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Abstract
It is now well accepted that there is a close relationship between noradrenergic and dopaminergic neurons in the brain,
especially referring to the modulation of the locus coeruleus–norepinephrine (LC-NE) system on dopamine transmission.
The disturbance of this modulation may contribute to neurodegeneration of dopaminergic neurons in Parkinson’s disease.
In this article, we briefly review evidence related to such modulation. Firstly, we illustrated the noradrenergic innervation
and functional implication for the LC-NE system and nigra–striatum dopaminergic system. Furthermore, we depicted
neuroprotective effects of the LC-NE on dopaminergic neurons in vivo and in vitro. Moreover, we present data implicating
the potential mechanisms underlying the modulation of the LC-NE system on dopaminergic neurons, in particular the
effects of NE as a neurotrophic factor and through its ability to stimulate the expression of other neurotrophic factors, such
as the brain-derived neurotrophic factor. Finally, we discussed other mechanisms intrinsic to NE’s effects. A better
understanding of the noradrenergic modulation on dopaminergic neurons may be rewarding by significant advances in
etiologic study and promising treatment of Parkinson’s disease.
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Abbreviations
ARs Adrenergic receptors
BDNF Brain-derived neurotrophic factor
DA Dopamine
CREB cAMP response element binding
DBH Dopamine β-hydroxylase
DSP4 N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine

hydrochloride
LC Locus coeruleus
NE Norepinephrine
NET NE transporter
PD Parkinson’s disease
SNpc Substantia nigra pars compacta
TrkB Tropomyosin receptor kinase B
VTA Ventral tegmental area

Introduction

Noradrenergic and dopaminergic systems are the major
neuronal circuits in the brain. Their corresponding neuro-
transmitters norepinephrine (NE) and dopamine (DA) are
the main catecholamines involved in a variety of physio-
logical processes. The major noradrenergic nucleus in the
brain is the locus coeruleus (LC, A6) located in the pons
(Vijayashankar and Brody 1979; Brodal 1981) with wide
afferents to the cortex, cerebellum, thalamus, and spinal
cord (Moore and Bloom 1979; Morrison et al. 1979; Segal
and Bloom 1976; Swanson and Hartman 1975). In partic-
ular, the LC is the sole noradrenergic source to innervate
the hippocampus (Swanson and Hartman 1975; Haring
and Davis 1985) and frontal cortex (Morrison et al.
1979; Samuels and Szabadi 2008). LC-NE neurons and
released NE throughout the brain are involved in a variety
of physiological functions and behaviors such as cogni-
tion (Sterpenich et al. 2006; Sara 2009), attention
(Robbins 2000), locomotor control, and contributing to
the affective state (Robbins and Everitt 1995). The
substantia nigra pars compacta (SNpc, A9) (Anden et al.
1966; Domesick 1988) and ventral tegmental area (VTA,
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A10) (Swanson 1982; Oades and Halliday 1987) represent
two of the nine major dopaminergic neuron groups in the
midbrain. Neurons from the SNpc and VTA are character-
ized by distinct but overlapping projection patterns. The
majority of projections that originate from the SNpc in-
nervate the dorsal striatum, and only some nigral fibers
project to the ventral striatum and cortex. In contrast,
neurons from the VTA mainly project to the ventral stri-
atum as well as cortical areas, with significantly fewer
projections innervating the dorsal striatum (Bjorklund
and Dunnett 2007). While dopaminergic neurons in the
SNpc are heavily involved in the control of movements,
those in the VTA are responsible for the regulation of
reward, emotional behavior and addiction (Satoh et al.
2003; Matsumoto and Hikosaka 2009; Bromberg-Martin
et al. 2010). Nevertheless, although the LC-NE and DA
systems have different characteristics, they have close re-
lationship in anatomy, physiology, and functions, some-
what even overlapped. Therefore, their dysfunctions are
also closely related to the pathogenesis of many neurode-
generative diseases.

It is a general knowledge that the degeneration in a
clearly defined population of dopaminergic neurons in
the brain is the main pathologic alteration in Parkinson’s
disease (PD) (Hirsch et al. 1988; Fearnley and Lees
1991). However, significant neuronal loss also occurs in
the LC in PD. Neurodegeneration of LC neurons even
starts earlier than that seen in the SNpc and at a greater
magnitude (Gesi et al. 2000; Zarow et al. 2003).
Furthermore, there is a correlation between NE deficiency
and degenerated dopaminergic neurons with the severity
of PD neurological symptoms, indicating that the LC-NE
system shares a critical role with the DA system in the
progression of PD. Moreover, the neuroprotective effects
of an intact LC-NE neuronal system on nigrostriatal do-
paminergic neurons and the contribution of endogenous
NE to the recovery of the dopaminergic neurons have
been reported in many studies (Delaville et al. 2011;
Isaias et al. 2011). Therefore, understanding of their inter-
action, especially for the modulatory effects of the LC-NE
system on dopaminergic neurons, may benefit the treat-
ment of PD.

In this paper, we put emphasis on the modulatory
effects of noradrenergic neurons on dopaminergic neu-
rons. First, the anatomical and functional relationships
between the LC-NE and dopaminergic system are illus-
trated. Second, the neuroprotective role of noradrenergic
neurons on dopaminergic neurons is depicted. Finally,

the potential mechanisms underlying the modulation of
the LC-NE system on dopaminergic neurons, in partic-
ular NE as a neurotrophic factor and its ability to stim-
ulate the expression of other neurotrophic factors, such
as the neurotrophin brain-derived neurotrophic factor
(BDNF), are discussed. Other potential mechanisms are
taken into account of as well.

Noradrenergic Innervation and Functional
Implication for the LC-NE System and Nigra
Dopaminergic System

An important characteristic between the noradrenergic and
dopaminergic systems is their anatomical correlation, which
is the basis for the functional modulation of the LC-NE
system on midbrain dopaminergic neurons. Anatomical anal-
ysis demonstrated that noradrenergic neurons from the LC
widely innervate dopaminergic neurons in the midbrain by
sending projections to the SNpc, VTA, and striatum in the
vicinity of dopaminergic neuronal cell bodies (Simon et al.
1979; Berridge et al. 1997; Schroeter et al. 2000; Liprando
et al. 2004; Mejias-Aponte et al. 2009). Furthermore, dopa-
mine β-hydroxylase (DBH) and NE transporter (NET), as
well as NE and its receptors such as β- (β1 and β2) and α-
(α1 and α2) adrenergic receptors (ARs), can be detected in
the most midbrain dopaminergic neurons including the VTA
and striatum (Ross and Reis 1974; Chen and Reith 1994;
Liprando et al. 2004; Mejias-Aponte 2016) by autoradio-
graphic and immunostaining approaches (Jones et al. 1985;
Lee et al. 1998). Such closely anatomical innervation raises
the possibility that noradrenergic inputs play a role in mod-
ulating DA neuronal activity. For example, electrical stimu-
lation of the LC results an excitation action showing by
burst firing of dopaminergic neurons in the SNpc
(Grenhoff et al. 1993), which can be attenuated by adminis-
tration of the α1-AR antagonist prazosin (Grenhoff and
Svensson 1993). Furthermore, either lesion of LC neurons
or chronic NE depletion has been shown to reduce basal and
amphetamine-induced release of DA in the striatum and
SNpc (Lategan et al. 1990; Lategan et al. 1992).
Consistently, the systemic administration of the selective
NE reuptake inhibitor reboxetine enhanced the burst firing
activity of dopaminergic neurons in the VTA (Linner et al.
2001). Stimulation of the LC facilitates firing rate in mid-
brain dopaminergic neurons (Grenhoff et al. 1993), which
can also be reduced or increased by application of antago-
nists of α1-ARs or α2-ARs (Grenhoff and Svensson 1993).
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However, there is a report that selective lesion of LC neu-
rons increases the mean firing activity of dopaminergic neu-
rons and their burst activity in the VTA (Guiard et al. 2008),
suggesting a complexity in regulation of dopaminergic neu-
ronal activity by noradrenergic inputs.

It is noteworthy that although NE terminals make close
contacts onto midbrain DA neurons, the majority of con-
tacts are not in direct synaptic apposition, as showing by
an ultrastructural study (Liprando et al. 2004). That
means, in the SNpc and VTA areas, there are predominant
nonsynaptic appositions between NET-immunoreactive
axons and dopaminergic neurons, which are separated by
glia (Liprando et al. 2004). Although the real function of
glia between these neurons is unknown, such glial sepa-
rations may provide a selective physical barrier to trans-
mission between some noradrenergic terminals and dopa-
minergic dendrites, allowing one subpopulation of den-
drites to be modulated by NE, but not another. These
ultrastructural observations suggest that their functional
interactions between these two systems are more likely
through extrasynaptic mechanisms and considered as a
paracrine or volume transmission system (Mejias-Aponte
2016). Thus, NE released from noradrenergic terminals in
this area seems to act as a neuromodulator on DA neurons
more than a neurotransmitter (Gesi et al. 2000). The sim-
ilar ultrastructural innervation between noradrenergic ter-
minals and astrocytes is also found in the cortex and thy-
mus (Vizi et al. 1995; Cohen et al. 1997). As NE induced
expression of a range of growth factors such as BDNF,
nerve growth factor (NGF), glial cell line-derived neuro-
trophic factor (GDNF), and fibroblast growth factor
(FGF) in glial cells via an action on astrocytic β2-ARs
(Juric et al. 2006; Day et al. 2014), such innervation
may be related to the modulatory effects of NE on neuro-
nal plasticity.

In combination, these results not only establish a physio-
logical and functional connection between the noradrenergic
and dopaminergic systems, but also form the basis for the
influence of NE on dopaminergic neurons in the neuropathol-
ogy of degenerative diseases.

The Neuroprotection of LC-NE System
on the Nigra Dopaminergic System

It is now known that the LC-NE system exhibits a neu-
ronal protection on the nigra dopaminergic system,
which has been revealed by a variety of studies. First,

a functional and intact LC-NE system facilitates the sur-
vival of the dopaminergic system, which was revealed
by the studies that the disturbance and/or a functional
enhancement of the LC-NE system influences both the
onset and the progression of neuronal damage to the
DA nigrostriatal tract (Delaville et al. 2011; Isaias
et al. 2011). For example, in neurotoxin-induced animal
models of PD, concomitant lesions of the LC-NE sys-
tem with 6-hydroxy-DA resulted in more dopaminergic
neuronal loss or activity reduction in the SNpc and
VTA areas caused by subsequent exposure to MPTP
(Mavridis et al. 1991; Bing et al. 1994; Fornai et al.
1995; Srinivasan and Schmidt 2003). In line with these
observations, neurotoxin such as DSP-4-induced reduc-
tions in LC activities and functions worsens DA deficit
caused by MPTP in animal models of PD (Marien et al.
1993). In addition, these treatments resulted in a signif-
icant reduction in striatal concentrations of DA and its
metabolites (Mavridis et al. 1991; Fornai et al. 1996;
Srinivasan and Schmidt 2003) and an alteration in
DA-related behavior (Antelman and Caggiula 1977;
Wang et al. 2010). In contrast, administration of β2-
AR agonists protects the MPTP-induced degeneration
of dopaminergic neurons in the SNpc of mouse model
and a β2-AR antagonist correlated with increased risk
of developing PD (Mittal et al. 2017).

Second, the neuroprotection of noradrenergic neurons
on dopaminergic neurons can be found by administration
of NE or increase of NE synthesis, which has been evi-
denced by in vitro and in vivo studies. For example,
in vitro administration of NE (0.3–1 μM) confers substan-
tial and long-term protection to dopaminergic neurons by
reducing spontaneously occurring oxidative stress in pri-
mary cultured mesencephalic cells (Troadec et al. 2001).
Similarly, elevation of extracellular NE levels by treat-
ment with α2-AR antagonists (Martel et al. 1998) or by
genetic methods (Kilbourn et al. 1998) protected dopami-
nergic neurons from neurotoxin-induced cell death. NE
hyperinnervation of target areas or treatment of rats with
NE has led to resistance to experimental parkinsonism
(Marien et al. 1994; Rommelfanger et al . 2004;
Rommelfanger et al. 2007). It is well known that meth-
amphetamine can cause degeneration of dopaminergic ax-
on in nigra-striatal regions (Hotchkiss and Gibb 1980;
Hirata et al. 1996). Such methamphetamine-induced do-
paminergic degeneration is exacerbated after experimental
lesion of LC neurons with enhanced methamphetamine
toxicity and damage to these neurons (Fornai et al.
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1995; Fornai et al. 1998; Weinshenker et al. 2008). In
addition, a postmortem survey from persons with PD re-
vealed that the brain areas that were high in NE tended to
be spared from DA loss, consistent to a neuroprotective
role of NE, with an exception being the putamen (Tong
et al. 2006). In clinic trials, to increase extracellular NE
concentrations has been used for treatment of PD patients,
including use of α2- and β2-AR antagonists, NET inhib-
itor, and increase NE synthesis (Espay et al. 2014; Mittal
et al. 2017).

The Role of NE in the Modulation of the LC-NE
on Dopaminergic Neurons

As a classic neurotransmitter of the LC-NE system, NE plays
a critical role for the noradrenergic functions and behaviors in
the homeostasis of body (Berridge and Waterhouse 2003). In
addition, NE may act as a modulator for the modulation to
other neuronal circuits especially for the dopaminergic neu-
rons. It has been suggested that the neuronal beneficial effects
of NE on other neurons can be direct and indirect. For the
direct effect, NE is considered to act as a neurotrophic factor.
For the indirect effect, it refers to its ability to facilitate the
expression of other neurotrophic factors such as the BDNF
(Aloyz et al. 1999; Chen et al. 2007; Counts and Mufson
2010), FGF-2 (Kajitani et al. 2012), Bcl-2 (Huang et al.
2007), and NGF (Culmsee et al. 1999; Counts and Mufson
2010). However, both mechanisms can be overlapped. This
review focusses on the mediator role of BDNF for NE’s
effects, although other growth factors are also often associat-
ed with an ability of NE to protect dopaminergic neurons
from toxicity (Timmer et al. 2007; Xing et al. 2010;
Dobolyi et al. 2012).

NE Operates as an Endogenous Neurotrophic
Substance

Acting as a neurotrophic factor, NE can influence both devel-
opment and adulthood. For these effects, NE has been consid-
ered to drive DNA synthesis in the mature and developing
nervous system (Lauder 1993), which induces neurite out-
growth in primary cultured neurons (Day et al. 2014). For
instance, stimulation ofα2-ARs expressed within proliferative
germinal zones decreases DNA synthesis in the developing
forebrain (Lidow and Rakic 1994; Kreider et al. 2004). Such
effect of NE to drive DNA synthesis has been suggested pos-
sibly as a common mechanism in the developing and adult
brain.

During the development period, NE is thought to be re-
quired for the critical period plasticity in development of the
cerebral cortex and olfactory. For instance, NE can participate

in the formation and organization of neuronal circuits in the
olfactory bulb, as injection of either NE or β-AR agonists into
rat pups increased odor experience and the differentiation of
olfactory bulb plasticity (Sullivan et al. 1989; Sullivan et al.
1991). In contrast, early NE depletion induced by cytotoxic
lesion of the LC in rat pups impaired the development of the
cerebral cortex (Felten et al. 1982; Siciliano et al. 1999).
Furthermore, the use of dbh−/− mice verified NE’s necessary
effect on the development of auditory cortex (Shepard et al.
2015). In addition, in vitro studies demonstrated that NE in-
creases embryonic neuroepithelial cell division during early
development and in cultured neurons from embryonic rodent
brain via the α1-ARs (Popovik and Haynes 2000), promotes
differentiation and neurite outgrowth, and increases expres-
sion of genes related to neuronal sprouting (Day et al. 2014)
and differentiation (Laifenfeld et al. 2002). Similarly, the fa-
cilitative effects of NE on synaptic plasticity during develop-
ment period were confirmed by ex vivo experiments (Hu et al.
2007; Liu et al. 2010).

Similarly, the LC-NE system also plays a prominent role to
maintain its neurotrophic influence on adulthood period. This
effect mainly exhibits as its action on the cellular plasticity
through neurogenesis. For example, in adult rats, administra-
tion of NE markedly increased hippocampal synaptic plastic-
ity in adult rats (Katsuki et al. 1997) and directly activated
self-renewing and multipotent neuronal precursors, including
stem cells from the hippocampus of adult mice (Jhaveri et al.
2010). BrdU-positive cells in the adult hippocampus were
significantly enhanced by increased extracellular NE resulted
from administration of reboxetine (Malberg et al. 2000). L-
Dihydroxyphenylserine (L-DOPS), a NE prodrug, is
reported to stimulate neuronal sprouting and synaptogenesis
(Stroemer et al. 1998). Furthermore, NE could affect
neurogenesis indirectly through α1-ARs on interneurons
(Hillman et al. 2009). In contrast, a significant reduction in
hippocampal neurogenesis was observed by neurotoxin DSP-
4-induced depletion of NE (Kulkarni et al. 2002), by bilateral
infusions of the anti-DBH-saporin into the LC (Coradazzi
et al. 2016), or by administration of α2-AR agonists
(Yanpallewar et al. 2010) which can be reversed by α2-AR
antagonist yohimbine via increasing NE release (Yanpallewar
et al. 2010). Similarly, noradrenergic activation resulted from
LC stimulation increased plasticity in the auditory cortex and
auditory thalamus neurons in the adult rats (Edeline et al.
2011). The neurotrophic benefit of the LC-NE system on do-
paminergic neurons is supported from investigations related to
PD patients and PD animal models. A plague of the DA re-
placement therapy for PD patients is the onset of abnormal
involuntary movements (AIMs, also called L-DOPA-induced
dyskinesia) (Blin et al. 1988). It appeared to be a result of an
aberrant synaptic plasticity of dopaminergic neurons in the
striatum (Calabresi et al. 2000; Picconi et al. 2005).
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However, it is considered to be associated with the loss of a
trophic support of the NE system for the growth, differentia-
tion, and repair of the nigrostriatal DA pathway, as the use of
α2-AR antagonists yohimbine and idazoxan to increase NE
availability can dramatically reduce the AIMs in PD patients
and PD animal models (Henry et al. 1999; Rascol et al. 2001;
Lundblad et al. 2002). Furthermore, a loss of LC-ascending
NE axons forestalls the onset, worsens the severity, and de-
cides the ultrastructural correlates of L-DOPA-induced AIMs
(Fulceri et al. 2006; Fulceri et al. 2007). Together, these find-
ings clearly demonstrated the robust impact of the LC-NE
system on dopaminergic neuronal plasticity in the adult brain.

The neurotrophic effects of NE have been also explained as
one of the mechanisms underlying NE’s neuroprotective role.
Although ARs are involved in NE neurotrophic actions, several
observations revealed that in some cases, NE’s effects are inde-
pendent of ARs. Instead, the catechol moiety of NE plays an
important role. For example, the neuroprotective effect of NE
against oxidative stress in cultured cholinergic neurons and SK-
N-SH cells appears to be related to its catechol moiety, as a
compound that reproduces the diphenolic structure of NE with-
out binding affinity for ARs (Vauquelin et al. 1979) mimicked
NE’s neuroprotective effects (Traver et al. 2005; Jhang et al.
2014). The similar phenomenon was also found on the dopa-
minergic neurons (Troadec et al. 2001). The diphenolic struc-
ture in NE may be at the origin of the trophic effect on DA and
responsible for the neuroprotective effect of NE, possibly via
the production of corresponding metabolites by autoxidation
(Troadec et al. 2001). These indicate that the precursors and
metabolites of NE, which exhibited on their aromatic ring two
free hydroxyl groups in the orthoposion, afford neuroprotec-
tion. It is such diphenolic structure that is responsible for the
neuroprotective/antioxidant activity of NE. Consistent with this
view, the compounds which possess a catechol moiety, such as
the β- and β1-AR agonists isoproterenol and dobutamine, as
well as o-catechol (pyrocatechol), mimicked the protective ef-
fects of NE in dopaminergic and other cultures (Ancerewicz
et al. 1998; Noh et al. 1999; Troadec et al. 2001).

NE’s Effects May Be Mediated Through BDNF

BDNF is a member of the neurotrophin family (Barde et al.
1982; Leibrock et al. 1989). It is predominantly produced by
neurons (Zafra et al. 1992; da Penha Berzaghi et al. 1993;
Lindholm et al. 1994; Thoenen 1995) and astrocytes (Miklic
et al. 2004). Binding BDNF and its preferred receptor, the
tropomyosin receptor kinase B (TrkB) (Reichardt 2006), trig-
gers the activation of diverse signaling cascades, further reg-
ulating neuronal development and survival, as well as
neurogenesis in the central nervous system (Ghosh et al.
1994; Jones et al. 1994; Nawa et al. 1994; Cabelli et al.
1995; McAllister et al. 1995, 1996; Zuccato and Cattaneo

2009). Accumulating evidence shows that NE can facilitate
the expression of several neurotrophic factors. However,
BDNF can be a main mediator for the trophic signal derived
from noradrenergic afferents (Fawcett et al. 1998), for which
the extensive studies have well documented.

First, BDNF is synthesized by LC neurons (Castren et al.
1995; Smith et al. 1995; Conner et al. 1997; Numan et al.
1998). DBH and BDNF are co-localized in the noradrenergic
axons and terminal nerve fibers in the brain (Castren et al.
1995; Fawcett et al. 1998). Second, BDNF is anterogradely
transported (from the cell soma) by afferents to fibers in norad-
renergic terminals and then secreted onto target neurons (Conner
et al. 1997; Fawcett et al. 1998). Such anterogradely transported
BDNF causes activation of TrkB in target regions such as the
neocortex for neurons survival and differentiation (Fawcett et al.
1998). This presynaptic secretion of BDNF may provide a cel-
lular mechanism for noradrenergic modulating on other neural
circuitries, in either developing or mature nervous systems. An
in vivo study demonstrated that mice overexpression BDNF in
DBH-positive neurons exhibited a 52% increase of TH-positive
neurons in the SNpc (Alonso-Vanegas et al. 1999), suggesting
that an increased anterograde transport of BDNF through
coeruleus-nigral projection could benefit the growth of mesence-
phalic DA neurons (Vitalis et al. 2005). Third, NE stimulates the
synthesis of BDNF in neurons and astrocytes, which has been
confirmed in vivo (Fawcett et al. 1998; Ivy et al. 2003) and
in vitro (Zafra et al. 1992; Schwartz and Nishiyama 1994;
Schwartz et al. 1994; Inoue et al. 1997; Juric et al. 2006; Chen
et al. 2007; Musazzi et al. 2014). In contrast, the antagonists of
α1- and β1/β2-ARs inhibited this stimulatory effect of NE (Juric
et al. 2008). Fourth, the neuroprotective effects of NE require
TrkB activation. NE triggers TrkB phosphorylation. It has been
reported that the TrkB, but not ARs, is essential for the ability of
NE to protect cultured neurons from rat cortex, hippocampus,
and LC, as well as human hNT neurons following Aβ exposure
(Counts and Mufson 2010; Liu et al. 2015). The ability of NE to
prevent Aβ-induced cells death was fully prevented by the TrkB
antagonist k252a. Fifth, NE may transactivate TrkB via Src fam-
ily kinase activity, which has been indicated in the studies using
adenosine, pituitary adenylate cyclase-activating peptide, and
zinc (Lee and Chao 2001; Lee et al. 2002; Rajagopal et al.
2004; Huang et al. 2008), as NE and the small molecule TrkB
agonist 7,8-dihydroxyphenylserine share structural similarities (a
catechol ring).

Both NE and BDNF Act Through Survival Signaling Pathways

Neuronal viability is maintained through a complex
interacting network of signaling pathways. While these di-
verse cascades are critical for the proper formation of the
central nervous system (Yuan and Yankner 2000), they are
associated with neuronal protections for affected neurons
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and called as the neuronal survival signaling pathways. For
example, the phoshpatidyloinositol-3-kinase (PI3K)/Akt path-
way is a major mediator of cell survival signaling leading to
the transcription of many pro-survival genes (Datta et al.
1999; Brunet et al. 2001; Kang et al. 2004; Patel et al.
2010). The mitogen-activated protein kinase/extracellular sig-
nal regulated kinase 1/2 (MAPK/ERK) pathways promote
neuronal growth and neuroplasticity and influence gene ex-
pression through activation of transcription factor such as
CREB (Shaywitz and Greenberg 1999; Troadec et al. 2002;
Einat et al. 2003; Chen et al. 2007; Cottingham et al. 2012). In
addition to increasing cellular survival, the PI3K and MAPK
pathways play principal roles in promoting neurite growth,
synaptic strength and plasticity (Heerssen and Segal 2002).
NE and BDNF are not transcriptional factors and cannot di-
rectly act on transactivation of related genes (Ruiz et al. 2014).
As such, these pathways have been shown to mediate the
neurotrophic effects of NE and BDNF. As one of the conse-
quences, activation of these signaling pathways leads to the
binding of transcription factors with cis-acting elements such
as AP-1, CRE, and Egr1/SP1 on the TH promoter and
transactivation of the TH gene (Nagamoto-Combs et al.
1997; Lim et al. 2000; Suzuki et al. 2004; Kalashnikova
et al. 2006; Fukuchi et al. 2010).

Many lines of investigations have revealed these survival
pathways as an important mean for NE to enhance neuronal
growth or protections. For instance, administration of NE dose-
dependently induces a robust activation of ERK1/2 (Cottingham
et al. 2012), PI3K, and CREB proteins (Chen et al. 2007).
Similarly, desipramine, which increases extracellular NE levels,
not only can act as a signaling potentiator to selectively enhance
NE-induced ERK1/2 signaling (Cottingham et al. 2012), but also
activate the MAPK/ERK pathway (Huang et al. 2007). Cyclic
adenosine monophosphate (cAMP) was described as a
prosurvival molecule for several populations of catecholaminer-
gic neurons. The neuroprotective effect of NE on dopaminergic
neuronal cells is strongly enhanced by forskolin, a cAMP-
elevating agent, which did not involve ARs (Troadec et al.
2002). However, this effect involves cAMP-dependent MAPK,
as forskolin stimulated the phosphorylation of extracellular
ERK1/2 in dopaminergic neurons (Troadec et al. 2002).
Nevertheless, other studies showed that α2A-AR (Cottingham
et al. 2012) or β-ARs (Counts and Mufson 2010) are involved
in NE-induced neuroprotective properties through stimulation of
cAMP production and pCREB signaling. The activation of these
signal pathways is believed to promote cell survival both in vivo
(Chen and Russo-Neustadt 2005) and in vitro (Chen and Russo-
Neustadt 2007).

As mentioned above, activation of diverse signaling cascades
trigged by binding of BDNF and TrkB also has critical roles in
neuronal plasticity, survival, and neurogenesis (Zuccato and
Cattaneo 2009). The three major pathways include the phospho-
lipase C-γ (PLC-γ), PI3K)/Akt, and MAPK/ERK pathway

(Baydyuk and Xu 2014). By activating these diverse signaling
cascades in neurons, BDNF can regulate neuronal development
and progenitor cell survival, proliferation, initiation of neurite
outgrowth, and path-finding (Bonni et al. 1999; Encinas et al.
1999; Yamada et al. 1999). It can mediate various structural
plasticities of neurons, including dendrite formation and mainte-
nance (Widmer et al. 1993;McAllister et al. 1999; Berghuis et al.
2006; Sciarretta et al. 2010; Orefice et al. 2013). The MAPK/
ERK pathway also activates regulators of protein translation
(Segal 2003). Deletion of either the TrkB or Bdnf gene leads to
cell atrophy, dendritic degeneration, and neuronal loss, as shown
in the excitatory neurons of the dorsal forebrain (Gorski et al.
2003). BDNF-activated ERK1/2 protects cultured rat cortical
neurons against apoptosis induced by DNA damage, which is
necessary and sufficient for the anti-apoptotic action of BDNF
(Hetman et al. 1999; Gozdz et al. 2003).

A foundation of previous studies as described above has
illustrated the potential mechanisms underlying effects of NE
on dopaminergic neurons through its neurotrophic action and
through other neurotrophic factors such as BDNF. The LC-NE
system can affect neuronal growth, survival and plasticity of
dopaminergic neurons, indicating that NE must activate the
translation of pro-growth or plasticity-related protein synthe-
sis. Therefore, activation of signaling pathways as listed above
is a necessary step and thus leads to transcription of the TH
gene acting on some cis-elements in the TH promoter (Kim
et al. 1993; Tinti et al. 1996; Suzuki et al. 2004).

Other Potential Mechanisms Underlying
Effects of NE on Dopaminergic System

NE Has Anti-inflammatory Properties: Suppress
Mediators of Inflammation

Accumulating evidence suggests that inflammation contributes
to the onset and evolution of degeneration in dopaminergic
neurons (Mosley et al. 2012). Therefore, the neuroprotective
effects of NE on dopaminergic neurons may also be related to
its ability to maintain the immunosuppressive environment in
the brain as a repression of proinflammatory mediators
(Feinstein 1998; Heneka et al. 2002). In vivo studies show that
increasing NE levels reduce inflammation (Kalinin et al. 2006)
and provide neuroprotection (Troadec et al. 2002). First, NE
can reduce damage during neuroinflammatory and neurode-
generative conditions by inducing expression of neurotrophic
factors as mentioned in the above section. Second, NE or stim-
ulation of ARs promotes anti-inflammatory phenotypes. For
example, the β2-AR agonist protects neurons from kainic
acid-induced inflammatory damage (Gleeson et al. 2010), as
activation of the β2-ARs promotes the M2 macrophage phe-
notypes (Grailer et al. 2014) and Th2-type immune responses
by reduced cytokine secretion (Anderson and Mosser 2002).

Neurotox Res (2018) 34:848–859 853



Third, NE can suppress inflammatory gene expression from
astrocytes. For example, in vitro studies have shown that NE
or β-AR agonists suppresses glial expression of proinflamma-
tory cytokines such as IL-1β (Thastrup et al. 1985; Dello
Russo et al. 2004), MIP1-α and TNF-α from macrophages
(Spengler et al. 1994; Hasko et al. 1998), and the inducible
nitric oxide synthase (iNOS) (Feinstein et al. 1993; Gleeson
et al. 2010). Similarly, these treatments reduce system levels of
TNF-α, IL-6, and nitric oxide during endotoxemia (Elenkov
et al. 1995; Szabo et al. 1997). Also, NE reuptake inhibitors
desipramine and atomoxetine suppress expression of
inflammation-related chemokine and cell adhesion molecule
in vivo and in vitro (O’Sullivan et al. 2009, 2010). Other
in vivo studies demonstrated that experimental LC destruction
resulted in a robust increase and prolonged expression of both
IL-1β and iNOS (Heneka et al. 2002).

NE’s Protection May Be Related to the Reduction of Oxidative
Stress-Induced Damage

Oxidative stress has been considered as a causative factor for
degeneration of dopaminergic neurons in PD.One protective role
of NE on dopaminergic neurons may be related to its ability to
reduce oxidative stress (Noh et al. 1999). For example, treatment
with NEmarkedly reduced the production of free radical species,
which can bemimicked by treatment with catalase (Troadec et al.
2001), an enzyme that blocks the conversion of H2O2 into the
highly reactive hydroxyl radicals (Takahashi and Niki 1998).
Further, NE and its putative active metabolites are hydrophilic,
and they can exert their protective action at the level of the outer
plasma membrane by preventing the propagation of lipid perox-
idation (Andorn and Pappolla 2001). Moreover, NE was shown
to act as both a scavenger of hydroxyl radicals and an inhibitor of
lipid peroxidation in cell-free system (Liu and Mori 1993).
Finally, trolox is a vitamin E analogue known to protect cell
membranes from hydroxyl radical-mediated lipid peroxidation

and showed its neuronal protection (Buettner 1993). NE has been
showed as potent as trolox in reducing the levels of reactive
oxygen species produced in degenerating neurons (Troadec
et al. 2001; Alvarez-Diduk and Galano 2015). Therefore, NE
exerts its protective action at the levels of the outer plasma mem-
brane by preventing the propagation of lipid peroxidation.

Conclusions

It is well known that the LC-NE system plays a critical role in
homeostatic control of brain functions and is involved in a
variety of physiological process and behaviors. Furthermore,
there are a number of lines of studies revealed the crosstalk
between the LC-NE and dopaminergic neurons. However, the
neuroprotective effects of the LC-NE system on dopaminergic
neurons, especially the involved mechanisms, have not been
discussed in detail. Based on the evidence reviewed above, a
functional and activity deficiency in the LC-NE system has
been taken as a critical factor in determining the evolution of
progressive degeneration in dopaminergic neurons in the
brain. An intact LC-NE system provides an important role
for the survival and normal function of dopaminergic neurons.
Among these effects, NE as a potential modulator for dopa-
minergic neurons plays a central role through its neurotrophic
factor and bymeans of other neuronal growth factors especial-
ly BDNF (Fig. 1). Extensive and appropriate studies will be
necessary to elucidate the mechanisms involved in NE’s neu-
rotrophic effects, which will improve our understanding the
modulation of the LC-NE on dopaminergic neurons and ben-
efit for the strategy in paving a path to drug development and
treatment of neurodegenerative diseases.
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