagosomes in cells, we observed
that the amount of LC3 II, relative to the control, increased
with the concentration of Dynasore (Fig. 1c–e). Taken togeth-
er, our results suggest that treatment with Dynasore, a
dynamin GTPase inhibitor, can induce functional autophagy
in cells.

Dynasore Treatment Enhances the Formation
of Autolysosomes and Autophagy Flux

Based on the observation that Dynasore can induce autophagy
in cells, we further explored at which stage it could induce
autophagy. We performed starvation assay and Bafilomycin
A1 treatment, which blocks the fusion of autophagosome and
lysosome, thereby inhibiting the final step of autophagy.
Nutrient deprivation (starvation) can stimulate the enhance-
ment of autophagic flux by inhibiting mTOR signaling, which
regulates autophagy at an early stage. Cells treated with
Dynasore displayed strong autophagy flux similarly as the
cells under the starvation condition. Interestingly and impor-
tantly, we found that Dynasore treatment could significantly
enhance the formation of autolysosomes, similar to starvation
treatment, which has been previously shown to increase
autophagosome–lysosome fusion (Jean et al. 2015).
Moreover, autophagosome–lysosome fusion was completely
blocked by Bafilomycin A1 with or without Dynasore
(Fig. 2a, b). LC3 II protein levels shown byWestern blot were
in accordance with the fluorescent observations (Fig. 2c–e).
Since the fusion of autophagosomes and lysosomes reflects
the overall functional autophagy, our data indicate Dynasore
can enhance the autophagic flux.

Dynasore Treatment Does Not Induce Mitochondrial
Damage and Mitophagy

Mitophagy is an essential pathway involved in the selective
autophagic clearance of mitochondria. Given that Dynasore
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can enhance the autophagic flux in cells, we investigated
whether it could regulate the removal of damaged mitochon-
dria from cells by mitophagy (Pickrell and Youle 2015). We
used a mitophagy probe mt-Keima to reflect autophagic deg-
radation of mitochondria. Keima is a pH-dependent fluores-
cent protein which emits different-colored signals in neutral or
acidic pHs. Under neutral pH, Keima emits the signals at an
excitation wavelength of 440 nm. Under acidic pH, Keima
emits the signals at an excitation wavelength of 586 nm.
Thus, the 561-nm-excited mitochondria-targeting Keima
(mt-Keima) signals reflect the quantity of mitochondria in
autolysosomes (which indicates functional mitophagy) (Sun
et al. 2017). Our results showed that almost no mitophagy
was induced in cells without Parkin expression, although
mitochondria were damaged by Antimycin A and
Oligomycin (A/O) treatments (Fig. 3a). These results are
in accordance with other findings (Narendra et al. 2008).
When transfected with GFP-tagged Parkin and treated with
A/O, the signal of mt-Keima at 561 nm dramatically in-
creased, indicating enhanced mitophagy. Dynasore treat-
ment had no effect on either Parkin translocation or
mitophagy in cells (Fig. 3b). Our results suggest
Dynasore treatment does not increase mitophagy in cells.

Dynasore Treatment Enhances Autophagy
Through the Inhibition of mTORC1 Activity
and Nuclear Translocation of TFEB

mTOR plays an important role in the regulation of lysosomal
biogenesis through regulating transcription factor EB (TFEB)
translocation (Martina et al. 2012; Roczniak-Ferguson et al.
2012). To elucidate the mechanism of autophagic enhance-
ment by Dynasore treatment, we performed immunofluores-
cence assays to check the cellular localization of mTOR pro-
tein. We found that mTOR co-localized with lysosomemarker
CD63 when treated with DMSO (control), which indicated
mTORC1 was activated. However, mTOR was found to be
diffusely distributed in the cytoplasm when the cells were
treated with Dynasore (Fig. 4a). Phosphorylated p70S6K is
considered to be the hallmark of activation of mTORC1. To
further check the activation of mTORC1, we evaluated the
phosphorylation of p70S6K at threonine 389. The level of
phosphorylated p70S6K at threonine 389 decreased as the
concentration of Dynasore increased, suggesting that
Dynasore could inhibit mTORC1 activity in a dose-
dependent manner (Fig. 4b–e). Moreover, we found that
TFEB and TFE3 (another Mit/TFE family member)
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Fig. 1 Dynasore treatment increases the numbers of autophagic
structures in cells. a HEK 293 cells were transfected with EGFP-LC3.
Twenty-four hours later, the cells were treated with DMSO, 25 μM or
50 μM Dynasore for another 6 h. Then, the cells were observed under a
confocal microscope. Scale bars, 10 μm. b HEK 293 cells were
transfected with mCherry-EGFP-LC3 for 24 h and then were treated with
DMSO, 25 μM or 50 μM Dynasore for 6 h. The cells were observed
under a confocal microscope. Scale bars, 10 μm. c HEK 293 cells were

treated with different concentrations of Dynasore for indicated time.
Then, the treated cells were collected and Western blot analysis was
performed with indicated antibodies to detect LC3-I and LC3-II.
GAPDH served as the loading control. The quantification data of relative
density of LC3 in cells treated with Dynasore for 6 h (d) or 12 h (e) are
indicated as the means ± S.E.M., *P < 0.05; **P < 0.01; ns, not signifi-
cantly different, one-way ANOVA
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translocated from the cytoplasm to the nucleus in Dynasore-
treated cells (Fig. 4f–h).

Dynasore Treatment Can Increase the Clearance
of Cellular Huntingtin Aggregates

Based on the above results, we considered whether Dynasore
plays any role in neurodegenerative disease pathogenesis. As
known, expanded polyglutamine presenting in the huntingtin
protein leads to aggregation of the protein and causes

Huntington disease. The aggregates of pathogenic
polyglutamine proteins are harmful to the cells. It is reported
that insufficient autophagic clearance related to expanded
polyglutamine proteins aggregates in neurodegenerative dis-
eases. To evaluate the effect of Dynasore on the protein ag-
gregates associated with neurodegenerative diseases, we
transfected cells with N-terminal huntingtin exon 1 fragment
with 16 or 60 polyQ repeats (htt16Q or htt60Q). Our findings
showed that htt16Q did not form aggregates with or without
Dynasore (Fig. 5c). On contrast, Dynasore could increase the
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Fig. 2 The regulation of autophagy flux by Dynasore. a HEK 293 cells
were transfected with mCherry-EGFP-LC3 for 24 h. Then, the cells were
treated with or without 50 μM Dynasore for 6 h. Meanwhile, the cells
were incubated in EBSS for 1 h or treated with 100 nM Bafilomycin A1
(which inhibits V-ATPase-dependent acidification and disrupts
autophagosome–lysosome fusion) for 6 h. Then, the cells were analyzed
by confocal microscope. Scale bars, 10 μm. b The quantification data of

autophagosome and autolysosomes in a are indicated as the means ±
S.E.M., **P < 0.01; ns, not significantly different, one-way ANOVA.
c–e HEK 293 cells were processed as a except the transfection of
mCherry-EGFP-LC3. Western blot was used to analyze the protein level
of LC3. The quantification data of relative density of LC3 are indicated as
the means ± S.E.M., *P < 0.05; ns, not significantly different, one-way
ANOVA
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clearance of protein aggregation formed by htt60Q
(Fig. 5a, b). Consistent with the increasing clearance of
htt60Q, Dynasore was also found to accelerate the clearance
of htt150Q which with longer polyQ repeats (Fig. 5d).
Moreover, knockout of the autophagy gene ATG5 completely
blocked the effect of Dynasore on the clearance of htt60Q
protein aggregates (Fig. 5e). These results indicated that
Dynasore could increase the autophagic clearance of aggre-
gated polyQ proteins.

Discussion

It has beenwell known thatmTORC1-TFEB signaling functions
in various human diseases including neurodegenerative disor-
ders. Previous studies showed that the enhancement of TFEB
nuclear translocation and activity results in beneficial effects in
cellular and transgenic animal models of neurodegenerative dis-
orders (Martini-Stoica et al. 2018; Tsunemi et al. 2012), indicat-
ing that mTORC1-TFEB signaling-mediated autophagy can
protect cells against misfolded protein-induced cytotoxicity. In
the current study, we provide new insight into the potential ther-
apy of neurodegenerative disorders such as HD. Our results
suggest that Dynasore, which was previously recognized as an
inhibitor of endocytosis (Macia et al. 2006; Preta et al. 2015), is a
novel autophagy inducer that can increase overall autophagy
flux by promoting TFEB/TFE3 nuclear translocation.

We find that Dynasore treatment specifically facilitates the
intracellular turnover of mutant Nhtt (Fig. 5), but not damage
mitochondria (Fig. 3), indicating that Dynasore enhances basal
autophagy in cells, which in turn promotes the degradation of
autophagic substrate proteins, including many misfolded and
aggregated proteins. Interestingly and importantly, our data
show that Dynasore treatment strikingly increases the fusion
between autophagosomes and the lysosomes (Fig. 2), indicat-
ing that it could be more efficient and valuable than the tradi-
tional mTOR inhibitors such as rapamycin and Torin1, which
target autophagy–lysosome pathway at the early step. Since
autophagosomal accumulation in cells may reflect impaired
autophagic degradation, which is broadly observed in neurode-
generative disease models and has been shown in the previous
studies (Dikic and Elazar 2018; Wong and Cuervo 2010), strat-
egies to enhance the autophagic degradation by generating
more autolysosomes have been an attractive issue in the field.
More specifically, the treatment of neurodegenerative disease
would be a benefit from pharmacological regulation which can
enhance autophagosomes–lysosomes fusion. Base on this, the
present research not only helps to understand the mechanism
underlying endocytic and autophagic regulations but also offers
a new clue to develop therapeutic approaches for HD and other
neurodegenerative diseases. Future direction will be the test of
Dynasore on the clearance of protein aggregates in neuronal
cells and/or animal models of neurodegenerative disease.

Material and Methods

Reagent and Antibodies

Dynasore was obtained fromMedChemExpress. Bafilomycin
A1 (Bafi A1) was purchased from Selleckchem. 4′6-
diamidino-2-phenylindole (DAPI) and Antimycin Awere pur-
chased from Sigma. Oligomycin was purchased from
Calbiochem. The following primary antibodies were used in
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Fig. 3 Dynasore treatment has no effect on mitophagy. a HEK 293 cells
were transfected with mt-Keima alone. bHEK 293 cells were transfected
with mt-Keima and GFP-Parkin. For Dynasore treatment, the cells were
treated with Dynasore (50 μM) for 6 h. For A/O treatment, the cells were
incubated with Oligomycin and Antimycin A1 (A/O, 1 μg/ml,
respectively) for 6 h. Live cells were visualized using confocal
microscopy. Scale bars, 10 μm
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the assay: anti-GAPDH antibody (Proteintech), anti-LC3 anti-
body (NovusBiologicals), anti-phospho-p70S6K antibody (Cell
Signaling Technology), anti-p70S6K antibody (Epitomics), and
anti-mTOR antibody (Cell Signaling Technology). The follow-
ing secondary antibodies were used in the assay: horseradish
peroxidase–conjugated sheep and anti-mouse and anti-rabbit
antibodies (Jackson ImmunoResearch Laboratories). The pro-
teins were visualized with an ECL detection kit (Thermo

Scientific). Alexa Fluor 594–conjugated Affinipure Goat anti-
rabbit IgG (Proteintech) was used as fluorescent secondary
antibody.

Cell Culture and Transfection

Human embryonic kidney 293 (HEK 293) cells and ATG5
KO MEF cells were cultured in Dulbecco’s modified eagle’s
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Fig. 4 Dynasore treatment induces autophagy via inhibition of mTORC1
activity. a HEK 293 cells were transfected with GFP-CD63 (lysosome
marker). After 24 h, the cells were treated with 50 μM Dynasore or
DMSO for 6 h. Then, the cells were subjected to immunoblot assay
using antibody against mTOR (red). DAPI was used for nuclear
staining. Then, cells were fixed and visualized by confocal microscopy.
b–e HEK 293 cells were treated with DMSO, 25 μM or 100 μM

Dynasore. After 6 h or 12 h, cell lysates were subjected to immunoblot
using indicated antibodies. f–h HEK 293 cells were transfected with
EGFP-TFEB and EGFP-TFE3. After 24 h, cells were treated with
50 μM of Dynasore for 6 h. Signal was analyzed by fluorescence
microscopy. The data from three independent experiments are presented
as means ± S.E.M.; ns, not significantly different; **P < 0.01; ns, not
significantly different, one-way ANOVA. Scale bars, 10 μm
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medium (DMEM) (Gibco) containing 10% fetal bovine serum
FBS (Gibco) with penicillin (100 U/ml) and streptomycin
(100 μg/ml). Cells were cultured at 37 °C in a humidified
atmosphere containing 5% CO2. Cells were starved with
Earle’s balanced salt solution (Gibco) for 1 h. The cells were
transfected with Lipofectamine 2000 reagent (Invitrogen) at
30% confluence in DMEM without serum according to the
reagent manufacturer’s instructions.

Plasmid Constructs

The GFP-CD63, EGFP-LC3, pEGFP-N1-TFEB, mCherry-
EGFP-LC3, Nhtt-16Q-EGFP, Nhtt-60Q-EGFP, Nhtt-150Q-
EGFP, and EGFP-Parkin plasmids were as described

previously (Tao et al. 2015; Wang et al. 2012; Xia et al.
2016; Ying et al. 2011, 2009). pcDNA3.1-mt-Keima plasmid
was generated by inserting full-length mKeima into the
pcDNA3.1 vector at KpnI/EcoRI sites. The pEGFP-N1-
TFE3 was generously provided by Shawn Ferguson
(Addgene #38120). All constructs were confirmed via
sequencing.

Western Blot

Cells were lysed in a cell lysis buffer containing 50 mM Tris-
HCl (pH 7.6) with protease inhibitor cocktail (Roche), 150 mM
NaCl, 0.5% sodium deoxycholate, and 1% Nonidet P-40.
Proteins were separated by 15% SDS-PAGE (polyacrylamide
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Fig. 5 Dynasore treatment increases the clearance of pathogenic
huntingtin aggregates. a HEK 293 cells were transfected with Nhtt-
60Q-EGFP. After 24 h, cells were incubated with DMSO, 25 μM,
50 μM, or 100 μM Dynasore for 6 h. Live cells were visualized by
fluorescence microscopy. Scale bars, 20 μm. Quantification data of
percentage of cells with protein aggregates were depicted in b. c HEK
293 cells were transfected with Nhtt-16Q-EGFP. After 24 h, cells were
treated with DMSO or Dynasore (50 μM) for 6 h. Live cells were visu-
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gregate were shown in d. e ATG5 KO MEF cells were transfected with
Nhtt-60Q-EGFP. After 24 h, cells were treated with 50 μMDynasore for
6 h. Then, the aggregation of Nhtt-60Q-EGFP was analyzed using a
fluorescent microscope. The data from three independent experiments
are presented as means ± S.E.M.; ns, not significantly different;
*P < 0.05; **P < 0.01; ns, not significantly different, one-way ANOVA
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gel electrophoresis) and transferred onto a PVDF membrane
(polyvinylidene difluoride membrane; Millipore). Immunoblot
was performed using standard methods as previously reported
(Lv et al. 2017; Yang et al. 2018).

Immunofluorescence

HEK 293 cells were washed with PBS (pH 7.4) (Gibco) and
fixed with 4% paraformaldehyde for 10 min at room temper-
ature. Then the cells were permeabilized with 0.1% Triton X-
100 and pre-blocked with 0.2% fetal bovine serum for 5 min.
Cells were incubated with the primary antibodies for 6 h, then
with the fluorescent secondary antibodies for 2 h, followed by
staining with DAPI (Sigma) for 5 min. The stained cells were
visualized using a Nikon (Wu et al. 2012) or a Zeiss LSM710
confocal microscope (Fang et al. 2017; Ren et al. 2016).

Statistical Analysis

Data are shown as mean ± SD of three different independent
results. Comparison was assessed by one-way analysis of var-
iance (ANOVA). A difference was considered significant
when the P value was less than 0.05.
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