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Abstract Neurotrophins are initially synthesized as pre-

cursor forms that are cleaved to release C-terminal mature

forms that bind to Trk receptors to initiate survival and

differentiative responses. Recent studies suggest that the

precursor form of NGF (proNGF) acts as a distinct ligand

by binding to a receptor complex of p75 and sortilin to

initiate cell death. Induction of proNGF and p75 has been

observed in multiple pathological states and injury models

in the central nervous system, and blockade of proNGF/p75

interaction is efficacious in limiting neuronal apoptosis.

Multiple strategies that may act to limit proNGF action are

considered as potential therapeutic targets for future

development.
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Neurotrophins consist of a family of proteins, including

nerve growth factor (NGF), brain-derived neurotrophic

factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4

(NT-4/5) with well-characterized differentiative, survival,

and synaptic activities in the developing and adult nervous

system (Chao 2003). Although neurotrophins are initially

synthesized as precursor forms (proneurotrophins), cleav-

age by intracellular proteases, such as furin or proconver-

tases, generates carboxyl- terminal mature neurotrophins.

Mature neurotrophins bind to Trk receptor tyrosine kinases

and with the p75 neurotrophin receptor, a tumor necrosis

factor (TNFR) superfamily member (Huang and Reichardt

2001; Dechant and Barde 2002; Hempstead 2002). The

interaction of mature neurotrophins with Trk receptors

initiates many of the differentiative and synaptic activities

of mature neurotrophins. Neurotrophins and p75 have also

been found to induce apoptosis, detected using genetic

models in which mice lacking p75 exhibit impaired sym-

pathetic neuron or retinal ganglion cell death (Bamji et al.

1998; Frade and Barde 1999). However, cell death medi-

ated by p75 in cultured cells required high concentrations

of mature neurotrophins (Casaccia-Bonnefil et al. 1996;

Yoon et al. 1998; Kenchappa et al. 2006), suggesting that

another form of neurotrophins might selectively activate

p75. Indeed, we have shown that the precursor form of

NGF, or proNGF, can be released by cells and is a specific

and selective ligand for p75 that initiates apoptosis (Lee

et al. 2001). This unexpected finding suggests that the

precursor form is a biologically active ligand, and that the

mature and pro-forms of NGF may execute opposing

actions. Subsequent studies demonstrate that proNGF

preferentially interacts with high affinity to a heteromeric

receptor complex of p75 and the type I transmembrane

protein sortilin, wherein p75 binds to the mature domain of

NGF, and sortilin interacts with the prodomain (Nykjaer

et al. 2004). Thus, the specificity of neurotrophin action is

dictated both by the form of ligand that is released (pro or

mature), and by the differential utilization of receptors,

with proNGF preferentially binding to and activating p75

and sortilin, and mature NGF binding to TrkA.

proNGF Effects in Development and Aging

The activity of proNGF in inducing apoptosis has been

studied in development, and in aged animals. Although it
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would be attractive to evaluate a mouse model lacking the

prodomain of NGF as a means to dissect proNGF and

mature NGF actions, this has not been possible as neuro-

trophin prodomains subserve important functions in protein

folding and intracellular trafficking (Suter et al. 1991;

Chen et al. 2005). In addition, p75 interacts with all forms

of neurotrophins and with multiple co-receptors, including

TrkA, TrkB, and TrkC, to modulate neurotrophin activities,

and with the Nogo receptor, Lingo-1, and ephrin A to alter

axonal guidance (Schecterson and Bothwell 2008). p75

deficient mice have been a valuable tool to assess proNGF

actions as neurons cultured from these animals are resistant

to proNGF action. However, genetic deletion of p75 is

likely to impart multiple and complex phenotypes based on

effects of p75 in regulating Trk activity and on axon

guidance by coupling with other receptor components.

Thus, determining proNGF-specific phenotypes using p75

null animals is difficult. However, a sortilin deficient

mouse has been generated and studied to evaluate proNGF-

induced developmental apoptosis (Jansen et al. 2007).

Consistent with the impaired apoptosis of developing ret-

inal ganglion cells observed in E15.5 embryos deficient in

p75 or NGF (48 or 56% reduction, respectively), embryos

deficient in sortilin also exhibit reduced retinal ganglion

cell death (63% reduction) (Frade and Barde 1998, 1999;

Jansen et al. 2007). This result, together with prominent

immunoreactivity for proNGF, but not mature NGF in the

developing retina, strongly suggests that developmental

elimination of post mitotic retinal ganglion cells is medi-

ated by proNGF. In contrast, no reduction in sympathetic

ganglion neurons was observed in neonatal sortilin defi-

cient animals, suggesting that other, sortilin-independent

mechanisms regulate sympathetic neuron elimination

in vivo.

In the uninjured central and peripheral nervous systems,

proNGF levels are very low in young adult rodents

(Harrington et al. 2004; Jansen et al. 2007). However,

proNGF levels are up regulated with advanced age. Spe-

cifically, proNGF levels are elevated in peripheral nerves

of aged (60-week-old) mice, where it mediates age-

dependent sympathetic neuron death (Jansen et al. 2007).

Although systematic and quantitative analysis of proNGF

levels in postmortem human brains from aged but cogni-

tively normal individuals is not available, elevated proN-

GF levels have been observed in patients with Alzheimer’s

disease (Fahnestock et al. 2001; Pedraza et al. 2005).

Interestingly, proNGF extracted from these human brains

can mediate apoptosis of cultured sympathetic neurons.

Further studies, using animal models that develop Alz-

heimer’s-like pathology, may be informative in identifying

whether proNGF is mechanistically linked to disease

progression.

proNGF Effects in Models of Neuronal Injury

The effects of proNGF have been most extensively char-

acterized in acute injury models in the peripheral and

central nervous systems. In spinal cord injury, both proN-

GF and p75 expression are induced and maintained for at

least 1 week; in a related model of corticospinal motor

neuron axotomy, proNGF, p75, and sortilin are all coor-

dinately up regulated for 2 weeks (Brunello et al. 1990;

Beattie et al. 2002; Harrington et al. 2004; Jansen et al.

2007). In the corticospinal axotomy model, genetic dele-

tion of p75 or sortilin, or haploinsufficiency of NGF, lar-

gely rescues corticospinal neuron cell death. Importantly,

infusion of function-blocking antibodies to the prodomain

of proNGF also markedly reduces cell death, strongly

suggesting that proNGF is an endogenous, inducible, pro-

apoptotic cytokine.

proNGF has also demonstrated pro-apoptotic actions in

cultured spinal motor neurons, cells which express p75 and

sortilin (Domeniconi et al. 2007). In this study, reactive

astrocytes were observed to upregulate proNGF production

in response to peroxynitrite, an oxidant and producer of

free radicals. Although these in vitro results have not yet

been extended to in vivo models, these studies provide a

potential therapeutic target for the treatment of motor

neuron disease. Astrocytes also appear to be a significant

source of the elevated proNGF levels that occur following

pilocarpine induced seizures (Volosin et al. 2008). In this

model, both proNGF and proBDNF are up regulated by

astrocytes, but not microglia. Infusion of function-blocking

antibody specific for the prodomain of NGF, following

seizure induction, impairs hippocampal neuron death

in vivo, suggesting that proNGF is the relevant neurotro-

phin in mediating the apoptotic effects. Additional studies

indicate that proNGF is an apoptotic ligand in basal fore-

brain cholinergic neurons is aged rodents (Al-Shawi et al.

2008). In addition, injured sciatic neurons express proNGF

and this may result in the loss of p75-expressing neurons

following transection (Arnett et al. 2007). Further studies

in the retina suggest that proNGF is induced in microglia in

a model of retinal dystrophy (Srinivasan et al. 2004), and

that sortilin and p75 are induced in retinal ganglion cells

following elevations in intraocular pressure, suggesting

that proNGF may play a role in the retinal neuron death

that occurs in this ischemic setting (Wei et al. 2007).

Collectively, these diverse models of injury or aging sug-

gest that proNGF may be a potent proapoptotic ligand.

However, cell death in each of these models is self-limit-

ing, suggesting that there are endogenous regulatory

mechanisms to modulate the actions of proNGF. These

potential mechanisms, and their relevance as future thera-

peutic targets, will be considered below.
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Regulation of Processing of proNGF to Mature NGF:

Intracellular Conversion

In most adult tissues and in cultured cells, mature NGF is

the predominant isoform, present at very low (nanogram)

levels (Shetty et al. 2003). These observations pose the

question of how proNGF, secreted in injury response states,

escapes the mechanisms that normally ensure efficient

intracellular conversion of proNGF to mature NGF. Mowla

et al. (1999) have demonstrated that in heterologous neu-

roendocrine cells and hippocampal neurons, proNGF is

cleaved efficiently by furin and the mature domain is

trafficked to constitutive secretory vesicles, whereas the

prodomain remains in the region of the cell body where it

may be sorted to lysosomes for degradation. Indeed,

secretion of a soluble prodomain has been very difficult to

detect by most investigators, although Dicou (2008) has

detected prodomain peptides in inflammatory states. These

studies suggest that in uninjured cells, efficient conversion

of proNGF to mature NGF, and constitutive secretion of

mature NGF is the norm. However, the intracellular

chaperones that bind to proNGF, and traffic it to the trans-

Golgi network where furin cleavage occurs have not been

well characterized. One candidate is sortilin, a VpS10p

protein that has been well characterized, as described

above, as a cell surface co-receptor with p75 for proNGF.

However, sortilin has a predominantly intracellular loca-

tion (McCormick et al. 2008), and has a well characterized

role in regulating the intracellular trafficking of proBDNF

to regulated secretory vesicles, and other cargo, including

sphingomyelinase, to the lysosome (Chen et al. 2005;

Ni and Morales 2006). Thus, it is possible that sortilin may

promote the trafficking and degradation of the cleaved

prodomain to lysosomes, although formal experimental

proof of this is lacking. Other chaperones known to bind to

the mature domains of neurotrophins, such as carboxy-

peptidase E that binds to BDNF, do not effectively bind to

mature NGF (Lou et al. 2005). Therefore, the intracellular

mechanisms that regulate proNGF intracellular trafficking,

promote intracellular proNGF to mature NGF conversion,

and regulate proNGF release remain to be determined.

Impaired Cleavage of Secreted proNGF

In several injury models in the central nervous system,

proNGF expression is detectable for several days to weeks

following injury. Surprisingly, little conversion of proNGF

to mature NGF is observed in these vivo settings (Beattie

et al. 2002; Harrington et al. 2004; Jansen et al. 2007),

despite the susceptibility of recombinant proNGF to mul-

tiple proteases, including select matrix metalloproteinases

(MMPs) and plasmin (Lee et al. 2001; Bruno and Cuello

2006; Althaus and Kloppner 2006). These observations

suggest that proteolysis of extracellular proNGF is regu-

lated following in vivo injury, and may involve the coor-

dinate induction of known inhibitors of MMPs and

plasmin. These include tissue inhibitors of metallopro-

teinase (TIMPs), neuroserpin, and alpha-2 macroglobulin,

proteins that are transcriptionally regulated and induced in

neurodegenerative disease, and with neuronal excitotoxic-

ity (Bruno and Cuello 2006). Indeed, alterations in MMP

and TIMP expression have been documented in Hunting-

tons and Parkinson’s diseases (Dzwonek et al. 2004;

Jaworski et al. 1999; Lorenzi et al. 2003). The detection of

intact proNGF in the cerebral spinal fluid of rodents fol-

lowing spinal injury suggests that inhibitors may also be

present in significant amounts, a hypothesis which is

awaiting formal evaluation.

Induction of p75

Expression of the p75 receptor has emerged as a key reg-

ulatory element in proNGF-induced cell death. In most

adult tissues, p75 is expressed at low levels, in contrast to

higher and more widespread distribution in development

(Yang et al. 2009; Roux and Barker 2002). However, in

pathologic states, including seizure, brain injury, ischemia,

and excitotoxicity, p75 expression is induced, as noted

above. The significant reduction of injury-induced apop-

tosis observed in p75 deficient mice (Troy et al. 2002;

Harrington et al. 2004) underscores the importance of p75

induction in determining cell loss following injury.

The molecular mechanisms that regulate p75 expression,

both in development and in injury, remain largely unknown.

The p75 promoter resembles a housekeeping gene, with

high GC content, multiple Sp1 binding sites, but no TATA

or CAAT elements (Sehgal et al. 1988; Patil et al. 1990). A

transgenic approach has been undertaken to evaluate p75

transcriptional regulation (Huber and Chao 1995; Carroll

et al. 1995). In one study, mice harboring 4 kb of 50

sequence of human p75 and the human p75 cDNA as a

minigene exhibited expression by mesenchymal cells dur-

ing development, mimicking endogenous expression (Hu-

ber and Chao 1995). In addition, this p75 minigene was

induced following sciatic nerve injury, although expression

in uninjured peripheral neurons was lacking. In a second

approach, analysis of a 8.4 kb murine p75 promoter, using a

lacZ reporter, documented appropriate expression in

peripheral neurons and the retina, but no induction in

Schwann cells during Wallerian degeneration (Carroll et al.

1995). Collectively, these observations suggest that multi-

ple promoter elements exist, and that injury-response ele-

ments that regulate neuronal, but not glial expression, are

encoded within the proximal 4 kb of the promoter.
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More recent studies have evaluated the role of hypo-

osmolar stress in inducing p75, as brain edema is a com-

mon complication of seizures, and traumatic brain injury

(Peterson and Bogenmann 2003; Ramos et al. 2007). In

examination of 25 kb upstream of rat p75 promoter,

proximal Sp1 elements were found to be critical for p75

induction. Furthermore, p75 transcription appeared to be

regulated by the enhanced expression of Sp1, mediated by

inhibition of Sp1 degradation in hypo-osmolar states. High

levels of expression of Sp1 persist in neurons for at least

14 days following ischemic injury, providing a mechanism

by which prolonged induction of p75 may occur. Interest-

ingly, sortilin expression is unaffected by hypo-osmolarity,

and indeed the elements that regulate transcription of sor-

tilin are unknown.

Molecular Strategies to Attenuate proNGF Action

As summarized above, studies by multiple laboratories

provide mounting evidence that the induction of proNGF

and p75 in several pathophysiologically relevant states may

result in cellular apoptosis in a p75 and sortilin dependent

manner. The low levels of p75 and proNGF in the unin-

jured central nervous system, and the observations that

proNGF and p75 induction occurs over several hours to

days, suggests that a window of opportunity exists during

which administration of pharmacologic agents to block the

induction of ligand and receptors, or their interaction, may

attenuate neuronal apoptosis. One successful strategy has

been through the identification of small molecular inhibi-

tors that impair the interaction of p75 with its ligands.

Through in silico modeling, small molecules have been

identified that interact with a p75 structural domain

important for mature NGF binding; in addition, these

molecules block proNGF actions in cultured neurons

(Massa et al. 2006). The development of these, as well as

other molecules identified by screening or modeling

approaches to impair proNGF/p75/sortilin interactions may

provide useful reagents to block proNGF actions. Although

the crystallographic structure of p75 with mature NGF is

available, as well as the crystallographic structure of sor-

tilin, the structure of the proNGF/p75/sortilin complex has

remained elusive (He and Garcia 2004; Quistgaard et al.

2009), but may provide information for the development of

antagonists in the future.

Other pharmacological strategies may involve the

development of drugs that block the induction of p75 or

proNGF. As noted above, the key promoter elements of

p75 that direct neuronal and injury-responsive expression

remain to be described, and far less is known about NGF

transcriptional regulation than related neurotrophins, such

as BDNF. However, minocycline treatment of rodents with

spinal cord injury has been shown to attenuate proNGF and

p75 induction, suggesting that this approach may be fea-

sible, and could be optimized once the relevant promoter

elements have been characterized (Yune et al. 2007).

Lastly, the activation of intracellular or extracellular

proteases to specifically cleave proNGF to mature NGF is

another attractive target. To this end, a more detailed

understanding of the mechanisms that regulate intracellular

trafficking of proNGF in injured cells, and permit ineffi-

cient intracellular cleavage is needed. In addition, the sta-

bility of proNGF in the injured central nervous system

suggests that specific protease inhibitors in the local

inflammatory environment may prevent efficient extracel-

lular cleavage of proNGF. Thus, quantitative assessment of

locally produced proteases and their specific inhibitors in

the injured central nervous system may provide candidate

molecules for manipulation, and to promote proNGF to

mature NGF conversion.
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