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Abstract Traumatic brain injury (TBI) may be due to a

bump, blow, or jolt to the head or a penetrating head injury

that disrupts normal brain function; it presents an ever-

growing, serious public health problem that causes a con-

siderable number of fatalities and cases of permanent dis-

ability annually. Physical exercise restores the healthy

homeostatic regulation of stress, affect and the regulation

of hypothalamic–pituitary–adrenal axis. Physical activity

attenuates or reverses the performance deficits observed in

neurocognitive tasks. It induces anti-apoptotic effects and

buttresses blood–brain barrier intactness. Exercise offers a

unique non-pharmacologic, non-invasive intervention that

incorporates different regimes, whether dynamic or static,

endurance, or resistance. Exercise intervention protects

against vascular risk factors that include hypertension,

diabetes, cellular inflammation, and aortic rigidity. It

induces direct changes in cerebrovasculature that produce

beneficial changes in cerebral blood flow, angiogenesis and

vascular disease improvement. The improvements induced

by physical exercise regimes in brain plasticity and neu-

rocognitive performance are evident both in healthy indi-

viduals and in those afflicted by TBI. The overlap and

inter-relations between TBI effects on brain and cognition

as related to physical exercise and cognition may provide

lasting therapeutic benefits for recovery from TBI. It seems

likely that some modification of the notion of scaffolding

would postulate that physical exercise reinforces the

adaptive processes of the brain that has undergone TBI

thereby facilitating the development of existing networks,

albeit possibly less efficient, that compensate for those lost

through damage.
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Stress affect � HPA � Cognition � Vascular integrity �
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A common cause of traumatic brain injury (TBI) is the

impact of a mechanical insult, an external force, to the

brain that results in tissue damage, cerebral inflammation

and neurodegeneration in the central nervous system (cf.,

Rice et al. 2003). After mechanical impact, the activation

of secondary systems contributes to ischemic damage due

to circulatory disturbances, compromisation of the blood–

brain barrier (BBB), and excitotoxic loss of neurons (Xiong

et al. 1997). It has been estimated that about 1.7 million

citizens of the USA sustain TBI annually (Faul et al. 2010);

the incidence in Sweden has varied from one study

reporting 540 individuals per 100,000 in Western Sweden

(Andersson et al. 2003), to another, 20-year-old study,

reporting 249 per 100,000 in Northern Sweden (Johansson

et al. 1991), while a recent National registry-based study

reported about 250 per 100,000 individuals annually (Borg

et al. 2011). Since psychiatric disorders are common fol-

lowing TBI, the timing of onset may differ according to

pre-injury history with different trajectories for anxiety and

depressive disorders, thereby posing implications for

identifying the time individuals are most at risk for psy-

chiatric disorders post-injury (Bryant 2011; Gould et al.

2011). TBI diagnosis covers a wide range of short- and

long-term impairments in physical, cognitive, behavioral,

and emotional domains, depending upon injury extent,
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severity, and location (Albensi 2001). In mild sport-related

TBI, memory problems, not least spatial navigation mem-

ory deficits and alterations in brain networks suggest

widespread behavioral changes (Slobounov et al. 2010).

For example regarding affective status, TBI patients report

significant changes in self-concept with the post-injury

self-image experienced negatively in comparison with pre-

injury self-image. Their perceived change in self-identity

was positively associated with depression and grief but

negatively associated with self-esteem and awareness.

Awareness in this context was negatively associated with

self-esteem and positively associated with depression (cf.

Carroll and Coetzer 2011). Anxiety following childhood

TBI appears to be part of a broader problem of affective

dysregulation related to a damaged dorsal frontal lobe and

frontal white matter systems (Max et al. 2011). Not least,

quality-of-life issues are critical to considerations of post-

injury recovery (cf. Hawthorne et al. 2011).

The tragic and wasteful consequences of TBI that are

expressed even under a cursory examination of the patho-

physiology of TBI suggest that it is both important and of

necessity that the particular benefits of physical exercise as

an intervention ought to be addressed. The variable nature

of TBI pathology is characterized by the deficits observed

in the capacity of neurons to metabolize energy, sustain

synaptic function, often with consequent cognitive–emo-

tional and debilitating disorders that disrupt homeostatic

mechanisms (Wu et al. 2011). Exercise influences the

homeostatic imbalance that arises under conditions of

prevailing HPA dysregulation. The anti-neurodegenerative

effects of exercise emerge beneficially through expressions

of neurocognitive functioning and neuroplasticity, whereas

the destructive and wasteful consequences of TBI for cel-

lular inflammation and vascular pathophysiology appear to

be assuaged by carefully selected exercise/activity regimes.

The notion of Scaffolding in injured/aging brains may

provide a conceptual ‘hub’ to elucidate the unique utility

and incentive of exercise in promoting restorative gains

against greater or lesser damage to structures at various

levels and their related functions.

Pathophysiological Consequences of TBI

The main pathophysiological outcomes of TBI, taking into

account several individual difference moderating factors

such as general health and conditions, extent of injury and

‘‘age-at-injury’’, include inflammation, ischemia, oxidative

stress (which may be integrated with mitochondrial func-

tion), alterations in wide-scale networks, e.g., the default

mode network, impaired mitochondrial function, altered

BBB permeability, and lasting changes in white matter

integrity. These outcomes, sited within the brain and CNS,

precede, to greater or lesser extent, the plethora of altera-

tions in behavioral performance within cognitive, emo-

tional, sensory and motor domains. The consequences of

TBI ought to be viewed at (i) molecular and cellular levels,

(ii) at macro levels, including circuitry and regional levels,

for instance as exemplified by neuroimaging techniques

and functional magnetic resonance imaging (fMRI) net-

works, and (iii) at the levels of neurobehavioral outcomes

and expressions that may offer the initial and preliminary

determinants of health status and function. Ancilliary to the

notion of TBI levels the moderation by individual differ-

ence factors upon outcome implies that exercise may not

necessarily present the primary moderator but rather

influence and/or be influenced by individual characteristics

and predispositions that precede injury. The convergence

of adverse factors could result severe clinical outcome. A

meta-analysis by Molloy et al. (2011) supports the con-

tention of an increased risk for schizophrenia spectrum

disorder following TBI; the authors observed a larger effect

in those individuals with a genetic predisposition to psy-

chosis. Thus, the pathological outcomes of TBI take on

greater consequence with closer examinations of the

affected domains.

TBI is a major cause of death and disability worldwide,

according to some sources especially in children and young

adults. The causes of TBI include falls, vehicle accidents

(highly prevalent), sports injuries, and physical violence.

Cerebral inflammation following TBI plays a critical role

in the pathophysiology of brain diseases of high prevalence

and economic impact, such as major depression, schizo-

phrenia, post-traumatic stress disorder, and Parkinson’s and

Alzheimer’s diseases. The assessment and diagnosis of TBI

must take into account a multitude of external and internal

(individual) factors that interact at the point-of-confronta-

tion starting from the mechanical forces that induce

shearing and compression of neuronal and vascular tissue

at the time of impact (Moppett 2007). This is followed by a

series of pathological events may then ensue, thereby

leading to further brain injury. The presentations of sec-

ondary injury may be amenable to intervention but cause

deterioration through secondary physiological insults. The

presence of various risk factors that lead to poor outcome

after TBI may lead to further impairments in tissue integ-

rity. Most of these risk factors are fixed at the time of injury

such as age, gender, mechanism of injury, and presenting

signs (Glasgow Coma Scale and pupillary signs), but some

such as hypotension and hypoxia are potential areas for

medical intervention. The diagnosis of TBI and its severity

ought to describe cognitive, physical, and psychological

domains, with physical deficits include ambulation, bal-

ance, coordination, fine motor skills, strength, and endur-

ance. The cognitive deficits ought to include expressions

language and communication, information processing,
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memory, affective functions, coping behavior, and per-

ceptual skills. Psychological status may be altered all-too-

often with the debut of maladaptive behaviors such as

substance abuse and problems of impulse control. Not

least, adjustment to disability issues and confrontational

episodes are frequently encountered by individuals pre-

senting TBI.

At the level of outcome, Kim (2011) has presented a

systematic review of patient outcomes in TBI with the

following factors associated with unfavorable outcomes:

(i) sociodemographic factors, including older age, male

gender, lower level of education; (ii) clinical factors,

including lower Glasgow Coma Scale score, motor vehicle

crash injury, hypotension, hypoxia, increased intracranial

pressure, no pupil reaction, hypo- or hyperglycaemia,

anemia, coagulophy (clotting and bleeding disorders),

hypo- or hyperthermia, abnormal levels of electrolytes,

duration of coma; (iii) higher level of computerized

tomography classification by Marshall score category [a

classification scale of intracranial pathology on head

computed axial tomography (CT)]; and (iv) type of intra-

cerebral lesion. Alcohol, another complicating factor,

potentiates severity of TBI (Cunningham et al. 2002).

Ischemia, the inadequate supply of blood to organ tissues

due to blockade, induces poor oxygen supply or cerebral

hypoxia thereby leading to the death of brain tissue or

cerebral infarction/ischemic stroke and constitutes a par-

ticular type of TBI. In cerebral ischemia, excitotoxic cell

death results from glutamate release by injured neurons

resulting in hyperactive glutamate receptors inducing

excessive intracellular Ca2? influx (Zhang et al. 2002).

This increase in intracellular Ca2? leads to activation of

caspase-3 with eventual apoptotic and necrotic cell death

(Raghupathi 2004; Robertson 2004). Free radical produc-

tion, facilitated by the arachidonic acid cascade in experi-

mentally induced focal ischemia in the rat brain, induces

lipid peroxidation in neuronal and glial cell membranes as

well as DNA damage in neuronal cells (Djebaili et al.

2005; Lee et al. 2005). Clausen et al. (2011) have shown a

close relationship between oxidative stress and excitotox-

icity following TBI in humans. fMRI has shown that

alterations in the brain resting state default mode network,

in the subacute phase of injury, are important in assessing

TBI severity and pathophysiology of the disorder (Johnson

et al. 2011).

At molecular and cellular levels, TBI induces impaired

mitochondrial function, oxidative stress and altered anti-

oxidant activity in the brain and spinal cord (Azbill et al.

1997; Niizuma et al. 2009). Neurons and glial cells in

proximity to the damaged region induce apoptotic cell

death at the early post-TBI stage (Itoh et al. 2009, 2010),

with accompanying cerebral dysfunction (Dressler and

Vemuganti 2009). Experimental TBI reliably models the

functional deficits, within cognitive, emotional, sensory,

and motor domains that are observed in TBI patients

(Ekmark-Lewén et al. 2010; Sigurdardottir et al. 2010)

thereby providing analyses at all levels of TBI patho-

physiology. The notion of ‘age-at-injury’ poses an impor-

tant aspect of both clinical and experimental TBI since the

immature brain may be particularly vulnerable to injury

during critical periods of development (Serra-Grabulosa

et al. 2005), whereas considerable evidence indicates that

outcomes from TBI are worse in elderly individuals

(Marklund et al. 2009; Onyszchuk et al. 2008). Applying a

diffuse TBI model in rat pups to exemplify the level of

behavioral outcomes, Cernak et al. (2010) showed motor

deficits that persisted even after the pups had reached

adulthood, as well as reduced cognitive performance

2 weeks after injury. In addition, it was observed that the

model induced prominent edema, particularly evident in 7-

and 14-day-old animals, as measured by both the wet

weight/dry weight method and diffusion-weighted MRI,

often seen in pediatric TBI. BBB permeability, as mea-

sured by the Evans blue dye technique, peaked at 20 min

after trauma in all age groups, with a second peak found

only in adult animals at 24 h after injury. The BBB level of

cellular pathology presents both global and regional extents

of damage with the likelihood that the intervention may

take on the role of damage control. BBB disruption in

epileptic patients following even mild TBI is not an

infrequent observation (Tomkins et al. 2011). Mild TBI

induces neuropathological insult ranging from white matter

damage to long-lasting neurocognitive deficits (Bazarian

et al. 2006; McAllister et al. 2006; Niogi et al. 2008), with

or without affective disorder symptoms (Chan et al. 2008;

Lanctôt et al. 2010; Rapoport et al. 2008). Zohar et al.

(2011), in a mouse model of mild TBI, have observed

profound and long-lasting, irreversible cognitive impair-

ments as well as permanent depressive-like behavior. Thus,

any understanding of putative interventional efforts ought

to present evidence for positive gains at the various levels

and loci of injury.

Physical Exercise as Intervention

The common features of activities that may contribute to

physical exercise ought to be presented and examined for

purposes of determining eventual appropriateness for

interventional status. Physical exercise has been described

as any and all activity that generates force through mus-

cular activity that disrupts a homeostatic state (McArdle

et al. 1978). Although daily physical activity holds benefits

for general measures of function, quality-of-life and

physical strength, as well as increasing endurance

(Dechamps et al. 2010; Marks et al. 2009), much evidence
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presents the manifest advantages for cerebral integrity and

neurocognition (Kramer et al. 1999; Lustig et al. 2009;

Marks et al. 2010). Any bodily activity that enhances or

maintains physical fitness implies the involvement of reg-

ular and frequent exercise. Morris and Schoo (2004) have

defined exercise as a planned, structured physical activity

with the purpose of improving one or more aspects phys-

ical fitness and functional capacity. It has been character-

ized on the basis of type, intensity, frequency, and duration,

with either endurance or resistance as the training end-

point (Mougios 2010). Endurance exercise develops the

capacity to exert oneself over long periods whereas resis-

tance exercise implies the resistance to the force of mus-

cular contraction and elastic or hydraulic resistance, a

specific type of strength training that utilizes elastic or

hydraulic tension to provide this resistance (Ormsbee et al.

2009). Several molecular agents feature in different aspects

within the context of physical exercise and increasingly

there is much consideration of how their actions converge

to impact the structure and function (e.g., mobility, learn-

ing and memory domains) of the brain and CNS (Ang and

Gomez-Pinilla 2007). For example, serum brain-derived

neurotrophic factor (BDNF) is known to increase with

exercise and this increase is believed to originate from the

brain and it is suggested that monoamines are involved in

BDNF regulation (Maisonpierre et al. 1991).

The nature of physical exercise may vary enormously

must needs be tailored to the special requirements of each

individual even before proceeding with considerations of

cellular, macro-level, outcome-level, and the domains of

neurologic/psychiatric condition. The type, intensity, fre-

quency, and duration of exercise determines the extent to

which muscle contractions induce generation of reactive

oxygen- and nitrogen species (RONS) with strenuous

exercise causing oxidation of proteins, lipids, DNA, release

of cytosolic enzymes, and other markers of cell damage

(Cubrilo et al. 2011; Powers et al. 2011), but only

exhaustive (very strenuous) exercise may be detrimental

(Gomez-Cabrera et al. 2009). As a general paradigm,

running exercise, whether wheel running, treadmill run-

ning, running of various other types or fast and strenuous

(quadropedal) ‘Nordic’ walking, is associated with car-

diovascular, proprioceptive, metabolic, motor, motiva-

tional, and/or general arousal system mobilization with

multiple benefits for individuals (Deslandes et al. 2009;

Qiu et al. 2010; Zhang et al. 2011). Mitochondrial bio-

genesis is critical to normal cellular functioning; exercise,

particularly aerobic, activates mitochondriogenesis (Eynon

et al. 2011). Low mitochondriogenesis is implicated in loss

of muscle function in aging and in the development of

frailty. Thus, the positive effects of exercise on mitoc-

hondriogenesis are limited (Viňa et al. 2009), possibly due

to depletion of peroxisome proliferator-activated receptor-c

coactivator-1a (Derbré et al. 2011). Physical exercise has

been manifested in marked improvements both in function

and biomarker integrity (Archer 2011; Archer and Fred-

riksson 2010; Archer and Kostrzewa 2011; Archer et al.

2010, 2011a, b, Fredriksson et al. 2011). Ang et al. (2003)

have indicated that neuroprotection after physical exercise

may be the consequence of elevated levels of an endoge-

nous neurotrophic factor/nerve growth factor and the pro-

liferation of its receptive cholinergic neurons.

It is essential to remain aware of the stress-provoking

aspect of exercise at both behavioral and biomarker

expressions continually. Strenuous, or markedly strenuous,

levels of physical exertion, such as during marathons/

ultramarathons/triathalons, induce large elevations in

plasma cytokine levels (Nieman et al. 2001, 2005; Smet-

anka et al. 1999). Exercise-induced cytokine release under

these conditions may be due to elevation in catecholamines

and cortisol, high core body temperature, endotoxemia, etc.

(Bosenberg et al. 1988; Camus et al. 1997; Jeukendrup

et al. 2000). Notwithstanding these effects of strenuous

exercise, physical activity exerts anti-inflammatory effects

(Pedersen 2006), and it may be applied as a means to

control low-grade systemic inflammation (Mathur and Pe-

dersen 2011). As indicated above and below, it is quite

evident that physical exercise presents a form of stress with

the exercise–stress–inflammation relationship a model of

neuroendocrine interaction. It stimulates the innate

immune responses with effects upon inflammatory

responses mediated by the sympathetic nervous system and

the hypothalamic–pituitary–adrenal axis (HPA), yet subject

to the dictates of moderate and long-term necessity (Ortega

2003). Martin-Cordero et al. (2011), using an experimental

model of metabolic syndrome, have shown that a physical

exercise training schedule on a treadmill (from 25 cm/s for

10 min in the 1st weeks to 35 cm/s in the last month

5 days/week over 14 weeks) produced a reinstatement of

the interleukin-6 (Il-6)-noradrenaline (NA) feedback

mechanism in response to acute exercise (5 min at 17 cm/s

followed by 25-35 min at 35 cm/s with no slope).

The notion of scaffolding provokes the concept of

transient measures, external to the buildings, that provides

for the construction and maintenance of buildings but not

the building itself. In this regard, physical exercise regimes,

representing environmental mediatory factors or the tran-

sient external-locus scaffolding, have provided measure-

able improvements at both behavioral and biomarker levels

under several brain deficit conditions. The notion is anal-

ogous to that of parental scaffolding of executive func-

tioning in preschool children (Hammond et al. 2011),

presupposing the necessity for some manner of construc-

tion, development, maintenance and neuronal repair.

Although the notion of ‘‘Scaffolding’’ concerns loss of

cognition during aging in the context of a dynamically
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adaptive brain and central nervous system, it lends itself

plausibly the interventional role of physical exercise in

brain disorders. According to Park and Reuter-Lorentz

(2009), scaffolding presents a normal process that contin-

ues across the lifespan involving the application and

development of complementary, alternative neural circuits

to achieve a particular cognitive goal; it is protective of

cognition in the aging (or disabled) brain and is reinforced

by physical exercise and cognitive engagement (which is

harnessed during exercise). With regard to the brain

afflicted by TBI, the notion of scaffolding offers the

viewpoint that exercise buttresses the more or less,

dependent upon injury extent, surviving adaptive and

compensatory neuroreparative processes. Voss et al. (2010)

have shown the scaffolding effect of a 1-year walking

exercise intervention that increased the resting functional

connectivity and efficiency in higher level cognitive net-

works that included frontal, temporal, and posterior corti-

ces in the Default Mode Network and Frontal Executive

Network. Within the context of TBI situations where

long-lasting rehabilitational advantages are sought, phys-

ical activity/exercise was shown to provide beneficial

outcomes for both stroke and TBI patients: Dejong et al.

(2011) showed that two types of physical therapy activi-

ties (gait training and community mobility) were both

positively associated with discharge motor Functional

Independence Measure outcomes across for these patients

groups.

Exercise Influence Upon HPA Dysregulation: Stress

and Affect Following TBI

Neuroendocrine disturbances are common after TBI, and

the detrimental effects of TBI on brain integrity and

functioning are markedly potentiated by the effects of

stress biomarkers (Griesbach et al. 2011). This situation is

hardly surprising since strong correlations were obtained

between affective distress and self-discrepancy (Cantor

et al. 2005). The initial, protective response to TBI

involves acute activation of the HPA axis through pro-

motion of intravascular fluid retention and elevated cortical

levels modulating immune/inflammatory responding and

elevated metabolic substrate availability (Johnston 2006).

Endocrine failure may induce clinically critical conse-

quences during acute and convalescent care after TBI; this

condition may be caused by direct injury to the HPA axis,

neuroendocrinological effects from catecholamines and

cytokines, or from systemic infection/inflammation that

produces primary gland failure (Powner et al. 2006). Both

acute and chronic dysfunction of the HPA axis expressed

through GH, quality-of-life and neurobehavioral deficits, as

well as adrenal insufficiency, are observed after mild,

moderate and severe TBI (Cohan et al. 2005; Dusick et al.

2008; Kelly et al. 2006). Given the cerebrovascular and

anatomical vulnerability exacerbated by the diffuse and

variable nature of TBI, HPA complex regulation may be

defective to greater or lesser extent, e.g., following head

wounds, pituitary damage is not uncommon (Benvenga

2005). The type and duration of pituitary damage varies

with TBI characteristics and patient heterogeneity (Tanri-

verdi et al. 2007, 2010a, b, c). TBI-induced HPA dysreg-

ulation due to adrenocorticotropic hormone (ACTH) and/or

adrenal insufficiency has been observed in patients with

mild to severe TBI (Tanriverdi et al. 2006, 2008a, b). Both

among mild TBI patients and in an animal model of TBI,

controlled cortical impact injury, severity-dependent dis-

ruptions of HPA axis are described (Taylor et al. 2008,

2010). The response of the HPA axis to psychosocial stress

and acute exercise is similar although the latter induces a

stronger response (Negrao et al. 2000).

There is much evidence that regular physical exercise

counteracts some of the effects of stress, although several

studies have suggested that prior exercise does not alter the

acute HPA axis responses to stress (e.g., Fatouros et al.

2010). Nevertheless, Campeau et al. (2010) have presented

results showing that 6 weeks of daily or intermittent, vol-

untary wheel-running exercise constrains the HPA axis

response to mild, but not more intense stressors, and that

this regulation may be mediated at a central level beyond

the primary sensory input. Regular physical exercise alle-

viates most of the symptoms associated with stress, affec-

tive syndromes from various causes and associated health

problems often linked to TBI, such as anxiety. The sym-

patho-adrenal system with its stress-induced activation and

increased release of catecholamines presents a major sys-

tem involved in the response to stressful events. Exercise

training offers as an important modulator of sympatho-

adrenal system, adrenal medulla, and stellate ganglia being

two components of this system. Gavrilovic et al. (2011)

investigated physical exercise-related changes in gene

expression of catecholamine biosynthetic enzymes tyrosine

hydroxylase, dopamine-b-hydroxylase, and phenylethano-

lamine N-methyltransferase in the adrenal medulla and

stellate ganglia of chronically psychosocially stressed adult

rats exposed daily to 20-min treadmill exercise for

12 weeks. They observed that treadmill exercise induced

decreased gene transcription of catecholamine biosynthetic

enzymes in stellate ganglia and an attenuation of cardiac

NA production during stressful situations. The reduction of

catecholamine synthesis in stellate ganglia may have been

linked to the beneficial effects of treadmill exercise on

cardiovascular system in stressed animals.

Several studies suggest that physical exercise may

alleviate depressive symptoms in clinical/nonclinical pop-

ulations to greater or lesser extent (Krogh et al. 2010;
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Lawlor and Hopker 2001; Rethorst et al. 2009). Takada

et al. (2009) examined the links between lifestyle, working

environment, depressive symptoms and suicide ideation in

4,118 Japanese business employees (2,834 male and 1,284

female). They found that the factors associated with

depressive symptoms were: high levels of job stress,

problem drinking, insufficient sleep, lack of social support

and absence of stress reduction techniques over both gen-

ders, such as lack of physical exercise and sedentary life-

style. A wide range of studies have shown that regular

physical exercise reduces stress symptoms, mood disorder,

anxiety and depressiveness (Broman-Fulks and Storey

2008; Janisse et al. 2004; Smith et al. 2007; Tsang et al.

2008; Wang et al. 2010). Acute resistance exercise induced

catecholaminergic rather than HPA axis stimulation

(Fatouros et al. 2010). Exercise stimulates GH, prolactin

and cortisol release (Karkoulias et al. 2008; Weltman et al.

2003) with exercise training, in humans, modulating the

neuroendocrine response to challenge (Brooks et al. 2001,

2003), and exerting an antidepressant effect (Mead et al.

2008). Campbell et al. (2009) demonstrated that voluntary

wheel running exercise initially caused hyperactivation of

the HPA axis, due to enhanced adrenal sensitivity to

ACTH, and consequently these alterations in HPA activity

were eliminated to give restored normal levels completely

by 8 weeks of exercise training.

High rates of depression have been reported in indi-

viduals with TBI with estimates ranging from 6 to 77%

(Jorge et al. 2004; Kreutzer et al. 2001) and later life-long

risk (Dikman et al. 2004). Both cognitive and psychosocial

behavior impairments may be observed in the depression

following TBI (Chamelian and Feinstein 2006; Fann et al.

1995; Hibbard et al. 2004). Neuropathologically, it appears

that an imbalance of left versus right frontal and parietal

viable brain volumes is related to the development of

depression (Schönberger et al. 2011). Hudak et al. (2011)

studied the post-injury atrophy of brain regions of interest

in TBI patients with depressive symptoms assessed by the

Beck Depression Inventory-II. They found that three

regions of interest, left rostral anterior cingulate and

bilateral orbitofrontal cortex also relevant to spontaneous

depression, were found to be significantly correlated with

depressive symptoms. The efficacy of exercise in the

treatment of depression has been documented (e.g. Blu-

menthal et al. 2007; Dunn et al. 2005; Greer and Trivedi

2009). Among TBI survivors presenting depression, phys-

ical exercise intervention was highly preferred (Fann et al.

2009), improving several aspects of depressive symptoms

including sleep problems, anxiety, fatigue and quality-of-

life (Gordon et al. 1998; Lai et al. 2006; Ströhle 2009), as

well as cognition (Grealy et al. 1999; Kleim et al. 2003).

Schwandt et al. (2011) tested the effect of an aerobic

exercise intervention on symptoms of depression among

individuals with TBI (more than 11 months previously)

using the Hamilton Rating Scale for Depression, aerobic

capacity (cycle ergometer, heart rate at reference resis-

tance, perceived exertion), the Rosenberg Self-Esteem

Scale and the program perception survey. They have

reported that with post-exercise intervention all the par-

ticipants presented fewer symptoms of depression,

improved aerobic capacity and higher self-esteem follow-

ing the intervention. High levels of satisfaction with the

program, improved mood and cardiovascular were reported

without any adverse effects. Finally, Hoffman et al. (2010)

have reported that TBI patients with higher levels of

exercise expressed improved levels of sleep, community

participation and overall quality-of-life.

Exercise and Neurocognition Following TBI

With an estimated 10 million individuals affected world-

wide annually, the World Health Organization estimates

that TBI will surpass other diseases as the major cause of

death and disability by the year 2020. The burden of

mortality and morbidity that this condition imposes upon

individuals, caregivers and society, renders TBI a pressing

public health and medical problem. It appears that 40-50%

of the afflicted patients express cognitive deficits (Greve

et al. 2003). More recently, 33% of adults with TBI were

reported to present impaired cognitive function on dis-

charge from hospital, although limited recovery was

observed during the 1st year post-injury (Lin et al. 2010).

Cognitive impairments associated with TBI, if not perma-

nent, may last decades, including memory deficits, reduced

abstract thinking, retarded information processing, poor

concentration, information processing and sequencing

deficits, slowed reaction time, dysarthia (problems articu-

lating speech), anomia (problems of word/name recollec-

tion), impaired auditory comprehension, loss of verbal

fluency, deficits in general intelligence and problems in

planning and organization (Rimel et al. 1982), which lead

to impulse control deficits. Even mTBI causes retarded

information processing, poor concentration and memory

deficits (Rimel et al. 1981). Adolescents with more severe

TBI may underestimate their own degree of executive

dysfunction in daily life, particularly aspects of metacog-

nitive abilities (Wilson et al. 2011). Diffusion tensor

imaging (DTI) analyses have shown that greater white

matter pathology predicted greater cognitive deficits

(Kraus et al. 2007). Wilde et al. (2011) assessed the neural

correlates with fMRI and DTI of working memory, using

the Sternberg Item Recognition Task in 40 children with

moderate-to-severe TBI compared to 41 demographically

comparable children with orthopedic injury. They observed

that diminished white matter integrity of the frontal lobes
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and cingulum bundle, as measured by DTI, was associated

with longer reaction times on the Sternberg Item Recog-

nition Task. Across modalities, the cingulate emerged as a

common structure related to performance after TBI. In

view of the marked cognitive deficits and associated neu-

ropathology, the application of physical exercise as an

interventional parameter in TBI ought to be of critical

importance.

In both human and laboratory animal studies with forced

or voluntary exercise, improvements in the cognitive

functioning domain (including learning ability and memory

capacity) were obtained under conditions of stroke, aging

and life-span (McDonnell et al. 2011a; Tseng et al. 2011;

Voss et al. 2011). These observations suggest that volun-

tary exercise programs may be efficacious against cogni-

tive deficits in TBI (e.g., Grealy et al. 1999). For example,

older healthy women can improve episodic and working

memory through spending time on a challenging physical

or mental activity (Evers et al. 2011). Little et al. (2010)

have shown that TBI causing diffuse axonal injury that

results in damage to the thalamic projection fibers, and

physical exercise, rota-rod and treadmill training, contrib-

uted to increased expression of synaptophysin in subcor-

tical regions of the ischemic hemisphere including the

hippocampus, dentate gyrus, and thalamus (Seo et al.

2010). Synaptophysin is an abundant synaptic vesicle

protein without a definite synaptic function. McMorris

et al. (2011) concluded that acute, intermediate intensity

exercise induced a strong beneficial effect on speed of

response in working memory tasks but a low to moderate,

detrimental one on accuracy, suggesting that exercise-

induced increases in brain concentrations of catechola-

mines resulted in faster processing whereas increased

neural noise may negatively affect accuracy (see also

Pontifex et al. 2009). Gosselin et al. (2011) used fMRI and

event-related potentials (ERP) to study cerebral dysfunc-

tion in 14 mTBI symptomatic patients (5.7 ± 2.9 months

post-injury) compared to 23 healthy controls, during the

post-acute phase, using a visual externally ordered working

memory task. They observed attenuated blood oxygen level

dependent (BOLD) signal changes in the left and right mid-

dorsolateral prefrontal cortex (mid-DLPFC), the putamen,

the body of the caudate nucleus, and the right thalamus in

the mTBI group compared with the controls. Furthermore,

symptom severity and BOLD signal changes were corre-

lated: patients with more severe symptoms had lower

BOLD signal changes in the right mid-DLPFC. For ERP, a

group 9 task interaction was observed for N350 ampli-

tude. A larger amplitude for the working memory task than

for the control task was found in the controls, but not in

mTBI patients, who presented weak amplitudes on both

tasks. Figure 1 presents selected neurocognitive deficits

with related brain pathology following TBI that were

alleviated through exercise intervention together with inter-

relationships between TBI effects on the brain and cogni-

tive performance, exercise effects on brain and cognition,

and the overlap that offers putative treatment possibilities

that promote the notion of scaffolding.

Both correlational and regressional studies have dem-

onstrated that healthy (non-clinically debilitated) adults

individuals who are generally more active physically are

more likely than individuals who are generally inactive to

show higher levels of performance on several different

cognitive tasks, including executive function and working

memory (Ratey and Loehr 2011). Higher levels of self-

reported physical activity were associated also with better

performance on tasks of selective attention (Hillman et al.

2006), task-switching performance (Kamijo and Takeda

2010), and superior processing speed, memory, mental

flexibility and overall cognition (Angevaren et al. 2007).

Exercise even improved cognition in older adults who

did not present cognitive impairment (Angevaren et al.

2008). The randomized control trial study carried out by

McMillan et al. (2002) comparing attentional control

training, physical exercise and a control condition in 130

adults presenting TBI, 3 months and 1-year post-TBI and

living at home with supervised exercise sessions, is illus-

trative. Tests of outcome included test of everyday atten-

tion, the Adult Memory of Information Processing Battery,

Paced Auditory Serial Addition test, Trail Making test,

Sunderland Memory questionnaire, and Cognitive Failures

Questionnaire, incorporated aspects of both executive

function and working memory with recording sessions at

baseline, 6 months, and 12 months, with an addition

questionnaire at 12 months. Their evidence suggested the

aerobic exercise improved performance in speed of infor-

mation processing, global cognition, attention and cogni-

tive flexibility. Nevertheless, the prevailing constraint

being the complexity and inherent inconsistencies of cog-

nition and its expression remains a continual straight-jack

to undue optimism (McDonnell et al. 2011b).

Many of the benefits from physical activity augmenting

neurocognition appear to be mediated by growth factors,

neurotrophins and other biomarkers for the development of

greater brain tissue integrity (Berchtold et al. 2010). The

benefits of physical exercise for a variety of factors that

influence cognitive performance, as well as measures of

cognition are well-documented, including neuronal pro-

tection (Stummer et al. 1994), enhanced neurogenesis

(Kannangara et al. 2010; Van Praag et al. 1999), growth

factors, besides BDNF, like IGF1 and VEGF, acting syn-

ergistically to benefit neural integrity and function (Carro

et al. 2001; Cotman et al. 2007) and cognitive ability

(Fordyce and Wehner 1992; Samorajski et al. 1985).

BDNF, itself, mediates multiple morphologic alterations at

neuronal levels, such as dendritic arborization (Imamura
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and Greer 2009; Zhou et al. 2008), axonal and dendritic

remodeling (Yacobian and Lo 2000), synaptogenesis

(Lu et al. 2009; Menna et al. 2009), synaptic efficacy

(Boulanger and Poo 1999; Sallert et al. 2009) and neural

stem cell efficacy (Xuan et al. 2008). Griesbach et al.

(2009) have shown that physical exercise counteracted the

cognitive deficits associated with the head injury. Western

blot analyses demonstrated that exercise elevated the

mature form of BDNF, synapsin I and cyclic-AMP

response element-binding protein (CREB) in the vehicle

treated Sham (intact)-RW (exercised) group whereas only

the mature form of BDNF and CREB were increased in the

vehicle treated FPI (TBI)-RW group. The blockade of

BDNF (through the pre-administration of TrkB-IgG, an

immunoadhesin chimera that inactivates BDNF) greatly

reduced the molecular effects of exercise in that exercise-

induced increases of BDNF, synapsin I and CREB were not

observed.

Exercise and Neuroplasticity Following TBI

Neuroplasticity refers to capacity of the brain and central

nervous system to remodel itself at several different levels

(Hallett 2005): (i) individual neurons and events respon-

sible for remodeling that occur within the cell, (ii) groups

of neurons and their functions that can evolve to alter

function and daily behavior, (iii) multiple processes that

may occur both in parallel and serially. Some of these

processes are fast yet transient, other longer lasting but

more permanent; it appears that the more persistent the

occurrence of early change, the greater its likelihood of its

permanence. Exercise impacts brain plasticity by involving

the actions of BDNF via an influence upon the expression

of select molecular systems related to the effects of BDNF

on synaptic plasticity (Ding et al. 2011), but also upon the

growth, differentiation and maintenance of neuronal sys-

tems (Satomura et al. 2011); in this regard, BDNF, whether

induced through exercise or otherwise presents a likely

substrate for expressions of scaffolding.

The fastest type of change is a simple effect of BDNF,

an essential neurotrophin intimately connected with brain

metabolism and homeostasis; the neurotrophic factor

induces a cascade of molecular and cellular processes.

Kaplan et al. (2010) have suggested treatment approaches

that enhance BDNF-related signaling and have the poten-

tial to restore neural connectivity. Such treatment approa-

ches could facilitate neuroplastic changes that lead to

adaptive neural repair and reverse cognitive and emotional

deficits in both TBI and PTSD. In juvenile TBI, molecular

responses related to growth, development and metabolism

may play a particularly important role in the injury

response and the recovery trajectory following develop-

mental TBI (Babikian et al. 2010). Lombardi (2008) has

discussed the relative therapeutic effects of psychostimu-

lant drugs co-administered with sensory–motor exercise

inventions that have been shown to induce a steady

acceleration of motor recovery in TBI laboratory animals;

this improvement in turn is considered to exert a facilita-

tion of the neurological recovery process. Griesbach et al.

(2007) have demonstrated that an exercise-induced

increase in hippocampal BDNF is dependent upon when

the exercise schedule is initiated after TBI. They had

observed that the introduction of voluntary exercise

Fig. 1 Selected neurocognitive

deficits with related brain

pathology following TBI that

were alleviated through exercise

intervention (see text for

descriptions and references).

Inter-relationships between TBI

effects on the brain and

cognitive performance, exercise

effects on brain and cognition,

and the overlap that offers

putative treatment possibilities

that promote the notion of

scaffolding. *:, Increased

expression of synaptophysin;
.;/:, decreased/increased blood

oxygen level dependent

(BOLD) signals in right and left

mid-dorsolateral prefrontal

cortex
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2 weeks after TBI-induction with a mild fluid-percussion

injury produced an increase in BDNF and an improvement

in the behavioral outcome. Adult rats were allowed running

wheel access either 0–6, 14–20, or 30–36 days post-injury

day showing significant increases in BDNF, synapsin I and

CREB. Synapsin I is a neuron-specific phosphoprotein, a

substrate for cAMP-dependent and Ca/calmodulin-depen-

dent protein kinases, and is implicated in synaptogenesis

and the modulation of neurotransmitter release. CREB

(cAMP response element-binding) is a cellular transcrip-

tion factor with an essential role in neuronal plasticity and

long-term memory formation.

According to the analysis of exercise-induced effects of

BDNF release in humans (Knaepen et al. 2010), 69% of

studies in healthy volunteers and in patients presenting

chronic disease/damage displayed only transient increases

in serum or plasma BDNF levels after an acute aerobic

exercise, with endurance (aerobic) exercise more effective

than resistance. It is likely that physical exercise/training

elevates basal BDNF only temporarily concurrent with an

up-regulation of the cellular processing of BDNF (i.e.,

synthesis, release, absorption, and degradation). Prolonged

physical exercise, rather than limited or discrete periods,

ought then to produce higher and more continuous release

of the neurotrophin into blood circulation, and in turn

through more efficient absorption to peripheral and central

tissue, contribute to a cascade of neuroplastic and neuro-

protective effects. The particular timing of exercise inter-

vention seems of vital importance since the up-regulation

of plasticity-related proteins after TBI (administered as

FPI) was compromised by premature voluntary wheel-

running exercise (Griesbach et al. 2004a). Contrastingly, it

was seen that voluntary exercise endogenously up-regu-

lated BDNF and enhance recovery when it was delayed

after TBI (Griesbach et al. 2004b). Finally, Goldshtrom

et al. (2010) have reported the case of a 24-year-old female

patient, 9-year post hemispherectomy following TBI that

caused right hemiparesis. The patient was trained to per-

form Rhythmic Exercises with Auditory Cues (REAC)

with gait pattern, functional assessment, cognitive, and

psychological pre- and post-intervention. It was shown that

gait pattern improved with reduced ‘hip-hiking’ and

increased cadence, decreased spasticity in right arm and leg

together with regained sensation, and improved cognitive

performance.

Anti-Inflammatory and Angiogenic Effects of Exercise:

TBI

Physical exercise regimes diminish inflammation (Beavers

et al. 2010), and elevate the release of adrenaline, cortisol,

growth hormones and neurotrophins, prolactin and other

agents equipped with immunomodulatory functions

(Handschin and Spiegelman 2008). Exercise and in par-

ticular strenuous exercise increases the circulating levels of

several cytikines/chemokines (Petersen and Pedersen

2005). Physical exercise induces a rapid increase in

peripheral blood lymphocytes (Gleeson 2007; Kruger and

Mooren 2007) accompanied by monoaminergic involve-

ment, e.g., adrenergic influence (Kruger et al. 2008). There

appears to be a consensus that lymphocytosis is observed

during and after exercise, proportional to intensity and

duration. Both acute and chronic exercises alter the number

and function of circulating cells of the innate immune

system. Acute bouts of moderate exercise cause little

change in mucosal immunity, but prolonged exercise and

intensified training may alter both immune functioning and

efficacy of the HPA axis. The prophylactic effects of

exercise may be linked to anti-inflammatory actions

depending upon which aspect of exercise characteristics

present the most efficacious levels of protection (Walsh

et al. 2011). Exercise training decreased chronic low-level

systemic inflammation associated with obesity and a sed-

entary lifestyle (Kizaki et al. 2011). Given the post-trau-

matic cerebral inflammation following severe head injury,

any eventual anti-inflammatory effects linked to exercise,

post-TBI, ought to offer prospects for restorative scaf-

folding. Infarct size following forebrain ischemia was

shown to present altered inflammatory status by profile

performing exercise before brain trauma with prophylactic

effects on brain damage (Endres et al. 2003; see also Ding

et al. 2006). Pre-TBI physical training was found to induce

interleukin-10 increase per se and protected against cere-

bral interleukin-1b and tumor necrosis factor-a increases

and fluid perfusion induced brain damage decrements in

interleukin-10 (Mota et al. 2011).

Given the sharp increase in TBI since 2001 following

US involvement in Afghanistan and Iraq (Martin et al.

2008; Warden 2006) with ca., 5% of a huge military per-

sonnel (1.5 million) suffering head injury accompanied by

loss of consciousness (Hoge et al. 2008), the utilty of non-

invasive interventions is undeniable. Several studies indi-

cate that while stress exacerbates neuropathological chan-

ges associated with brain disorder, exercise reduces these

changes (Dishman et al. 1998). In this regard, Nation et al.

(2011) have presented a neurovascular pathway of neuro-

degenerative disorder that underlines exercise as an inter-

vention against vascular risk factors that include

hypertension, diabetes, and aortic rigidity as well as direct

changes in cerebrovasculature that involve changes in

cerebral blood flow, angiogenesis and vascular disease

improvement. Mota et al. (2011) have shown that exercise

preconditioning reduced cerebral inflammation and pro-

tected against TBI-induced toxicity; cardiovascular adap-

tation to physical exercise (Scheuer and Tipton 1977)
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offers a necessary adjunct to cerebrovascular integrity.

Aerobic exercise reduces mortality in cardiovascular

disorder (Taylor et al. 2004), benefits mood (Blumenthal

et al. 1999), decreased impulsiveness in ADHD children

(Medina et al. 2010), diminishes anxiety and depression

(Lewin et al. 1992), and improves cognition (Colcombe

and Kramer 2003; Gunstad et al. 2005). In older individ-

uals, physical exercise induced a decrease in cerebral

vascular conductance during moderate intensity cycling,

compared to younger subjects (Fisher et al. 2008), whereas

mean arterial pressure was increased in older subjects

(Ogoh et al. 2011). Exercise increased also critical closing

pressure (CCP) in young healthy subjects (Ogoh et al.

2010). In the context of TBI, Body Weight-Supported

Treadmill Training (BWSTT) on a treadmill with rhythmic

passive/active activation over 2-weeks (60 h) total training

(de Bode et al. 2007) has been shown beneficial, not least

as confirmed by neuroimaging techniques (Horenstein et al.

2009; Luft et al. 2004; Richards et al. 2008; Stewart et al.

2006; Thaut et al. 2007).

The positive benefits of exercise for TBI-induced

inflammation and vascular pathology offer a non-invasive

form of intervention, tailored to individual requirements

and propensities that focuses of general aspects of health

and physiology that form the foundations of brain integrity

and function.

Conclusion: Exercise as Scaffolding to Alleviate TBI

The localization and severity of mild, moderate, or severe

TBI causes both structural and functional destruction that,

in addition to presenting symptoms, includes BBB break-

down, apoptosis and excitotoxicity, cerebral vascular

pathophysiology, edema, and cerebral inflammation. Other

disruptive influences pertain to emotional, neurocognitive

and behavioral domains whereby hyperreactivity to

stressors, HPA dysregulations and affective conditions,

cognitive dysfunctions and loss of neuroplasticity exacer-

bate further the gravity of the TBI situation. Physical

exercise facilitates improvements in debilities due to stress,

affect and HPA dysregulation following TBI, augments

neuroplasticity, and either reverses or attenuates the cog-

nitive performance impairments due to TBI. It ought to be

noted that the complete scope of physical exercise appli-

cations in TBI remains apparent rather than real. Chen

et al. (2011) have shown that there is an increased risk of

stroke among individuals who have sustained a TBI sug-

gesting the need for more intensive medical monitoring and

wider health education programs following TBI, especially

during the first few months and years. It is likely that

exercise models of recovery from stroke may contribute to

a further understanding of TBI-exercise interventions, not

least with relevance for determining exact parameters

regard treatment introduction. As argued by Greisbach

(2011), the premature application of post-concussive

exercise may potentiate, rather than ameliorate, deficits by

exacerbating post-concussive symptomatology and dis-

rupting restorative processes. Nevertheless, it may be

concluded that physical exercise/activity offers the critical

factor mediating the increased BDNF levels and brain

regional and cellular gains (Kobilo et al. 2011).

According to the modified notion of scaffolding (above),

physical exercise reinforces the adaptive processes of the

TBI brain in facilitating development of networks, albeit

less efficient than pre-TBI, that compensate for those lost

through cerebral damage. The essential aspect is that of an

adaptive brain that through the scaffolding process is

ensured optimal aging over an individual’s lifespan. It is

important to distinguish between what constitutes scaf-

folding and what constitutes the building itself (Petrik et al.

2012), whereas exercise regimes have been shown to

induce neurogenesis, neurorepair, and damage control that

buttress the brain against neurodegenerative processes it is

the molecular, cellular, circuitry and regional levels, the

‘steel and concrete’ that form the brain construction within

the affected domains. Whether this metaphor facilitates the

notion of scaffolding to elucidate the role of exercise in

TBI-afflicted individuals depends on the extent to the

restorative actions of physical are investigated with this

end in view; it ought to be noted that scaffolding has been

applied from a perspective affective and anxiety disorders

(Petrik et al. 2012). Nevertheless, it is essential that the

major differences in brain responses to chronic neurode-

generative aging and the eventual recovery from sudden

impact damage not be neglected. Whether or not the aging

brain undergoes a qualitative shift of activation to induce

complementary or alternative brain networks remains an

issue (Gratton et al. 2009; Peltz et al. 2011; Schneider-

Garces et al. 2010). According to Voss et al. (2010), the

facilitation of the shift of brain networks in the direction of

young adults instead of toward alternative network for-

mation among older adults was observed with the imple-

mentation of aerobic exercise regimes (see also Voss et al.

2012). Scaffolding hypothesis posits that qualitatively

different networks emerge during aging to support/com-

pensate for age-related brain dysfunction. Contrastingly,

from the context of TBI given that impacted brain injury

may actually impair function completely in certain regions,

it is feasible that qualitatively different patterns of activa-

tion and/or networks may emerge, under the ‘scaffolding’

of exercise regimes that compensate for specific loss in

specific cases. Under the conditions of disease/disorder

following TBI, deficits in cognitive, motor, emotional or

neuroimmune functioning that express the critical distur-

bance in adaptive capacity may be buttressed by the
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scaffolding that is provided by explicit physical exercise

and activity. Possibly, the scaffolding process will be less

effectively generated in the aged brain and in the very

young. Despite this, much evidence indicates the physical

exercise induces functional plasticity in large-scale brain

systems not only in the TBI brain but brains affected by the

ravages of time.

If indeed the notion of scaffolding following physical

exercise presents a useful conceptualization for the

observed evidence of restored structure and function, the

question of which biological substrates (the steel and

concrete) are available for consideration arises. Most

likely, the widespread contributions of BDNF and other

neurotrophins to neurogenesis, dendritic plasticity/arbori-

zation and neuronal repair present a primary target for

further observation and further targeting of conditions

influencing BDNF concentrations whether systemic or in

regions of the brain. Thus, a reliable prospect for future

application of the scaffolding notion to design cohesive

studies appears readily available. Finally, the importance of

general high level of physical condition in case of TBI

affliction in order to enjoy the most advantageous prog-

nosis has been shown to be an essential prerequisite from

laboratory, clinical and retrospective studies (cf. Hassett

et al. 2011). Suffice it to say that for this reason alone

individuals ought to adhere routinely to physical exercise

schedules to ensure their own health conditions.
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