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Cord Injury via ERK-dependent Pathway
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Abstract Spinal cord injury (SCI) is one major cause of death
and results in long-term disability even in the most productive
periods of human lives with few efficacious drugs. Autophagy
is a potential therapeutic target for SCI. In the present study,
we examined the role of lithium in functional recovery in the
rat model of SCI and explored the related mechanism.
Locomotion tests were employed to assess the functional re-
covery after SCI, Western blotting and RT-PCT to determine
the level of p-ERK and LC3-II as well as p62, immunofluo-
rescence imaging to localize LC3 and p62. Here, we found
that both the expression of LC3-II and p62 were increased
after SCI. However, lithium chloride enhanced the level of
LC3-II while abrogated the abundance of p62. Furthermore,
lithium treatment facilitated ERK activation in vivo, and inhi-
bition of MEK/ERK signaling pathway suppressed lithium-
evoked autophagy flux. Taken together, our results illustrated
that lithium facilitated functional recovery by enhancing au-
tophagy flux.
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Introduction

Spinal cord injury (SCI) is one important cause of death and
results in long-term disability even in the most productive
periods of human lives. Depending on the severity of the
injury, SCI may cause dysfunction of organs and cognitive
impairments. SCI causes both primary injury including direct
mechanical tissue damage and secondary injury induced by
the initial injury (Beattie et al. 2002). Secondary injury pro-
cesses including inflammation and excitotoxicity (Casella
et al. 2006) may occur over hours and days after initial trauma,
further intensify tissue damages. Due to the irreversibility and
severity of the primary injury, the secondary injury offers a
therapeutic opportunity.

Autophagy is a lysosome-dependent intracellular catabolic
process for the degradation of cytoplasmic constituents
(Levine and Klionsky 2004). Lines of evidence suggest that
autophagy is involved in SCI. Due to the dysfunction of au-
tophagy flux (Lipinski et al. 2015), increased markers of au-
tophagy are observed in the early stage of SCI, which repre-
sents the accumulation of dysfunctional autophagosomes (C.
L. Liu et al. 2008; Clark et al. 2008; Lai et al. 2008).
Aggregates of toxic protein and defective organelles contrib-
ute to cell death (Erlich et al. 2007). Liu et al. (2015) found
that SCI causes lysosomal dysfunction which contributes to
autophagy disruption and neuronal apoptosis (S. Liu et al.
2015).

Lithium has various neuroprotective properties including
autophagy regulation (Sarkar et al. 2005). However, the role
of lithium in autophagy has long remained a controversy, with
both positive and negative functions proposed. Some evi-
dence shows that lithium enhanced autophagy (Sarkar et al.
2005; Heiseke et al. 2009; O'Donovan et al. 2015; Chang et al.
2011; Del Grosso et al. 2016; Kim et al. 2013; Shimada et al.
2012; Hou et al. 2015), but some vivo studies did not show a
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consistent result (Fabrizi et al. 2017; Li et al. 2010). Li et al.
(2010) demonstrates that lithium reduces apoptosis and au-
tophagy after neonatal hypoxia-ischemia. This discrepancy
could be due to the lithium concentration and lithium-
mediated tissue protection. Thus, the role of lithium in autoph-
agy regulation should be examined thoroughly.In the present
study, we investigated the effect of lithium on acute SCI
in vivo and in vitro. We found improved function recovery
after lithium treatment in rat models of traumatic SCI.
Moreover, lithium administration restored the dysfunctional
autophagy-lysosomal pathway.We also showed that ERK sig-
naling pathway was involved in the therapeutic effect of lith-
ium on acute SCI. These results suggested that lithium con-
tributes to the recovery of acute SCI.

Material and Method

Animal Model of Spinal Cord Injury

Sprague-Dawley rats were purchased from the Animal Center
of the Chinese Academy of Sciences of Shanghai, China.
Procedures with experimental animals were approved by the
Animal Care and Use Committee of Henan University of
Chinese Medicine. Adult male Sprague-Dawley rats (8–
10 weeks of age) weighing approximately 255 g were anes-
thetized. Along the midline of the dorsum to expose the ver-
tebral column, a transection of the spinal cord at T4 level was
performed. Sham group rats underwent the same surgical pro-
cedure but not transected. After surgery, lithium chloride was
injected intraperitoneally at a dose of 50 mg/kg/day (mean
serum level of 0.7~0.8 mM) until 10 days. At the same time,
another group was treated with 50-mg/kg/day lithium chloride
and 50-mg/kg/day chloroquine. Equivalent normal saline in-
jections were treated as vehicle control. The experimental
groups were divided into sham group, SCI group, and
lithium-treated SCI group (lithium-treated group).

Locomotion Tests

According to the well-known open field BBB locomotor
scale, motor performance was scored in an open field scale
at 1, 3, 10, 20, and 25 days postoperation (Lenzi et al. 2016).
Briefly, the BBB locomotion rating scale scores range from 0
points (complete paralysis) to 21 points (normal locomotion).
The scale was developed using the natural progression of lo-
comotion recovery in rats with SCI. The paw placement, joint
movements, weight bearing, and coordination among the
limbs were used to evaluate the BBB locomotion scale. The
inclined plane test was performed as described (Seibenhener
et al. 2004. In brief, rats were placed horizontally on a smooth
tilted board. From the horizontal position (0°), the increment

of the angle was 5°. The maximum angle at which a rat could
maintain its position for 10 s without falling was recorded.

Cell Culture and Treatments

VSC4.1 motoneurons were formed by fusion of dissociated
embryonic rat ventral spinal cord neuronwithmouse N18TG2
neuroblastoma cells (Smith et al. 1994). VSC4.1 cells were
maintained on culture dishes coated with poly-L-ornithine
(PLO) (Sigma) in DMEM:F12 (1:1) containing Glutamax
supplemented with 2% FBS, 1% N1 (Sigma), and 1%
NEAA (referred to as VSC4.1 complete medium).

Primary septal cultures were prepared from the newborn
Sprague-Dawley (SD) rats (provided by laboratory animal
center in Henan Province license SCXK 2010-0002) as de-
scribed previously (Mattson et al. 1992). Briefly, collected
neurons were seeded in a concentration of 1 × 106 cells/cm2.
Cells were cultured for 6 days in medium, consisting of
Eagle’s minimum essential medium containing 10-mm sodi-
um bicarbonate, 1% glucose, 1-mm L-glutamine, 20-mm
KCl, 1-mm sodium pyruvate, and 10% (v/v) heat-inactivated
fetal bovine serum (Sigma). After 24 h in culture, the culture
medium was replaced with neurobasal medium containing
B27 supplements (Invitrogen) in a humidified atmosphere
(6% CO2, 94% room air) at 37 °C. Approximately 12 h later,
5-μM cytosine arabinoside was added to the dishes to prevent
the growth of non-neuronal cells. Cells were treated with 2-
mM lithium chloride (Sigma-Aldrich, USA), 1-μM
PD184352 (MEK inhibitor; Mattingly et al. 2006)
(MedChem Express, USA), and 1-μM SCH772984
(ERK1/2 inhibitor; D. J. L. Wong et al. 2014) (MedChem
Express, USA) for 2 h.

Immunofluorescence Imaging

Following the manufacturer’s protocol, the green fluorescent
protein (GFP)-light chain 3 (LC3) expression vector (Cell
Biolabs, USA) was transfected with Lipofectamine 2000
(Lifescience, USA) for 24 h; cells were then treated with 2-
mM lithium chloride in the absence or presence of 1-μM
SCH772984 for 2 h. The localization of GFP was directly
observed with a laser scanning confocal microscope (Carl
Zeiss Microscopy). The number of GFP-LC3 punta per cell
was counted.

Cells were treated with 2-mM lithium chloride in the ab-
sence or presence of 1-μM SCH772984 for 2 h, and then
washed and fixed with 4% paraformaldehyde for 20 min at
room temperature. For blocking unspecific binding, cells were
incubated with 5% normal goat serum (Yeason, China) and
0.5% Triton in PBS (Biyuntian, China) for 30 min. Cells then
were exposed to antibody p62 (Abcam, USA) at 4 °C for. 24 h.
After rinsing four times with PBS, cells were incubated with
DyLight® 488-conjugated goat anti-rabbit antibody (1:3000,
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Biomart, USA) for 1 h. After washing, the nuclei were stained
with DAPI (4′,6-diamidino-2-phenylindole) ProLong® Gold
Mountant (Molecular Probes, Thermo Fisher Scientific, USA)
for 30 min at room temperature. The slides and coverslips
were mounted with FluorSaveTM Reagent (Calbiochem,
USA). Images were taken on a LSM 5 EXCITER confocal
laser-scanning microscope (Zeiss, Germany) with a water-
immersion Plan-Neofluar 40×/1.3 NA differential interference
contrast and analyzed with the instrument’s software.

Western Blotting

Spinal cord tissue samples and cells were collected after the
scarification of rats. The spinal cord segment at the contusion
epicenter was dissected and frozen at −80 °C (D. Zhang et al.
2016a). Tissues were lysed in RIPA buffer (Beyotime,
Shanghai, China) with 1% phenylmethylsulfonyl fluoride
(Beyotime) and 1% protein phosphatase inhibitor (Beyotime)
on ice for 30min. The samples were centrifuged at 14,000 rpm
and 4 °C for 20 min. The supernatant was removed and used
forWestern blotting. Total protein (40–60μg)was loaded onto
SDS-PAGE, and then transferred to PVDF membranes
and blocked in 5% non-fat milk/Tris-buffered saline/Tween-
20 (TBST) at room temperature for 2 h. Membranes
were probed overnight at 4 °C with anti-LC3B (1:500,
Abcam), p62 (1:1000, Abcam), ERK1/2 (1:1000, Abcam),
p-ERK1/2 (ERK1 phospho T202, ERK2 phospho T185)
(1:1000, Abcam), and GAPDH (1:500, Biyuntian,
Shanghai). After incubation with horseradish peroxidase-
conjugated anti-rabbit secondary antibody (1:2000, Sigma,
USA) for 1 h at room temperature, the bands were visualized

with enhanced chemiluminescence reagents (Sigma, USA).
Densitometric quantification of themembranes was performed
using ImageJ.

Quantification of mRNA Expression

Total RNAwas extracted in TriFast (Peqlab, USA) accord-
ing to the manufacturer’s instructions. After DNAse diges-
tion, reverse transcription of total RNA was performed
using Transcriptor High Fidelity cDNA Synthesis Kit
(Roche Diagnostics, USA). Real-time polymerase chain re-
action (RT-PCR) of the respective genes were set up in a
total volume of 20 μl using 40 ng of cDNA, 500-nM for-
ward and reverse primer, and 2× GoTaq® qPCR Master
Mix (Biyuntian, China) according to the manufacturer’s
protocol. Cycling conditions were as follows: initial dena-
turation at 95 °C for 2 min, followed by 40 cycles of 95 °C
for 15 s, 58 °C for 15 s, and 68 °C for 20 s. For amplifica-
tion, the following primers were used (5′ > 3′ orientation):

Tbp (TATA box-binding protein) (Z. Zhang et al. 2016b):
forward (5′–3′): ACTCCTGCCACACCAGCC
reverse (5′–3′): GGTCAAGTTTACAGCCAAGATTCA
LC3 (Gong et al. 2016)
forward (5′–3′): GGAAGAATGACAGATGAC
reverse (5′–3′): CTTTCAATCTGTTGGCTG
p62
forward (5′–3′): GGAAGCTGAAACATGGGCAC
reverse (5′–3′): TGGGATCCTCTGATGGAGCA
Specificity of PCR products was confirmed by analysis of a

melting curve. Real-time PCR amplifications were performed
on a CFX96 Real-time System (Bio-Rad, USA), and all

Fig. 1 Lithium facilitates
locomotor recovery after SCI
graphs of the BBB score and the
inclined plane test
(n = 12).*p < 0.05, **p < 0.01,
***p < 0.001 indicate statistically
significant difference

Fig. 2 Autophagy flux inhibition
abrogates functional recovery of
lithium treatment graphs of the
BBB score and the inclined plane
test (n = 12).*p < 0.05,
**p < 0.01, ***p < 0.001 indicate
statistically significant difference
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experiments were done in duplicate. The housekeeping gene
Tbp (TATA binding protein) was amplified to standardize the
amount of sample RNA. Relative quantification of gene ex-
pression was achieved using the ΔCT method as described
(Matsuzaki et al. 2015).

Gene Silencing

For silencing, 1 × 105 cells (12-well plate) were seeded 24 h
before the experiment in antibiotic-free medium. Cells were
transfected with 5-μl/1000 μl ONTARGETplus Cdk5 siRNA

Fig. 3 Lithium enhances autophagy in acute SCI. a Original Western
blot showing LC3-II and p62 abundance following treatment with
lithium in SCI models. b and d Arithmetic means ± SEM (n = 5)
showing LC3-II and p62 abundance following treatment with Lithium

in SCI models. c and e Arithmetic means ± SEM (n = 6) showing LC3-II
and p62 mRNA levels following treatment with lithium in SCI models.
*p < 0.05, **p < 0.01, ***p < 0.001 indicate significant difference

Fig. 4 Lithium activates MEK/
AMPK pathway in acute SCI. a
Original Western blot showing p-
ERK1/2 abundance following
treatment with Lithium in SCI
models. b Arithmetic
means ± SEM (n = 5) showing p-
ERK1/2 abundance following
treatment with lithium in SCI
models. c Arithmetic
means ± SEM (n = 5) showing p-
ERK1/2 mRNA level following
treatment with lithium in SCI
models. *p < 0.05, **p < 0.01,
***p < 0.001 indicate significant
difference
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(10 μM, Santa Cruz Biotechnology, USA) and ON-
TARGETplus non-targeting siRNA (10 μM, Santa Cruz
Biotechnology, USA) using the cationic lipid DharmaFECT
1 transfection reagent (0.5 μl/1000 μl, Thermo Fisher
Scientific) according to the manufacturer’s protocol. Twenty-
four hours after transfection, experiments were performed.

Statistics

Data are provided as means ± SEM, n represents the number
of independent experiments. All data were tested for signifi-
cance using unpaired Student t test or ANOVA followed by
post hoc Bonferroni test which was applied when multiple
comparisons between different groups were made. Only re-
sults with p < 0.05 were considered statistically significant.

Results

Lithium Facilitates Locomotor Recovery After SCI

To evaluate the therapeutic role of lithium in locomotor recovery
after SCI, functional recovery was assessed after SCI by BBB
scores and inclined plane test. As shown in Fig. 1A, the BBB
scores of SCI group and lithium-treated SCI group were lower
than the sham group. Furthermore, there was no significant dif-
ference in BBB scores between the SCI group and lithium-
treated group until 10 days later. BBB scores of lithium-treated
group increased compared with the SCI group at 10 days after
injury. Likewise, the inclined plane test scores showed the same
trend (Fig. 1B). The scores of the inclined plane test were higher
in lithium-treated group at 10, 20, and 25 days after injury.

Fig. 5 Lithium promoted autophagy flux by activating MEK/ERK
pathway in cells. Original Western blot showing LC3-II and p62
abundance following treatment with lithium in the presence of
PD184352 and SCH772984 in neurons. a Arithmetic means ± SEM
(n = 5) showing LC3-II abundance following treatment with lithium in
the presence of PD184352 and SCH772984 in neurons. b Arithmetic
means ± SEM (n = 5) showing LC3-II mRNA level following
treatment with lithium in the presence of PD184352 and SCH772984 in

neurons. (C) Arithmetic means ± SEM (n = 5) showing p62 abundance
following treatment with lithium in the presence of PD184352 and
SCH772984 in neurons. d Arithmetic means ± SEM (n = 5) showing
LC3-II mRNA level following treatment with lithium in the presence of
SCH772984 in VSC4.1cells. eArithmetic means ± SEM (n = 5) showing
p62 mRNA level following treatment with lithium in the presence of
SCH772984 in VSC4.1 cells. *p < 0.05), **p < 0.01, ***p < 0.001
indicate significant difference
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Autophagy Flux Inhibition Abrogates Functional
Recovery of Lithium Treatment

To confirm the therapeutic effects of lithium on locomotor
recovery which was autophagy-lysosome pathway-depen-
dent, locomotion tests were utilized. As shown in Fig. 2,
lithium-induced functional recovery was significantly blunted
by an autophagy-lysosome pathway inhibitor chloroquine
(CQ).

Lithium Enhances LC3-II Level While Decreases p62
Expression in Acute SCI

Given that the conversion of LC3-I to LC3-II is pivotal for the
formation of autophagosomes, the levels of LC3 and p62 were
determined byWestern blot and qPCR. As illustrated in Fig. 3,
the expression of LC3-II both in protein level and in transcrip-
tional level was significantly higher after lithium treatment.

Furthermore, the protein abundance of p62 also decreased
after lithium treatment compared with that of the SCI group.

Lithium Activates MEK/ERK Pathway in Acute SCI

To better understand the mechanism of the lithium therapy,
MEK/ERK pathway involved in lithium-evoked autophagy
flux in SCI was explored by Western blot. As illustrated in
Fig. 4, lithium administration remarkably increased the level
of p-ERK1/2 compared with the SCI group. These findings
suggested that lithium may activate ERK1/2 pathway to facil-
itate autophagy in acute SCI.

Lithium Promoted Autophagy Flux by Activating
MEK/AMPK Pathway in Cells

To confirm our findings that lithium activated MEK/ERK
pathway in vitro, PD184352 (MEK inhibitor; Mattingly
et al. 2006) and SCH772984 (ERK1/2 inhibitor; D. J. L.

Fig. 6 Silencing of ERK1/2 ab-
rogated lithium-induced
autophagy flux in cells. aOriginal
Western blot showing LC3-II and
p62 abundance with lithium
treatment in erk+/+ and erk−/−

septal neurons. b Arithmetic
means ± SEM (n = 5) showing
LC3-II with lithium treatment in
erk+/+ and erk−/− septal neurons. c
Arithmetic means ± SEM (n = 5)
showing p62 abundance with
lithium treatment in erk+/+ and
erk−/− septal neurons. d
Arithmetic means ± SEM (n = 5)
showing p62 mRNA level with
lithium treatment in erk+/+ and
erk−/− VSC4.1 cells. e Arithmetic
means ± SEM (n = 5) showing
LC3-II mRNA level with Lithium
treatment in erk+/+ and erk−/−

VSC4.1 cells
* p < 0 . 0 5 , * * p < 0 . 0 1 ,
***p < 0.001 indicate significant
difference
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Wong et al. 2014) were utilized to treat the septal neurons and
VSC4.1 cells. As illustrated in Fig. 5, PD184352 and
SCH772984 blunted lithium-induced autophagy in cells.
Additionally, ERK1/2 silencing also reduced lithium-evoked
LC3-II expression while reversed the effect of lithium upon
p62 level in both kinds of cells (Fig. 6).

The activation of autophagy by lithium was further con-
firmed by the localization of LC3-II and p62 by fluorescence
microscope. As illustrated in Fig. 7A and B, cells were
transfected with the GFP-LC3 plasmid transiently. The num-
ber of GFP-LC3 puncta in VSC4.1 cells significantly in-
creased following lithium treatment, and SCH772984 resulted
in a significant degradation of green fluorescence in cells.
Moreover, immunofluorescence of p62 significantly de-
creased after lithium treatment, which could be blunted by
SCH772984 (Fig. 7C and D). Taken together, our results in-
dicated that lithium enhanced autophagy flux via MEK/ERK
signaling pathway.

Discussion

Our observations in a rat model of acute SCI support the
notion that lithium enhances autophagy via activating ERK
signaling pathway and facilitates locomotor recovery after
SCI. Increased markers of autophagy after SCI (Kim et al.
2013; Chang et al. 2011; Hou et al. 2015; Y. W. Wong et al.
2011) represent the accumulation of autophagosomes, the
mechanism however remains controversial. Whether the ac-
cumulation of autophagosomes is due to enhanced autophagy

flux and autophagosome synthesis or decreased flux is uncer-
tain. Enhancing autophagy-lysosomal function may represent
a potential and effective therapeutic target against SCI.

LC3 and p62 are standard markers for autophagy. LC3, a
central protein in the autophagy pathway, functions in autoph-
agy substrate selection and autophagosome biogenesis.
Conjugated to the head group of the lipid phosphatidylethanol-
amine through a series of ubiquitin-like reactions, the lipid
modified form of LC3 is referred to as LC3-II and involved in
autophagosome membrane expansion and fusion events
(Weidberg et al. 2011). Once autophagosome containing
LC3-II fuses with the lysosome, subsequent degradation of its
contents by lysosomal hydrolysis occurs. P62 is an endogenous
autophagy substrate and polyubiquinated protein degraded by
lysosome (Cohen-Kaplan et al. 2016a). By binding to LC3-II
via its LC3-interacting region, P62 is degraded along with its
substrate (Y. Wang et al. 2017). In this study, we addressed the
issue of flux by assessing the levels of p62 and LC3-II.
Enhanced levels of LC3-II and p62 were observed in the model
of SCI, suggesting that increased autophagymarkers are at least
partly induced by suppression of degradation pathway (D.
Zhang et al. 2016a; C. Wang et al. 2016).

Lithium has various neuroprotective properties including
autophagy regulation (Sarkar et al. 2005; Kim et al. 2013;
Chang et al. 2011; Hou et al. 2015; Y. W. Wong et al. 2011).
However, both positive and negative functions are proposed.
Sets of evidence demonstrate that lithium enhanced autophagy
(Sarkar et al. 2005; Heiseke et al. 2009; O'Donovan et al.
2015; Chang et al. 2011; Del Grosso et al. 2016; Kim et al.
2013; Shimada et al. 2012; Hou et al. 2015), but others

Fig. 7 Localization of LC3 and p62 in VSC4.1 cells. a Images acquired
by fluorescence microscopy, green fluorescent protein (GFP)-light chain
3 (LC3)-transfected cells treated with lithium treatment in the presence of
SCH772984 in VSC4.1 cells. b Quantitative analysis of GFP-LC3
positive puncta per cell. c Immunofluorescence of p62 in VSC4.1 cells

with lithium treatment in the presence of SCH772984. d Nuclei were
counter stained with DAPI and graph represents average p62 dot
numbers per cell after the indicated treatments (n = 30 cells for each
group in three independent experiments). **p < 0.01, ***p < 0.001
indicate significant difference
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(Fabrizi et al. 2017; Li et al. 2010) suggest that lithium reduces
apoptosis and autophagy after neonatal hypoxia-ischemia.
This discrepancy may be explained by the different lithium
concentrations and lithium-mediated tissue protection. As our
results show, lithium enhanced the protein abundance of LC3-
II while decreased the level of p62 compared with the SCI
group, suggesting a positive effect of lithium on autophagy-
lysosomal pathway. Furthermore, lithium may also result in a
selective autophagy activation with a decrease in
autophagoproteasome. Autophagoproteasome, a cytosolic
membrane-bound compartment containing both LC3 and
ubiquitin antigens, is derived from the inclusion of
ubiquitin-proteasome structures within autophagosomes con-
taining cytoplasmic material at various stages of degradation
(Klionsky 2016). P62 could either target the proteasome for
degradation or deliver ubiquitinated substrates for degradation
through ubiquitin (Ub)-proteasome system (UPS)
(Seibenhener et al. 2004; Cohen-Kaplan et al. 2016b).
Therefore, p62 decrease may lead to a decrease in the uptake
of proteasome within LC3 autophagy vacuoles (Lenzi et al.
2016), which causes LC3 accumulation.

ERK activity has also been associated with autophagy (J.
Wang et al. 2009) and autophagic cell death in many non-
neuronal cellular models in response to different stresses
(Ogier-Denis et al. 2000). In human ovarian cancer cells, cy-
toplasmic sequestration of ERK promotes autophagy
(Bartholomeusz et al. 2008). Moreover, direct ERK activation
by overexpression of constitutively active MEK can promote
autophagy without any other stimulus (Corcelle et al. 2006).
Reports show that the effect of lithium is dependent on the
activation ofMEK/ERK signaling pathway (Pardo et al. 2003;
Hull et al. 2014; Zassadowski et al. 2015). In the present study,
we confirmed the activation of ERK by lithium both in vivo
and in vitro. In vivo study, we found that lithium promoted
activation of ERK1/2 and improved locomotor recovery after
SCI. In vitro study, MEK/ERK inhibitors abrogated the effects
of lithium on autophagy in primary septal neurons and VSC
4.1 cells.

Clinical trials indicate the safety and efficacy of lithium in
the therapies of traumatic diseases and various neuropsychiat-
ric diseases (Yang et al. 2012; Y. W. Wong et al. 2011; Raja
et al. 2015; Guttuso 2016). Our study confirmed that lithium
treatment promotes the recovery after SCI. Further research
regarding neuroprotective effect of lithium by oral administra-
tion would be of great help in the clinical usage of lithium for
SCI patients.

In conclusion, our results demonstrate that lithium pro-
motes autophagy after SCI and may provide potential thera-
peutic interventions for SCI.
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