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Abstract Huntington’s disease (HD) as an inherited neurode-
generative disorder leads to neuronal loss in striatum.
Progressive motor dysfunction, cognitive decline, and psychi-
atric disturbance are the main clinical symptoms of the HD.
This disease is caused by expansion of the CAG repeats in
exon 1 of the huntingtin which encodes Huntingtin protein
(Htt). Various cellular and molecular events play role in the
pathology of HD. Mitochondria as important organelles play
crucial roles in the most of neurodegenerative disorders like
HD. Critical roles of the mitochondria in neurons are ATP
generation, Ca2+ buffering, ROS generation, and antioxidant
activity. Neurons as high-demand energy cells closely related
to function, maintenance, and dynamic of mitochondria. In the
most neurological disorders, mitochondrial activities and dy-
namic are disrupted which associate with high ROS level, low
ATP generation, and apoptosis. Accumulation of mutant
huntingtin (mHtt) during this disease may evoke mitochondri-
al dysfunction. Here, we review recent findings to support this
hypothesis that mHtt could cause mitochondrial defects. In
addition, by focusing normal huntingtin functions in neurons,
we purpose mitochondria and Huntingtin association in nor-
mal condition. Moreover, mHtt affects various cellular signal-
ing which ends up to mitochondrial biogenesis. So, it could be

a potential candidate to decline ATP level in HD.We conclude
how mitochondrial biogenesis plays a central role in the neu-
ronal survival and activity and how mHtt affects mitochondri-
al trafficking, maintenance, integrity, function, dynamics, and
hemostasis and makes neurons vulnerable to degeneration in
HD.
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Abbreviations
ACO Aconitase
AD Alzheimer’s disease
AMPA α-Amino-3-hydroxyl-5-methyl-4-isoxazole-

propionate
AMPK AMP-activated protein kinase
B5R Cytochrome b5 reductase
BDNF Brain-derived neurotrophic factor
Cat Catalase
CBP CREB binding protein
CMT Charcot–Marie–Tooth disease
CREB cAMP response element binding protein
DHOH Dihydroorotate dehydrogenase
DOA Dominant optic atrophy
Drp Dynamin-related protein
ERRα Estrogen-related receptor α
ETC Electron transport chain
Fis1 Fission 1 protein
GPDH Glycerol-3-phosphate dehydrogenase
GPX Glutathione peroxidase
GR Glutathione reductase
GRX2 Glutaredoxin 2
HAP1 Huntingtin-associated protein 1
HD Huntington’s disease
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1,14
Hip1,14

Htt-interacting proteins

Htt Huntingtin
KGDH α-Ketoglutarate dehydrogenase
Mfn1/2 Mitofusin1/2
mHtt Mutant huntingtin protein
mtDNA Mitochondrial DNA
MAOA/B Monoamine oxidases A/B
MnSOD Manganese superoxide dismutase
mPTP Mitochondrial permeability transition pore
NE Nuclear export
NF-κB Nuclear factor kappa-light-chain-enhancer of

activated B cells
NL Nuclear localization
NMDA Nmethyl Daspartate
NRF1/2 Nuclear respiratory factor 1/2
OPA1 Optic atrophy 1 protein
OXPHOS Oxidative phosphorylation
PD Parkinson’s disease
PDH Pyruvate dehydrogenase
PGC1α Peroxisome proliferator-activated receptor gam-

ma coactivator 1α
PGPX Phospholipid hydroperoxide glutathione

peroxidase
PINK1 PTEN-induced putative kinase 1
PolyQ Poly glutamine
PPARγ Peroxisome proliferator-activated receptor γ
PRX3/5 Peroxiredoxins
PSD95 Postsynaptic density protein 95
PSD Postsynaptic densities
QC Quality control
ROS Reactive oxygen species
SIRT1 Sirtuin 1
SOD2 Superoxide dismutase 2
TFAM Mitochondrial transcription factor A
TR Thyroid receptor
TrkB Tyrosine receptor kinase B
TRX2 Thioredoxin 2
TRXR2 Thioredoxin reductase 2
UPS Ubiquitin proteasome system

Introduction

Huntington’s disease (HD) as one of the prevalent neurode-
generative disorders is characterized by the presence of the
aggregated protein, mutant huntingtin (mHtt). HTT gene in-
cludes 7–35 CAG repeats, which encode glutamine (polyQ),
at the 5′ end (Jacobsen et al. 2011). Neuronal loss and dys-
function in basal ganglia contribute to progressive motor dys-
function, cognitive decline, and psychiatric disturbance in the
HD (Walker 2007). In addition, neurodegeneration has been
identified in other brain regions like cerebral cortex, globus

pallidus, thalamus, subthalamic nucleus, nucleus accumbens,
substantia nigra, cerebellum, and white matter (Vonsattel and
DiFiglia 1998). The prevalence of this disease is 4–10 per
100,000 in the west with the mean age of onset at 40 years
(Ross and Tabrizi 2011). HD inherits as autosomal-dominant
disorder with >40 CAG repeats in exon 1 of the HTT gene
(Langbehn et al. 2004). Increasing in the number of CAG
repeats elongates glutamine residues, poly glutamine
(polyQ), at the amino terminus of protein which leads to ag-
gregation and toxicity (Williams and Paulson 2008). Mutant
huntingtin (mHtt) is the main character of the HD, and it can
make inclusion and aggregate forms in the nucleus and cyto-
plasm (DiFiglia et al. 1997). βSheet structures are the most
abundant components of the amyloid fibers in the mHtt.
Insolubility and toxicity of the aggregate protein, mHtt, in
the HD are the main reason of the neuronal death (Soto
2003). Moreover, mHtt has the ability to interact with proteins
that participate in the transcription, cell cycle, energy metab-
olism, and cell signaling. These interactions influence a wide
variety of cellular processes which can cause cell death and
apoptosis (Shirasaki et al. 2012). mHtt is also capable to alter
mitochondrial hemostasis and dynamic (fission and fusion)
(Guedes-Dias et al. 2015; Pellman et al. 2015; Brustovetsky
2016). Mitochondria as important organelles in cell survival
and death interact with aggregate proteins in many neurode-
generative disorders like Alzheimer’s disease (AD),
Parkinson’s disease (PD), and HD. Any disruption in mito-
chondrial hemostasis and dynamic activates various signaling
pathways to induce cell death and apoptosis.

Normal Huntingtin Function

HTT has high expression in the central nervous system (CNS)
and testes. Encoded protein has 3144 amino acids. PolyQ tract
(34 glutamines, Q) at the N terminus is followed by proline-
enriched domain which helps protein to be soluble (Li and Li
2004; Steffan et al. 2004). Three HEAT repeat domains in Htt
structure participate in the protein-protein interactions. A
HEAT repeat as tandem structural motif includes two alpha
helices linked by a short loop (Andrade and Bork 1995).
Nuclear export (NE) and nuclear localization (NL) sequences
near carboxy terminal provide the localization of Htt into the
nucleus and cytoplasm (Fig. 1). Presence of various sites for
the posttranscriptional modifications like phosphorylation and
SUMOylation nominates Htt protein to control numerous cel-
lular functions. Presence of the three cleavage sites for prote-
ases in Htt structure generates cleaved protein in cerebral cor-
tex and striatum (Steffan et al. 2004; Warby et al. 2005;
Mende-Mueller et al. 2001). By binding the N-terminal to
C-terminal, cleaving by proteases is disrupted (El-Daher
et al. 2015). After gastrulation, Htt participates in the
neurogenesis process.Malformation of the cortex and striatum
correlates with the low expression of the HTT during
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neurogenesis (White et al. 1997). Knocking out of the HTT in
the embryonic stem cells shows small numbers of neuronal
progenitors during differentiation (Metzler et al. 1999). Htt
has an antiapoptotic role by influencing caspase-3 and pro-
apoptotic Bcl-2 family members like BIK and BAK. In the
presence of the normal Htt, neurons are protected against neu-
rotoxins such as 3-nitropropionic acid (3-NP) which inhibits
mitochondrial complex II and induces HD-like symptoms
(Fig. 2b) (Rigamonti et al. 2000).

Moreover, the neuroprotection character of the Htt could
act through transcriptional regulation affair. Brain-derived
neurotrophic factor (BDNF) as one of the important
neurotrophins with high expression in the CNS regulates neu-
ronal survival, development, and synaptic plasticity
(Greenberg et al. 2009; Nakao et al. 1995). Likewise, BDNF
increases ATP synthesis and mitochondrial efficacy in the
brain (Markham et al. 2004). Ectopic expression of the normal
Htt increases BDNF messenger RNA (mRNA) and protein
levels in the cultured neurons, while by expressing the mutant
form, BDNF level is decreased (Fig. 2a) (Zuccato et al., 2001).
In vivo studies showed similar result with in vitro lines of
research and confirmed the correlation between normal Htt
and BDNF levels in the brain specifically striatum (Hodgson
et al. 1999). So, the neuroprotective function of Htt could be
related to BDNF expression which has a neuroprotective
feature.

BDNF is transported through vesicle trafficking along
the axon toward the end and p150 (Glued) as the subunit
of the dynactin, helps intracellular transport by binding to
dynein and kinesin-2, and interacts with huntingtin-
associated protein 1 (HAP1) to complete BDNF transpor-
tation. HAP1 intermediates interaction between Htt pro-
tein and cellular motors (Fig. 2c) (Gauthier et al. 2004).
Htt is related to synaptic transmission by binding to post-
synaptic density protein 95 (PSD95). PSD95 in the post-
synaptic densities (PSD) can bind to postsynaptic proteins
like Nmethyl Daspartate (NMDA) and α-amino-3-

hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) and
kainite receptors, which are concentrated in the postsyn-
aptic zone (Fig. 2e) (Sheng and Kim 2002). In the pres-
ence of the mHtt, the density of the PSD95 is increased
and leads to excitotoxicity, which can damage neurons
(Leavitt et al. 2001).

In the most neurodegenerative disorders like AD and
PD, mitochondria play crucial roles in the progression
of the diseases (Martin 2012). Mitochondria have a cen-
tral role in the HD, but Htt interacts with some of the
cellular processes which are eventuated to mitochondrial
activity. HAP1 not only controls the vesicle trafficking
but also associates with localization of some organelles
such as mitochondria and endoplasmic reticulum
(Gutekunst et al. 1998). Neurons as polarized cells not
have unique disturbance of the mitochondria. Metabolic
demands in various parts of the neurons are completely
different, and this feature requires a special mechanism
to transport the mitochondria. Htt by binding to HAP1
connects with kinesin and dynein. This connection is
the main mechanism in trafficking of the mitochondria
in neurons (Caviston and Holzbaur 2009). Htt controls
both movements of the mitochondria: anterograde (from
cell body to axon terminal) and retrograde (from axon
ends toward cell body) (Fig. 2d) (Trushina et al. 2004).
Transportation, fusion, and fission are the main mecha-
nisms in controlling the mitochondrial hemostasis.
Neurons tightly depend on mitochondria transportation,
fission, and fusion (dynamic) for maintaining energy
demand, morphology, and structure. During fusion, mi-
tochondria attach to each one and exchange their com-
ponents. Damaged mitochondria could be recovered by
taking healthy ingredients from normal mitochondria.
But in the fission, damaged mitochondria are divided
into daughter ones to eliminate the unhealthy mitochon-
dria. Normal Htt can control fission and fusion process-
es through Htt-interacting proteins 1,14 (Hip1,14),
endophilin3, clathrin, and dynamin (Fig. 2d) (Bossy-
Wetzel et al. 2008). Mitochondria transportation could
be affected by disruption in the normal Htt (Trushina
et al. 2004), but their interaction details are not under-
stood completely. Choo et al. (2004) provide the pres-
ence of the normal huntingtin in mitochondrial outer
membrane. This localization makes mitochondria vulner-
able to any mutations which Htt could have (Choo et al.
2004). In addition to maintenance of the mitochondrial
structure and function, Htt has a role in the regulation
of mitochondrial membrane potential (Ismailoglu et al.
2014).

Htt–HAP1 complex regulates autophagy and autophagosome
transport in the neurons. Autophagy is the cellular degrading
mechanism which is mediated by the formation of the
autophagosome to clear damage organelles and misfolded

Fig. 1 Schematic diagram of the huntingtin. PolyQ domain at the N-
terminal has 34 glutamines, Q, in the normal form. Proline-rich domain
has a role in the flexibility of the protein. NE and NL sequences help
localization of huntingtin in/out of the nucleus. Cleavage sites make
cleaved proteins in the cerebral cortex and striatum
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proteins. Autophagosome follows a retrograde pattern in neu-
rons, and silencing of Htt or HAP1 disrupts this process (Wong
and Holzbaur 2014). As well as mitochondrial dynamics, Htt
interaction with dynein has a pivotal role in the fusion of the
lysosome with autophagosome. Hence, mHtt impairs this fusion
and causes accumulation of autophagosomes with non-degraded
ingredients in the neurons. Myristoylated Htt controls the forma-
tion of autophagosome and autophagy process in the cell. PolyQ
expansion at the N terminus promotes Htt to form aggregate and

toxic structure. By deposition of the mHtt in the striatum, prog-
ress loss of neurons in various parts of the brain is triggered.

Huntingtin in Pathology Form

Not only expansion of CAG repeats in exon 1 but also dele-
tion or inactivation of the Htt can cause HD (O’Kusky et al.
1999; Dragatsis et al. 2000). Amyloid structure of aggregated
Htt consists of β sheets with high polyQ domains (Chen et al.

Fig. 2 Major cellular pathways
that are controlled by Htt in
neuron. a Htt can increase the
expression of BDNF. b 3NP as
the chemical for inducing HD-
like symptom inhibits mitochon-
drial complex II and induces
BAK, BIK, and caspase-3 activi-
ty. Htt inhibits the apoptotic path-
way by suppressing BAK, BIK,
and caspase-3 activities. c Htt by
interacting with HAP1, dynactin,
dynein, and kinesin helps BDNF
transportation through the axon
toward axon end. d Htt has a role
in the mitochondrial trafficking,
retrograde and anterograde, and
dynamics. e Htt binds to PSD-95
at the postsynaptic end. PSD-95
interacts with NMDA, AMPA,
and kainite receptors, which are
important in excitatory signaling
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2002; Perutz et al. 1994). mHtt carries more than 40 glutamine
residues at the amino terminal. Flexibility of the region be-
tween proline-rich domain and polyQ tract is decreased by
expansion of CAG repeats. Proline-rich domain inhibits the
formation of aggregate protein, but by reducing the flexibility
at the N-terminal, protein aggregation is induced (Tam et al.
2009; Caron et al. 2013). In HD, insoluble mHtt could be
detected as early hallmark (Orr and Zoghbi 2007). Ubiquitin
proteasome system (UPS) is the first stride in the degradation
ofmisfolded proteins and injured organelles, and normal Htt is
degraded by thismechanism. The autophagy lysosome system
leads to mHtt clearance and deterioration (Ravikumar et al.
2002). We can find large controversies in previous lines of
research; some of them believe deficiencies in the UPS system
in the HD while other pieces of evidence could not show any
disruption in the UPS activity in HD (Bennett et al. 2007; Bett
et al. 2006). In HD, autophagosome is increased in number
without any ability to bind to substrates, so the autophagy
process is affected (Kegel et al. 2000; Martinez-Vicente
et al. 2010). mHtt is one of the main reasons that could de-
crease the axonal transportation of autophagosomes. So,
misfolded proteins cannot be cleared and degraded (Jahreiss
et al. 2008). Accumulation of mHtt provokes various signal-
ing pathways and influences different cellular activities that all
of them cause neuronal death and degeneration.

We outline here some pathological effects of mHtt by fo-
cusing particularly on the mitochondria and related signals.

Mitochondria and Neuron

Mitochondria are the major hubs for ATP production in the
cells. Moreover, metabolism of the reactive oxygen species
(ROS), Ca2+ hemostasis, and apoptosis are controlled by mi-
tochondria (Mattson et al. 2008). Neurons as high-demand
energy cells need to consume most of the generated ATP for
maintaining neuronal activities like neurotransmission and
synaptic plasticity (Fontán-Lozano et al. 2008). Awide range
of neuronal activities depend on ATP like membrane ion mo-
tive ATPase, activities of kinases which are responsible for
intracellular signaling, cytoskeleton remodeling, releasing,
and recycling neurotransmitters (Chan 2006). Mitochondrial
DNA (mtDNA) has a 16.6-Kb size with 13 encoding genes for
respiratory chain subunits, 22 tRNA, and 2 rRNA (Larsson
and Clayton 1995). Oxidative phosphorylation (OXPHOS) is
the process that transfers electrons over electron transport
chain (ETC), which includes four complexes (I–IV) in the
mitochondrial inner membrane. Complexes I, III, and IV are
responsible for relocation of the protons from mitochondrial
matrix to the intermembrane space. Potential differences be-
tween intermembrane space and matrix as the yield of the
proton transferring lead to ATP generation by complex V.
Electron transfer during OXPHOS provokes ROS generation
specifically super oxide (O2−) (Mailloux 2015). Other sources

for mitochondrial ROS are aconitase (ACO), α-ketoglutarate
dehydrogenase (KGDH), pyruvate dehydrogenase (PDH),
glycerol-3-phosphate dehydrogenase (GPDH), dihydroorotate
dehydrogenase (DHOH), monoamine oxidases A and B
(MAOA and B), and cytochrome b5 reductase (B5R). But
protective strategies against generated ROS such as manga-
nese superoxide dismutase (MnSOD), catalase (Cat), glutathi-
one peroxidase (GPX), phospholipid hydroperoxide glutathi-
one peroxidase (PGPX), glutathione reductase (GR),
peroxiredoxins (PRX3/5), glutaredoxin (GRX2), thioredoxin
(TRX2), and thioredoxin reductase (TRXR2) are occupied by
mitochondria (Winterbourn 1995; Ayala et al. 2014; Lin and
Beal 2006). ROS is the principal source of the oxidative stress
which is a prevalent circumstance in the neurodegenerative
disorders. Superoxide anion radical (O2−), hydrogen peroxide
(H2O2), and hydroxyl radical (OH–) are the basic elements of
the ROS that can oxidize all macromolecules and initiate cell
death (Rinnerthaler et al. 2015). Any impairment in the mito-
chondria increases ROS level in the neurons and triggers neu-
ronal death/degeneration.

Furthermore, mitochondria have essential roles in Ca2+ he-
mostasis by storing it (Gunter et al. 1994). Ca2+ stimulates
ATP synthesis in the physiological conditions and also works
as a stimulator in ROS generation and apoptosis in the patho-
logical state. Ca2+ and ROS generation have bidirectional con-
nection (Gordeeva et al. 2003). Ca2+ increases respiratory rate,
upregulates the OXPHOS system, and elevates ATP synthesis
by prompting PDH, isocitrate dehydrogenase, KGDH, and
ATP synthase complex (McCormack and Denton 1993; Das
and Harris 1990). During mitochondrial ROS generation,
Ca2+ changes conformation of the ETC complexes and makes
more ROS (Brookes et al. 2004). Voltage-dependent anion
channel (VDAC) is the main conductor for Ca2+ passing
through mitochondrial outer membrane (Gincel et al. 2001).
Mitochondrial permeability transition pore (mPTP) as a
voltage- and Ca2+-dependent channel is responsible for Ca2+

inward movement into the mitochondrial matrix through the
inner membrane (Crompton 1999). In the presence of the
ROS, mPTP is opened and triggers cellular death and apopto-
sis by releasing cytochrome c (Seidlmayer et al. 2015). The
sensitivity of the mPTP to ROS and Ca2+ makes amplification
loop that causes ROS generation to impair Ca2+ entry in a
reverse mode (Aon et al. 2003). The importance of the mito-
chondria to neuronal cells forces cellular mechanisms for
quality control (QC) of the mitochondria. Additionally, mito-
chondria have to move along the axons to provide Ca2+ he-
mostasis and ATP to various parts of the neuron. Numbers of
mitochondria and their size are the main concepts of the QC
mechanism in the cell. Neuronal cells tightly depend on mito-
chondrial function and numbers for action potential genera-
tion and demanded ATP for metabolism of the neurotransmit-
ters (Sokoloff 1999; Chan 2006). One of the main mecha-
nisms in the QC is mitochondrial fission and fusion. The

522 Neurotox Res (2017) 32:518–529



functional integrity and density of mitochondria are controlled
by monotonous fission and fusion processes. During the fu-
sion process, mitochondria are elongated and connect through
outer and inner membrane networking. While during fission,
QC acts through removing the damaged mitochondria by
mitophagy (mitochondria autophagy) procedure (Gomes
et al. 2011). Mitofusin1 (Mfn1), mitofusin2 (Mfn2), and optic
atrophy 1 protein (OPA1) are the main factors in the fusion
process (Escobar-Henriques and Anton 2013). Fission 1 pro-
tein (Fis1) and dynamin-related protein (Drp) 1 are the ingre-
dients of the fission (Elgass et al. 2013). ROS level is the main
factor for prompting the fission process. But in the normal
conditions and low stress level, fusion is the abundant process
in mitochondrial dynamics (Fischer et al. 2012). Joining of
mitochondria or fragmentation of them is tightly associated
with mitochondrial dysfunction and cell death. In the neuro-
degenerative disorders and aging-related diseases, disequilib-
rium between fission and fusion processes plays a central role
(Reddy and Reddy 2011). Dominant optic atrophy (DOA) and
Charcot–Marie–Tooth disease (CMT) are two neuropathies
that associate with mutations in OPA1 and Mfn2 (Delettre
et al. 2000; Züchner et al., 2004). Drp1 by having high ex-
pression level in the brain plays a pivotal role in the neuron
survival. Mutation or posttranscriptional change in the Drp1
causes neuronal death and apoptosis (Kageyama et al. 2012;
Cribbs and Strack 2007).

Mitochondria by controlling ATP generation, calcium he-
mostasis, and ROS level could play central actors in all cells
especially neurons. Neurons are postmitotic cells without any
ability to regenerate themselves, so disruptions in the activity,
integrity, mobility, and hemostasis of the mitochondria have a
wide influence on the neuronal function and maintenance.

Mitochondria and HD

Mitochondria are key organelles in the molecular and cellular
basis of neurodegenerative disorders like HD. Strategies for
finding all aspects of the mitochondrial biology in neurode-
generative disorders could help to identify therapeutic sugges-
tions that mitigate mitochondrial function and density.

In HD, mitochondrial fission is the prevalent process, Drp1
and Fis1 levels are increased by progression of the disease, but
Mfn1/2 show low levels of expression in mRNA level (Kim
et al. 2010; Shirendeb et al. 2011). In vivo and in vitro studies
showed that binding of the mHtt to Drp1 acts as the main
trigger of the fission process in HD models (Song et al.
2011); otherwise, mHtt has the ability to enhance Drp1 activ-
ity by posttranscriptional modification (Chang and Blackstone
2010). The presence of the abnormal mitochondria could be
the inducer of neuronal death and apoptosis. So, removing the
mitochondrial defects is the main strategy that the cell uses to
protect themselves against apoptosis. This process is known as
mitophagy, and it depends on the activity of PTEN-induced

putative kinase 1 (PINK1)/parkin pathway (Pickrell and Youle
2015). Parkin as an ubiquitin ligase promotes degradation of
fusion proteins like Mfn1/2 and prevents elongation and con-
nection of mitochondrial defects. PINK1 is essential for
recruiting parkin in the initiation of the mitophagy process.
The last step in the mitophagy is joining the mitochondria to
autophagosome–lysosome complex (Ashrafi and Schwarz
2015; Wang et al. 2011). In the HD models, anomalous mito-
chondria cannot be engulfed by autophagosomes. The main
function of the mHtt is interacting with autophagy receptors
and blocking them from binding to damaged mitochondria
(Martinez-Vicente et al. 2010). Previous studies showed that
PINK1 overexpression can influence the mitophagy process
by inhibiting mHtt activity (Khalil et al. 2015). Mitochondria
are the main organelles in the management of the apoptosis
and cell death. Extrinsic and intrinsic pathways are responsi-
ble for inducing mitochondria-dependent apoptosis. Intrinsic
pathway is set off by cellular stress or damage. In this process,
pro-apoptotic Bcl-2 family induces the formation of pores on
the mitochondrial membrane. The development of such pores
causes cytochrome c and other apoptotic precursors releasing
from intermembrane space into the cytoplasm (Youle and
Strasser 2008). The discharged cytochrome c engages cas-
pase-9, which activates caspase-3 and caspase-7 as apoptotic
enzymes (Slee et al. 1999). The Bcl-2 family is categorized
into three groups: antiapoptotic members (Bcl-2, Bcl-xL,Mcl-
1, A1, Bcl-b, and Bcl-w), pro-apoptotic BH3 proteins (Bid,
Bad, Bim, Bmf, Bik, BNip3, Noxa, Puma, and Hrk), and pro-
apoptotic Bax/Bak proteins. In HD, mHtt induces BNip3 ex-
pression and previous studies showed high expression level of
BNip3 in the HD patients’ muscles (Sassone et al. 2010).
Preceding findings displayed that ablation of Drp1 and Fis1
inhibits cytochrome c releasing and apoptosis occurring. mHtt
is the main actor in the enhancement of the Drp1 and Fis1
expression (Estaquier and Arnoult 2007; Shirendeb et al.
2011). Therefore, fission proteins like Drp1/Fis1 potentially
have apoptotic roles by releasing cytochrome c from the mi-
tochondria into the cytoplasm. But about fusion proteins and
apoptosis controversy, lines of evidence have been reported.
Some findings reveal this hypothesis that apoptosis and cyto-
chrome c releasing are decreased by overexpression of the
Mfn2 (Jahani-Asl et al. 2007), while other studies showed
the inhibitory effects of Mfn2 on cytochrome c but not apo-
ptosis (Neuspiel et al. 2005). Sheridan et al. (2008) reported
that Mfn1/2 and Opa1 overexpressions never affect apoptosis
rate or released cytochrome c. mHtt could be a potent modu-
lator for mitochondrial fission and apoptosis.

Previous studies reported various changes in neurons be-
cause of mHtt, which has the ability to amend the expression
of some genes and repressor/activators (Sipione et al. 2002).
p53, cAMP response element binding protein (CREB), perox-
isome proliferator-activated receptor gamma coactivator 1α
(PGC1α), TAFII130, BDNF, and CREB binding protein
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(CBP) are the main targets for mHtt in transcriptional levels
(Steffan et al. 2000; Cui et al. 2006; Zhai et al. 2005).

p53 as a tumor suppressor gene is induced during cellular
stresses, DNA damage, and activation of oncogenes. In vitro
and in vivo studies showed that active p53 increases HTT
expression. Also, p53 is induced by mHtt. And this bidirec-
tional connection between them causes enhancement of mHtt
in the activation of p53 (Jin and Levine 2001; Feng et al.
2006). In addition, p53 has a role in mitochondrial biogenesis
(Donahue et al. 2001).

ATP depletion is the main character in the neurodegenera-
tive disorders such as HD. Neurons as high energy demand
cells need high ATP level for many functions such as neuro-
transmission, synaptic function, and axonal maintenance.
Mitochondrial biogenesis along fission and fusion is the main
regulator for ATP hemostasis. PGC1α is a key regulator of

mitochondrial metabolism and maintenance of the energy and
lipid hemostasis (Villena 2015). PGC1α has a central role in
mitochondrial biogenesis through activation of various factors
such as nuclear respiratory factor 1/2 (NRF1/2) (Wu et al.
1999), peroxisome proliferator receptor α and γ (Vega et al.
2000; Mazzucotelli et al. 2007), estrogen-related receptor α
(ERRα) (Schreiber et al. 2004), and thyroid receptor (TR)
(Zhang et al. 2004). NRF1 and NRF2 regulate mitochondrial
transcription factor A (TFAM), which increases mtDNA copy
numbers (Kang and Hamasaki 2005). mtDNA encodes most
parts of the ETC which generates ATP in the cell. So, by
increasing mtDNA and mitochondrial biogenesis, cellular
ATP level will be increased. CREB is a potent regulator of
PGC1α (Fig. 3) (Wu et al. 2006) and regulated by cellular
AMP/ATP ratio (Hardie 2011). Transcriptional level of
PGC1α was analyzed in postmortem samples from HD

Fig. 3 Mitochondrial biogenesis
is induced by AMPK, CREB,
SIRT1, and BDNF. In the AMP/
ATP high ratio, AMPK is acti-
vated and influences PGC1α,
which is the main coactivator in
the mitochondrial biogenesis.
PGC1α increases mitochondria
levels through NRF1/2, TR,
ERRα, and PPARα/γ. High
amount of NAD+ activates
SIRT1, which deacetylates
PGC1α and induces its activa-
tion. CREB is in active form
when cAMP level is high in the
cell. Moreover, BDNF can induce
CREB activity through TrkB re-
ceptors. PGC1α is one of the
main downstream for CREB.
mHtt inhibits most of the signal-
ing, which are responsible in the
mitochondrial biogenesis
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patients. Their striatum showed low transcriptional and pro-
tein levels of PGC1α. mHtt influences PGC1α level through
CREB activity (Lin et al. 2004a, b; Cui et al. 2006). Reduction
in the PGC1α level declines cytochrome c and complex IV
expression in HD (Martin et al. 2011). By decreasing mito-
chondrial biogenesis through mHtt effects on PGC1α,
anaerobic metabolism is increased in the basal ganglia
and hippocampus of the HD patients, which leads to
lactate generation and accumulation in those regions
(Herben-Dekker et al. 2014).

Sirtuin 1 (SIRT1) as a NAD-dependent deacetylase protein
is activated in the high NAD+/NADH ratio (Lin et al. 2004a,
b). SIRT1 deacetylates histones H3 and H4 likewise transcrip-
tion factors or their coactivators such as nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), p53, per-
oxisome proliferator-activated receptor γ (PPARγ), and
PGC1α (Saunders and Verdin 2007; Picard et al. 2004).
Deacetylation by SIRT1 is one of the mechanisms that acti-
vates PGC1α (Lagouge et al. 2006). NAD+ as the main in-
ducer of the SIRT1 protects axons against degeneration (Araki
et al. 2004). Therefore, we can conclude that SIRT1 activation
could protect neurons against degenerative mechanisms. mHtt
has the ability to increase acetylation of the SIRT1 substrates.
Additionally, mHtt interferes with the deacetylation activity of
the SIRT1 and decreases the deacetylation of the targets (Jiang
et al. 2011). In HD, modulation of the SIRT1 could alter en-
ergy metabolism through modification of mitochondrial bio-
genesis and function (Fig. 3).

AMP-activated protein kinase (AMPK) is the main sensor
for cellular energy content, and its activation depends on cel-
lular AMP/ATP ratio. AMPK reduces cellular anabolism in
the presence of the high AMP level. By increasing the activity
of the AMPK, PGC1α expression is increased (Terada et al.
2002). So, PGC1α can play a mediator role in mitochondrial
biogenesis through AMPK (Fig. 3). Activation of the AMPK
shows neuroprotective effects in HD mouse models (Ma et al.
2007). AMPK localization into the nucleus was observed in the
striatal neurons of the HD in human and mouse model (Chou
et al. 2005). mHtt is the main cause of AMPK localization into
the nucleus. In this situation, AMPK downregulates the Bcl-2
family which leads to apoptosis (Ju et al. 2011). Moreover,
PGC1α overexpression protects neurons across degeneration
in HD models by increasing the ATP level and mitochondrial
biogenesis (McGill and Beal 2006). SIRT1 and AMPK are
upstream factors in the expression of PGC1α. mHtt also de-
creases ATP synthesis and mitochondria bioenergetic activities
through disrupting structural integrity of mitochondria
(Ismailoglu et al. 2014).

BDNF has a key role in the development and survival of
the neurons. Tropomyosin receptor kinase B (TrkB) acts as a
BDNF receptor and is highly expressed in the adult brain
(Murer et al. 2001). TrkB activates various small G proteins
after binding to BDNF. In one of the main downstream in the

BDNF/TrkB signaling pathways, CREB has a central role and
activates PGC1α (Pizzorusso et al. 2000; Volakakis et al.
2010). Therefore, BDNF not only controls neuronal develop-
ment and maintenance but also has a role in mitochondrial
biogenesis through CREB. mHtt influences BDNF level and
transportation along the axon (Fig. 3) (Zuccato et al. 2001;
Gauthier et al. 2004). By decreasing the transportation of the
BDNF, neuronal survival, maintenance, and energy hemosta-
sis will be altered. In HD patients, BDNF level is decreased in
striatum and it could be a reason for progression of the disease
(Zuccato and Cattaneo 2007).

Alteration in mitochondrial function and integrity in-
fluences Ca2+ hemostasis in neurons. mHtt increases
Ca2+ influx into the mitochondria, which leads to apo-
ptosis and ATP synthesis impairment. mHtt induces
opening of the mPTP channels, which are important in
Ca2+ buffering and cytochrome c releasing. HD patients
and mouse models show impairment in Ca2+ hemostasis,
which may be induced directly or indirectly by mHtt
(Bernardi 1999; Panov et al. 2002).

Recent studies showed that alteration in mitochondrial ac-
tivity and biogenesis has the abilities to protect striatal neurons
against mHtt toxicity. For example, restoring mitochondria
complex IVactivity in HD transgenic mice acts as a neuropro-
tective agent (Bae et al. 2005). PGC-1α overexpression in
in vitro and in vivo models of HD ameliorates toxicity of
mHtt and protects striatal neurons against degeneration
(Weydt et al. 2006; Cui et al. 2006). In addition, upregulation
of superoxide dismutase 2 (SOD2), mitochondrial form of the
superoxide dismutase, can protect neurons in HD model
(Madhavan et al. 2008). Khalil et al. (2015) reported that
PINK1/parkin pathway has the ability to alleviate mitochon-
drial defects in HD model. In summary, some pieces of evi-
dence support this hypothesis that modulation of mitochon-
drial activity and related signaling pathways could slow the
progression of HD.

Conclusion

Neurodegenerative diseases such as HD tightly correlate with
mitochondrial activity and biogenesis. Mitochondrial dys-
function and ATP depletion are the main characteristic
markers in neurodegeneration. Mitochondria in neurons as
highly dynamic organelles in structures and functions have cru-
cial roles in the various neuronal activities. Transportation of
the neurotransmitters, releasing of cargos in the synaptic cleft,
and maintenance of ATP level for neurons depend on mito-
chondrial activity and integrity. mHtt influences mitochondrial
dynamics and biogenesis in HD models. OXPHOS dysfunc-
tion, fragmentation of mitochondria, and decline in the biogen-
esis are the important factors that are modified by mHtt.
Increasing cellular ATP level could be a potential therapeutic
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target in neurodegenerative disease especially HD. By modula-
tion of mitochondria in neurons, mHtt may not be able to influ-
ence mitochondrial dynamic and function vastly in the cell.

Enhancement in mitochondrial biogenesis affects various
signaling pathways which leads to neuroprotection. In HD,
mitochondria are the main targets for mHtt, which easily mod-
ulates dynamic and biogenesis of them. Therefore, manipula-
tion of the mitochondria dynamics and density could be can-
didate for therapeutic approaches in HD.
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