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Abstract Considering that depression is a common non-

motor comorbidity of Parkinson’s disease and that agma-

tine is an endogenous neuromodulator that emerges as a

potential agent to manage diverse central nervous system

disorders, this study investigated the antidepressant-like

effect of agmatine in mice intracerebroventricularly (i.c.v.)

injected with the dopaminergic neurotoxin 1-methyl-4-

phenylpyridinium (MPP?). Male C57BL6 mice were

treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min

later the animals received an i.c.v. injection of MPP?

(1.8 lg/site). Twenty-four hours after MPP? administra-

tion, immobility time, anhedonic behavior, and locomotor

activity were evaluated in the tail suspension test (TST),

splash test, and open field test, respectively. Using Western

blot analysis, we investigated the putative modulation of

MPP? and agmatine on striatal and frontal cortex levels of

tyrosine hydroxylase (TH) and brain-derived neurotrophic

factor (BDNF). MPP? increased the immobility time of

mice in the TST, as well as induced an anhedonic-like

behavior in the splash test, effects which were prevented by

pre-treatment with agmatine at the three tested doses.

Neither drug, alone or in combination, altered the loco-

motor activity of mice. I.c.v. administration of MPP?

increased the striatal immunocontent of TH, an effect

prevented by the three tested doses of agmatine. MPP? and

agmatine did not alter the immunocontent of BDNF in

striatum and frontal cortex. These results demonstrate for

the first time the antidepressant-like effects of agmatine in

an animal model of depressive-like behavior induced by

the dopaminergic neurotoxin MPP?.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disease affecting about 1 % of the

population after the age of 65 years (Mayeux 2003). Typ-

ically, PD is considered a motor disorder, with resting

tremor, bradykinesia, muscle rigidity, and postural insta-

bility as main clinical features (Fahn 2003). Despite PD is

classically diagnosed based on the motor symptomatology,

it is now appreciated that most people with PD experience

non-motor symptoms, sometimes even many years before

the onset of motor signs. Studies have shown that non-

motor manifestations of PD, such as constipation, sleep

disorder, olfactory impairment, neuropsychiatric, and

cognitive deficits may occur in up to 80 % of PD patients

and they are not ameliorated by the current anti-parkinso-

nian pharmacotherapy (Bodis-Wollner 2003; Simuni and

Sethi 2008; Shulman et al. 2001).

Among the non-motor manifestations of PD, depression

presents the highest prevalence, with estimated rate from

2.7 to 68.1 % (Hantz et al. 1994; Martinez-Martin et al.

2015; Slaughter et al. 2001; Zach et al. 2004). The presence

of depressive symptoms in PD patients increases direct and

indirect costs of treatment (Nilsson et al. 2002) and con-

tributes to reduce patient’s health-related quality of life
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(Adler 2005). Although the etiology and pathophysiology

of PD-associated depression is not entirely understood,

studies suggest that reduced extracellular concentrations of

serotonin or serotonergic receptor dysfunction are associ-

ated with the development of depression in PD (Ballanger

et al. 2012; Paulus and Jellinger 1991). Importantly, sero-

tonin is produced by raphe nuclei, which has an early

involvement in the neurodegenerative process underlying

PD according to Braak’s hypothesis (Braak et al. 2004).

Degeneration of dopaminergic pathways probably also

contributes to depressive symptoms in PD (Brown and

Gershon 1993). Especially anhedonia, a common symptom

of depression, is supposed to be a consequence of altered

dopaminergic reward mechanisms, which in turn, are

associated with degeneration of the ventral tegmental area

and limbic forecasts (Heinz et al. 1994). Importantly,

neurodegeneration of the nigrostriatal dopaminergic path-

way and depletion of dopamine are usually assessed by

measuring striatal content of tyrosine hydroxylase (TH),

the rate-limiting enzyme of dopamine synthesis (Lee et al.

2013; Kozina et al. 2014).

1-Methyl-4-phenylpyridinium (MPP?), the active metabo-

lite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-

ridine (MPTP), is a parkinsonian mimetic compound which

selectively destroys dopaminergic neurons in the substantia

nigra (SN) (Javitch et al. 1985). The mechanisms involved in

toxicity of MPTP and MPP? include glutamatergic excito-

toxicity, mitochondrial dysfunction, peroxynitrite production,

oxidative stress, and inflammation, events which lead to neu-

ronal and glial cell damage (for review see Yokoyama et al.

2008).

It is well recognized that administration of MPTP or

MPP? by different routes elicits an increased immobility

time of rats and mice in the forced swimming test (FST)

and tail suspension test (TST) (Castro et al. 2013; Moreira

et al. 2010; Santiago et al. 2010; Vuckovic et al. 2008), two

widely accepted predictive models of depression in

rodents. Furthermore, systemic administration of MPTP in

rats decreased the preference for the sucrose over water, an

indicator of anhedonia (Kryzhanovskii et al. 1995).

Dopaminergic degeneration induced by MPTP in rats is

also associated with lack of trophic support in neurons or

brain areas implicated in the pathophysiology of PD

(Rekha et al. 2013; Sathiya et al. 2013). Reinforcing these

results, decreased MPP?-induced toxicity in cultured hip-

pocampal and mesencephalic slices were associated with

increased brain-derived neurotrophic factor (BDNF)

immunocontent and the activation of BDNF-dependent

signaling pathways (Jourdi et al. 2009). Outstandingly, PD

patients present a reduction of BDNF serum levels, an

effect exacerbated by depression, suggesting a common

role for this neurotrophin in both PD and depression (Ricci

et al. 2010).

Since depression in PD patients is highly prevalent and

the conventional pharmacotherapy is unsatisfactory to

manage this medical condition, the research of new drugs

or alternative therapies could help improve PD-associated

symptoms. Agmatine, a cationic polyamine synthesized

from L-arginine, is an endogenous neuromodulator that

emerges as a promising agent to manage diverse central

nervous system disorders, including PD and depression (for

review see Moretti et al. 2014). It was shown that agmatine

promotes beneficial effects against MPTP-induced

dopaminergic neurotoxicity in mice (Gilad et al. 2005;

Matheus et al. 2012), suggesting a neuroprotective effect of

this compound. Corroborating this finding, agmatine also

prevented cognitive and motor impairments induced by

intranasal administration of MPTP in mice (Matheus et al.

2012). It was also demonstrated that agmatine produces an

antidepressant-like effect in the mouse FST and TST by

modulating L-arginine–nitric oxide pathway, K? channels,

a2-adrenoceptors, serotonergic system, and NMDA recep-

tors (Budni et al. 2007; Zomkowski et al. 2002, 2004).

Considering the substantial amount of literature data

showing positive effects of agmatine as a neuromodulator

and neuroprotective agent, this study aimed to investigate

the acute antidepressant-like effects of this polyamine in

mice i.c.v. injected with the neurotoxin MPP?.

Materials and Methods

Animals

This study was performed using adult male C57BL6 mice

(3 month, 30–35 g) provided by the animal facility of the

Universidade Federal de Santa Catarina (Florianópolis,

Brazil). The animals were maintained at 20–22 �C with

free access to water and food, under a 12/12-h light–dark

cycle (lights on at 07:00 h). Mice were caged in groups of

15 animals in a 41 9 34 9 16 cm cage. The cages were

placed in the experimental room 24 h before the test for

acclimatization. All manipulations were carried out

between 9:00 and 17:00 h. This study was carried out in

strict accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National

Institutes of Health. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the

Universidade Federal de Santa Catarina (Protocol Number:

PP00795). All efforts were made to minimize animal

suffering.

Drugs

The following drugs were used: agmatine sulfate salt and

MPP? iodide, both obtained from Sigma Chemical Co., St.

Neurotox Res (2015) 28:222–231 223

123



Louis, U.S.A. Agmatine and MPP?, freshly prepared

before administration, were dissolved in distilled water and

saline solution (0.9 % NaCl), respectively. Appropriate

vehicle-treated groups were also assessed simultaneously.

The primary antibodies anti-TH (sc-25269) and anti-

BDNF (sc-20981) were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Anti-b-actin

(ab8226) was bought from ABCAM. The secondary anti-

bodies anti-mouse IgG (horseradish peroxidase, #7076) and

anti-rabbit IgG (horseradish peroxidase, #7074) were pur-

chased from Cell Signaling Technology (Beverly, MA,

USA).

Treatments

Agmatine (0.0001, 0.1 or 1 mg/kg) was administered once

orally (p.o.) by gavage in a constant volume of 10 mL/kg

body weight. Sixty minutes after administration of agma-

tine, the animals received an intracerebroventricular (i.c.v.)

injection of MPP? (1.8 lg/site) in a volume of 3 ll per

mouse. Twenty-four hours after administration of MPP?,

immobility time, anhedonic-like behavior, and locomotor

activity were evaluated in two independent cohorts of

animals in the TST, splash test, and open field test,

respectively. The treatment schedule and the doses of the

drugs used in the present study were chosen based on

experiments previously performed in our laboratory (Neis

et al. 2014).

The i.c.v. injections were performed by employing a

‘‘free hand’’ method under light ether anesthesia according

to the procedure previously described (Haley and McCor-

mick 1957; Neis et al. 2014). Briefly, a 0.4-mm external

diameter hypodermic needle attached to a 5-ll Hamilton

syringe by polyethylene tubing was inserted perpendicu-

larly through the skull. The drugs were then administered

in a volume of 3 ll into the left lateral ventricle, according

to the following coordinates from bregma: AP: -0.6 mm,

ML: ?1.1 mm, DV: -1.0 mm (Paxinos and Franklin

2004). The injection was given over 30 s, and the needle

remained in place for another 30 s in order to avoid the

reflux of the substances injected. I.c.v. injections were

performed by an experienced investigator, and after dis-

section of the brain of the animal, the success of the

injection was examined, macroscopically, discarding

results from mice presenting misplacement of the injection

site or any sign of cerebral hemorrhage (\5 %).

Tail Suspension Test (TST)

The total duration of immobility induced by tail suspension

was measured according to the method described by Steru

et al. (1985). Briefly, mice both acoustically and visually

isolated were suspended 50 cm above the floor by adhesive

tape placed approximately 1 cm from the tip of the tail.

Mice were considered immobile only when they hung

passively and completely motionless. Immobility time was

manually recorded during a 6-min period by an experienced

observer. The observer was in the room where experiments

were performed and was blind to the animal condition.

Open Field Test

Ten minutes after TST, mice were evaluated in the open

field paradigm as previously described (Neis et al. 2014).

Animals were individually placed in a wooden box mea-

suring 40 9 60 9 50 cm high with the floor of the arena

divided into 12 rectangles. The number of rectangles

crossed with all paws (crossing) was counted in a 6-min

session. The apparatus were cleaned with a solution of

10 % ethanol between tests in order to hide animal clues.

Splash Test

The splash test was carried out with an independent group

of animals. This test consists of squirting a 10 % sucrose

solution on the dorsal coat of a mouse placed individually

in clear Plexiglas boxes (9 9 7 9 11 cm) (Moretti et al.

2012). Because of its viscosity, the sucrose solution dirties

the mouse fur and animals initiate grooming behavior.

After applying sucrose solution, the time to start the first

grooming and the total amount of time spent grooming

were manually recorded for a period of 5 min as an index

of self-care and motivational behavior, considered to be

parallel with some symptoms of depression such as apa-

thetic behavior (Willner 2005). The apparatus was cleaned

with a solution of 10 % ethanol between tests in order to

hide animal clues.

Western Blot Analysis

Immediately after behavioral evaluation, the animals were

killed by decapitation and the striata and frontal cortices

were removed, placed in liquid nitrogen and stored at

-80 �C until used for biochemical evaluation.

Briefly, samples were mechanically homogenized in

300 ll of TRIS 50 mM pH 7.0, EDTA 1 mM, NaF

100 mM, PMSF 0.1 mM, Na3VO4 2 mM, Triton X-100

1 %, glycerol 10 %, Sigma Protease Inhibitor Cocktail

(P2714), and then incubated for 10 min on ice. Lysates

were centrifuged (10,0009g for 10 min, at 4 �C) to elim-

inate cellular debris. The supernatants were diluted 1/1 (v/

v) in TRIS 100 mM pH 6.8, EDTA 4 mM, SDS 8 %, and

boiled for 5 min. Thereafter, sample dilution (40 % gli-

cerol, TRIS 100 mM, bromophenol blue, pH 6.8) in the

ratio 25:100 (v/v) and b-mercaptoethanol (final concen-

tration 8 %) were added to the samples. Protein content
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was estimated at 620-nm wavelength using a standard

curve with bovine serum albumin as standard (Peterson

1977).

The same amount of protein (40 lg per lane) for each

sample was electrophoresed in SDS–PAGE minigels (10 %

acrylamide) and transferred to nitrocellulose membranes

using a tank transfer system at 100 V and 270 mA for 1 h

(Mini-PROTEAN Tetra cell Electrophoresis System, Bio-

Rad, Hercules, CA). To verify transfer efficiency process,

gels were stained with Coomassie blue and membranes

with Ponceau S.

The membranes were blocked with 5 % skim milk in

TBS (TRIS 10 mM, NaCl 150 mM, pH 7.5). TH and

BDNF were detected using specific antibodies incubated

overnight diluted in TBS-T (Tris 10 mM, NaCl 150 mM,

0,1 % Tween-20, pH 7.5) containing 2.5 % BSA in the

dilutions 1:5000 and 1:500, respectively. All membranes

were incubated with mouse anti-b-actin (1:2000) antibody

to verify that equal amounts of proteins were loaded on the

gel. Next, the membranes were incubated with peroxidase-

linked secondary antibody (1:2500) for 1 h and the reac-

tions developed by chemiluminescence (LumiGLOH, cell

signaling, Beverly, MA, USA). All blocking and incuba-

tion steps were followed by three washes (5 min) of the

membranes with TBS-T. The optical density (O.D.) of the

bands was quantified using Scion ImageTM (Frederick,

MD, USA). The phosphorylation levels of proteins were

determined as a ratio of the O.D of the phosphorylated

band over the O.D. of the total band and b-actin was used

as a loading control. Data were expressed as percentage of

the control (considered as 100 %).

Statistical Analysis

The Kolmogorov–Smirnov test was used to evaluate the

normality assumption of behavioral and biochemical data.

All variables in the present study showed a normal distri-

bution. Comparisons between experimental and control

groups were performed by two-way analysis of variance

(ANOVA) with pre-treatment and treatment as independent

variables followed by Duncan’s multiple range post hoc

test. All experimental results are given as the mean ?

S.E.M. A value of p\ 0.05 was considered to be

significant.

Results

Tail Suspension Test

Figure 1a shows the influence of pre-treatment of mice

with agmatine on depressive-like behavior elicited by

MPP?. Two-way ANOVA revealed significant effects for

the interaction factor between pre-treatment vs. treatment

[F(3, 53) = 3.92, p\ 0.05], but not for agmatine pre-

treatment [F(3, 53) = 1.72, p[ 0.05] or MPP? treatment

[F(1, 53) = 2.47, p[ 0.05]. Post hoc analysis indicated

that the increase in the immobility time produced by

MPP? was prevented by agmatine treatment at doses of

0.0001, 0.1, and 1 mg/kg. Administration of agmatine had

no per se effect on immobility time of mice treated with

saline.

Open Field Test

Treatment with agmatine (0.0001, 0.1, and 1 mg/kg) and

MPP?, alone or in combination, did not modify the loco-

motor activity in the open field (Fig. 1b). Two-way

ANOVA revealed no significant effects for agmatine pre-

treatment [F(3, 53) = 1.88, p[ 0.05], MPP? treatment

[F(1, 53) = 0.82, p[ 0.05], or their interaction [F(3,

53) = 1.19, p[ 0.05] in the number of squares crossed in

the open field test.

Fig. 1 Effects of treatment with MPP? and/or agmatine on immo-

bility time in the TST (panel A) and on locomotor activity in the open

field test (panel B). Bars represent mean ± SEM of 7–9 mice.

**p\ 0.01 versus control mice, ##p\ 0.01 versus MPP? ? vehicle

group, #p\ 0.05 versus MPP? ? vehicle group, according to two-

way ANOVA followed by Duncan’s post hoc test
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Splash Test

Regarding the time to start the first grooming, two-way

ANOVA revealed no significant effects for agmatine pre-

treatment [F(3, 53) = 0.37, p[ 0.05], MPP? treatment

[F(1, 53) = 0.97, p[ 0.05], or their interaction [F(3,

53) = 1.05, p[ 0.05] (Fig. 2a).

Regarding the total time spent grooming, two-way

ANOVA indicated significant effects for agmatine pre-

treatment [F(3, 53) = 3.44, p\ 0.05] and for the interac-

tion between pre-treatment versus treatment [F(3,

53) = 4.77, p\ 0.01], but not for MPP? treatment [F(1,

53) = 0.02, p[ 0.05]. As illustrated in Fig. 2b, post hoc

analyses indicated that MPP? significantly decreased the

time spent grooming in mice treated with vehicle, an effect

that was abolished by pre-treatment with agmatine at

0.0001, 0.1, and 1 mg/kg.

Western Blot

Figure 3 shows a representative Western blot of the effect

of treatment with MPP? and agmatine on striatal TH

immunocontent. Two-way ANOVA revealed significant

effects of agmatine pre-treatment [F(3, 24) = 3.85,

p\ 0.05], MPP? treatment [F(1, 24) = 13.22, p\ 0.1],

and for their interaction [F(3, 24) = 3.03, p\ 0.05]. Post

hoc analysis indicated that MPP? administration signifi-

cantly increased striatal TH immunocontent, an effect

prevented by pre-treatment with agmatine at 0.0001, 0.1,

and 1 mg/kg.

Figure 4 shows the effects of treatment of mice with

MPP? and agmatine on striatal and cortical BDNF

immunocontent. No significant differences were observed

in the experimental groups in the BDNF immunocontent in

the striatum (Fig. 4a) or in the frontal cortex (Fig. 4b). For

the striatum, two-way ANOVA showed no significant

effects for agmatine pre-treatment [F(3, 20) = 0.18,

p[ 0.05], MPP? treatment [F(1, 20) = 0.07, p[ 0.05],

and their interaction [F(3, 20) = 0.13, p\ 0.05]. For

frontal cortex, two-way ANOVA showed no significant

effects for agmatine pre-treatment [F(3, 16) = 0.80,

p[ 0.05], MPP? treatment [F(1, 16) = 0.16, p[ 0.05],

and their interaction [F(3, 16) = 2.27, p[ 0.05].

Discussion

The main findings of this study include (i) the acute

administration of different doses of agmatine prevented the

depressive-like and anhedonic-like behaviors induced by

MPP? in mice; (ii) i.c.v. administration of MPP? increased

striatal immunocontent of TH, an effect prevented by pre-

treatment with agmatine at 0.0001, 0.1, and 1 mg/kg; and

(iii) no significant differences were observed in striatal or

frontal cortex BDNF immunocontent in animals treated

with MPP? and/or agmatine.

An important aspect to be considered is that neither

MPP? nor agmatine affected the spontaneous locomotion

of mice in the open field test, ruling out the possibility that

an alteration in motor function might be responsible for the

increased immobility time elicited by MPP? or the anti-

immobility effect of agmatine in the TST. It is well known

that experimental administration of dopaminergic neuro-

toxins, including MPTP, 6-hydroxydopamine, and rote-

none, induces some motor alterations due to massive

dopaminergic cell loss (Bassani et al. 2014; Kumari et al.

2015; Matheus et al. 2012). Notably, these motor changes

are only observed at high doses or after later periods of

such toxin administration, consistent with a prominent

reduction of striatal dopamine levels and TH protein defi-

ciency (Patil et al. 2014).

Fig. 2 Effects of treatment with MPP? and/or agmatine on time to

start the first grooming (panel A) and total time spent grooming (panel

B) in the splash test. Bars represent mean ± SEM of 7–9 mice.

*p\ 0.05 versus control mice, ##p\ 0.01 versus MPP? ? vehicle

group, according to two-way ANOVA followed by Duncan’s post hoc

test
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Some studies have demonstrated that before showing

significant motor deficits, rats administered with MPTP

present cognitive and emotional deficits (Castro et al. 2013;

Moreira et al. 2010; Santiago et al. 2010). The results

presented herein show that, 24 h after its central adminis-

tration, MPP? induces an increased immobility time in the

TST, as well as an anhedonic-like behavior in the splash

test. Previous studies showed that mice evaluated 1-day

post-MPTP administration presented altered striatal inter-

leukin-6 and interleukin-1b levels (Kaku et al. 1999; Shen

et al. 2005), as well as decreased striatal glutathione and

dehydroascorbic acid/ascorbic acid ratio (an index of

ascorbic acid oxidative status and ROS formation) (Serra

et al. 2002). In addition, at the same time point (1 day after

MPTP discontinuance), elevated glutamate levels in stria-

tum of mice was reported (Serra et al. 2002). Considering

that several lines of evidence support the association

between depression and glutamatergic excitotoxicity,

inflammation, and oxidative stress, it is plausible to suggest

that the depressive phenotype observed in the present work

may be related with the reported short-term biochemical

modifications induced by MPP?.

A relevant finding of the present study is that agmatine

(0.0001, 0.1, and 1 mg/kg), administered only once by oral

route, was able to prevent the increased immobility time

elicited by MPP? in the TST. Moreover, agmatine pre-

treatment completely abolished the anhedonic-like effect

induced by MPP? in the splash test. Corroborating our

findings, different research groups have consistently

reported the antidepressant effect of agmatine in both

animals and humans (Neis et al. 2015; Shopsin 2013;

Taksande et al. 2013; Zomkowski et al. 2002). The

antidepressant-like effect of agmatine depends on the

antagonism of glutamate NMDA receptors (Zeidan et al.

2007; Zomkowski et al. 2002), inhibition of nitric oxide

synthase in the brain (Raasch et al. 2001; Reis and Regu-

nathan 2000), and the blockade of K? channels (Budni

et al. 2007). Moreover, agmatine may exert its antide-

pressant-like effect by modulating serotonergic and nora-

drenergic neurotransmission (Zomkowski et al. 2002,

2004), protecting against oxidative stress (Freitas et al.

2014b, c) and attenuating inflammatory response (Neis

et al. 2014), targets also implicated in PD pathophysiology.

Additionally, Freitas et al. (2015) demonstrated recently

that agmatine prevents corticosterone-induced depressive-

like behavior in mice by improving neuroplasticity markers

(BDNF and CREB) and inducing (Erythroid 2-derived)-

like 2 (Nrf2), a key regulator of the cellular antioxidant

defenses. Furthermore, a recent study also revealed that the

repeated treatment with agmatine during 21 days inhibited

glycogen synthase kinase-3b (GSK3b) and up-regulated

BDNF in the hippocampus, most likely through CREB

activation (Freitas et al. 2014a), similar to the mechanism

of the classical antidepressant fluoxetine (Hui et al. 2014).

Interestingly, MPTP-induced apoptosis of dopaminergic

neurons involves the activation of GSK-3b, since it was

demonstrated that inhibition of GSK-3b activity prevented

apoptosis of dopaminergic neurons and improved behav-

ioral impairments induced by MPTP (Wang et al. 2007).

These results indicate that these pathways may be impor-

tant targets in the treatment of depression associated with

PD and highlight agmatine as an attractive therapeutic

strategy for the treatment of this clinical condition.

Our results revealed an elevated striatal immunocontent

of TH in mice i.c.v. administered with MPP?. These

findings contrast with those of previous studies, which

usually show that mice subjected to neurotoxin-based

models of PD display decreased striatal TH activity (Serra

Fig. 3 Effects of treatment with

MPP? and/or agmatine on

striatal TH immunocontent.

Results are expressed as % of

control and bars represent

mean ± SEM of 3–5 mice.

**p\ 0.01 versus control mice,
##p\ 0.01 versus

MPP? ? vehicle group,

according to two-way ANOVA

followed by Duncan’s post hoc

test
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et al. 2002), immunocontent (Tsou et al. 2015), or number

of TH-positive neurons (Chiu et al. 2015; Naskar et al.

2015; Ren et al. 2015). However, the aforementioned

studies conducted these evaluations after multiple expo-

sures to neurotoxin (at least 2 consecutive days) or at later

periods (mostly 7 days) after neurotoxin administration,

which differs from our experimental protocol. Remarkably,

a previous work showed that MPP? administration in PC12

cells causes a decrease in dopamine content at higher doses

and a transient increase in dopamine levels at a lower

concentration. Moreover, the time course of the increase in

dopamine content corresponded with that of the increase in

TH mRNA expression (Itano et al. 1995). These results

suggest that MPP? has a biphasic effects on dopamine and

TH contents, being dependent on both concentration and

treatment periods.

All doses of agmatine evaluated in the current study

prevented the increase in striatal TH immunocontent pro-

duced by MPP?. These data suggest that agmatine pro-

duces protective effects against MPP?-induced

neuroadaptations in striatum of mice. Indeed, the capacity

of agmatine to regulate brain dopaminergic signaling has

been reported in several studies. For example, it was

demonstrated that agmatine pre-treatment reduced loco-

motor sensitization and blocked the elevation of dihy-

droxyphenylacetic acid and homovanillic acid (dopamine

metabolites) induced by morphine administration in rats

(Wei et al. 2007). Agmatine also prevented the locomotor

impairments and the decrease on TH immunoreactivity in

the SN of aging mice intranasally treated with MPTP

(Matheus et al. 2012). Furthermore, agmatine showed

neuroprotective properties in different animal and cellular

Fig. 4 Effects of treatment with

MPP? and/or agmatine on

striatal (panel A) and frontal

cortex (panel B) BDNF

immunocontent. Results are

expressed as % of control and

bars represent mean ± SEM of

3–4 mice
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models of neuronal damage (Gilad and Gilad 2000; Kim

et al. 2006; Lee et al. 2009), strongly supporting the use of

this polyamine for central nervous system diseases.

There is strong evidence that modifications in BDNF

expression play an important role in both depression (Haile

et al. 2014; Lotrich et al. 2013) and motor diseases,

including PD (He et al. 2013). Of high importance, a recent

study showed that rats subjected to 6-hydroxydopamine-

induced model of preclinical stages of PD displayed

decreased levels of BDNF and trkB mRNA in the hip-

pocampus and amygdala as well as lowered BDNF mRNA

content in the habenula (Berghauzen-Maciejewska et al.

2015). All these impairments likely contribute to the

depressive-like behavior observed in these animals (Ber-

ghauzen-Maciejewska et al. 2014). The results presented

herein indicated no changes in the striatal or cortical levels

of BDNF in our experimental groups. These findings

conflict with those of previous studies, which showed that

neurotoxicity induced by MPTP or MPP? is mediated by

reduction in BDNF levels (Jourdi et al. 2009; Patil et al.

2014; Sathiya et al. 2013). The lack of changes in the levels

of BDNF after MPP? and/or agmatine treatment is difficult

to explain at this moment and can only be a matter of

speculations. However, the drugs dose, treatment schedule,

as well as the encephalic structures evaluated may be

considered when ours and previous results are compared.

Considering the growing number of evidence indicating

that agmatine modulates neuroplasticity and cell survival

signaling pathways (Freitas et al. 2014a, c), we cannot

discard that this polyamine could increase BDNF levels at

higher doses or under other experimental conditions.

Finally, it is also plausible to suggest that other mecha-

nisms, including inhibition of excitatory glutamatergic

transmission, through the blockade of NMDA receptors or

improvement of cellular antioxidant defense system could

contribute to the protective effects of agmatine against the

depressive-like behavior induced by MPP?.

Conclusion

Altogether, the results of this study indicate that agmatine

protects against the development of depressive- and anhe-

donic-like behaviors induced by the dopaminergic neuro-

toxin MPP? in mice. Despite additional studies are

required to better elucidate the beneficial effects of

agmatine in this model, agmatinergic system may become

a valuable target for the development of new treatments for

neurodegeneration-associated depression.
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