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Abstract Information on the distribution and abundance

patterns of trematodes are essential to reveal the ecology of

host–parasite interactions. The Western Ghats of India, a

biodiversity hotspot, is rich in freshwater fish diversity and

endemism. Though there are several studies on various

other aspects of fish ecology, studies on their parasitic

fauna is meager. The objective of the present study is to

explore the distribution and infection patterns of metacer-

cariae of five species of trematodes in the freshwater fishes,

Haludaria fasciata and Pseudosphromenus cupanus. The

infection parameters were analyzed for each host and

CART model was applied to analyze the environmental

factors affecting parasite distribution patterns. All species

of metacercariae showed an over-dispersed aggregate dis-

tributions. The classification tree models indicated that

among the environmental factors considered, differences in

host locality was the most influential factor in both fishes,

followed at a greater distance by the factor seasonality. The

parasite communities exhibited temporal and spatial dif-

ferences in the infection pattern in response to seasonal and

locational variations.

Keywords Metacercariae � Aggregation � CART model �
Haludaria fasciata � Pseudosphromenus cupanus

Introduction

Freshwater fishes are hosts to taxonomically diverse

trematode parasites as both intermediate and definitive

hosts. In the complex life cycles of helminth parasites,

intermediate hosts often serve mainly as vehicles whose

purpose is to take the parasite to their definitive hosts

(Lafferty 1999). These parasite communities exhibit tem-

poral and spatial changes in response to seasonal and

locational variations in several biotic and abiotic environ-

mental factors; these variations can be reflected in parasite

species composition (Holmes 1987; Poulin 1998; Thieltges

et al. 2011). The Western Ghats region of India, one of the

biodiversity hotspots, is rich in freshwater fish diversity

and endemism (Dahanukar et al. 2004, 2011; Raghaven

et al. 2013). The melon barb, Haludaria fasciata (Jerdon,

1849) is an endemic freshwater fish inhabiting the rivers

flowing through the Western Ghats (Chakraborty et al.

2017) and the spike tail paradise fish, Pseudosphromenus

cupanus (Cuvier, 1831) contributes to the thriving aquar-

ium industry of the Western Ghats regions (Raghaven et al.

2013).

It is essential to explore the parasite fauna and their

population dynamics to reveal their effects on hosts such

as: (a) production of a metabolic cost using host resources;

(b) increasing the probability of mortality due to direct

serious pathology, either by favoring new parasitic infec-

tions or by weakening the organism; (c) decreasing the

reproductive rate and (d) causing changes in host behavior,

including migratory movements (Mangel 2006; Poulin

et al. 2012). Furthermore, knowledge on the ecological role

of parasites and their biodiversity are essential to under-

stand the functioning of any ecosystem. Essential data on

the knowledge of the population parameters of parasites, in
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the host-parasite systems, as well as their spatial and

temporal characteristics are scanty.

Study on the distribution and abundance patterns in

nature and the causes and factors that determine them

occupies a central role in the science of ecology (MacAr-

thur 1972; Kingsland 1995; Krebs 2001). Knowledge on

the shape of the frequency distributions of the variables

under study in ecology not only serves as a statistical or

phenomenological description of an event or model, but

also informs us about the type of processes that cause it

(Marquet 2009). In this way, the essential information that

explains the range and the spatial pattern of distribution,

the environmental factors that determine them, the

dynamics of populations (e.g. of parasites and their hosts),

epidemiological processes in the case of parasites, driving

forces in evolutionary ecology, and finally the sampling

strategy in data collection can be obtained (Li and Hsü

1951; Anderson and May 1978; Lester 1984; Krebs 1989;

Schmidt and Roberts 2000; Southwood and Henderson

2000; Rosa and Puglieses 2002).

Parasites in general show an aggregate distribution

among their hosts, so that heterogeneity in the number of

parasites per host is the norm rather than the exception

(Crofton 1971; Shaw and Dobson 1995; Poulin 2007).

These distribution patterns are characterized by presenting

statistical distributions with only positive values (count

data), clearly skewed to the right, having a variance greater

than the mean and the latter being non-constant, increasing

as the mean value becomes greater (Shaw and Dobson

1995; Poulin and Morand 2000). One of the statistical

distributions that best fits these characteristics is the neg-

ative binomial distribution, which has been widely used to

represent over-dispersion and describe the distribution

patterns of parasites (Poulin 2007). All these features are

counterproductive for the application of classical linear

statistical models based on the normal distribution (Dunn

and Smyth 2018). Among the most used methods to

describe and to model the infection patterns of parasites is

the application of generalized linear models, GLMs,

(McCullagh and Nelder 1989; Wilson and Grenfell 1997;

Alexander 2012) and their extension when there is an

abundance of zeros: the zero inflated models (O’hara and

Kotze 2010; Chipeta et al. 2014; Rhodes 2015). However,

when studying the influence of environmental or other

factors on the levels of infestation observed, the variable

selection process can be difficult and model-specific (Qian

2017). The classification and regression tree models

(CART Breiman et al. 1984) and their multivariate exten-

sion (De’Ath 2002) are very useful for identifying variables

that contribute to the response variable and for prediction

and classification (De’Ath 2002; Qian 2017). Therefore,

CART models have been applied successfully in various

fields of ecology (De’Ath and Fabricius 2000; Roff 2006)

including the studies on the influence of environmental

factors on parasite infection levels (Vignon and Sasal 2010;

Gazzinelli et al. 2017; Rossiter and Davidson 2018).

In the present study, the main objectives were to know

the distribution pattern and the infection parameters of

different species of metacercariae in H. fasciata and P.

cupanus. CART models were used for study the influence

of environmental factors such as the seasonality and dif-

ference in locality, on the infection patterns of metacer-

cariae of melon barb and spike tail paradise fish. Special

emphasis was given to the trematodes that showed a greater

presence, such as Acanthostomum burminis (Bhalerao,

1926) Bhalerao, 1936, Haplorchoides mehrai Pande and

Shukla, 1976 and Tetracotyle wayanadensis Jithila and

Prasadan, 2018 in H. fasciata and A. burminis and Cli-

nostomum complanatum (Rudolphi, 1819) in P. cupanus.

Materials and methods

Study area and sampling of fishes

The Western Ghats of India with its geographical extension

in the wet zone of Sri Lanka are considered as a biodi-

versity hotspot owing to its rich biodiversity and concen-

tration of endemism. Ninety two specimens of H. fasciata

and 106 specimens of P. cupanus, were collected from

water bodies in different localities of the Wayanad region

(lies between North 110270 and 150580 and East 750470 and

700270) of the Western Ghats (Fig. 1) during March 2017 to

February 2018.

Collection of metacercariae

The collected H. fasciata and P. cupanus were brought

alive to the laboratory and maintained in clean glass

aquariums. Fishes were fed occasionally with fish meal.

The scales, skin, gills, gill chambers and eyes of sacrificed

fishes were examined under Labomed (Luxeo 4Z) stereo-

zoom microscope for larval digeneans. Skin was removed,

and the muscle tissues macerated to detect the metacer-

cariae, if any. Internal organs were dissected out and placed

in separate petri-dishes containing 0.75% saline, macerated

and examined under the stereozoom microscope. The

metacercariae of A. burminis, H. mehrai, T. wayanadensis,

C. complanatum and Diplostomum ketupanense Vidyarthi,

1937 collected from H. fasciata and A. burminis, H. mehrai

and C. complanatum from P. cupanus were carefully

transferred to 0.75% saline in a petri-dish. Larvae were

excysted either by rupturing the cyst wall with fine needles

or by mounting them under cover glass and applying gentle

pressure over it by fine needles. The excysted larvae were

studied under a Nikon ECLIPSE Ni-U phase contrast
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research microscope (Japan) without stains or with vital

stains like neutral red.

Quantitative analysis

For the study of infection patterns, samples collected dur-

ing one year were considered. The analyses were per-

formed using the data on host species and that of

metacercariae obtained. Only the metacercariae obtained

from more than one host specimen were considered for

analyses, i.e. metacercariae of A. burminis, H. mehrai and

T. wayanadensis of H. fasciata and A. burminis and C.

complanatum of P. cupanus. Metacercariae of C. com-

planatum and D. ketupanense were obtained only from one

specimen of H. fasciata, and therefore, their presence only

was recorded. Similarly the presence of H. mehrai in P.

cupanus was recorded.

Histograms were used to represent the distribution of the

number of parasites per host, where the abundance of zeros

and the skewed to the right were discerned. The infection

parameters analyzed for each host and for the aforemen-

tioned parasites were: prevalence, mean intensity, median

intensity and mean abundance (Bush et al. 1997; Reiczigel

et al. 2019). In addition, the following aggregation indices

were also analyzed: variance to mean ratio, Poulin’s dis-

crepancy index D and the parameter k of the negative

binomial distribution (Wilson et al. 2002; Poulin 2007).

These analyses were carried out following the methodol-

ogy described by Reiczigel et al. (2019), using the free

software accessible on the Quantitative Parasitology Web

portal (http://www2.univet.hu/qpweb/qp10/index.php).

The levels of over-dispersion of different metacercariae

were analyzed using the graphs of relationship of log mean

abundance versus log mean variance. The negative bino-

mial distribution, suitable to describe cases of over-dis-

persion in discrete variables where the variance is greater

than the mean (Bolker 2008), which normally takes place

in the distribution of parasites, was analyzed. The adjust-

ment of the negative binomial distribution to the observed

distribution of the trematodes per hosts was made using the

R package ’fistdistrplus’ (v. 1.1–1, Delignette-Muller et al.

2014). Goodness of fit was measured through psi squared

tests carried out using the Quantitative Parasitology Web

Portal above mentioned.

Fig. 1 Study area. Locations of specimen collection in the Wayanad region
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Analyses of environmental factors

on the distribution of parasites

Influence of seasonal period (winter, summer, monsoon

and post monsoon) and difference in collection localities

were examined. To analyze their contribution on parasitic

distribution, parasites having five or more sampled hosts

only were considered. Boxplot was employed to explore

the possible influence of seasonality and difference in

locality on the distribution of parasites per host, especially

when two or more samples were compared (Sokal and

Rohlf 1995). Graphs for each factor in relation to each

trematode species were constructed and used as explora-

tory tool.

CART model was applied to analyze the environmental

factors affecting parasite distribution patterns. CART

models are nonparametric statistical methods based on an

algorithm known as recursive partitioning (Breiman et al.

1984). It was a step-by-step process by which a decision

tree was constructed by either splitting or not splitting each

node on the tree into two daughter nodes—a binary split

(Izenman 2008). In the classification tree model the output

variable was a binary-valued or discrete in the distribution

of parasites. This process tends to produce over fitting, so

for remedy it a pruning system was used based on the

smallest prediction error obtained in a cross-validation

procedure (Kabacoff 2015). The R package ‘rpart’ (v

4.1.15, Therneau et al. 2019) was used for the application

of CART models. Following the structure of the R package

rpart, the formula, Variable Y (parasites per

host) * Factors (Season ? Place ? Type of water

course) was used. Among the arguments of the formula, the

definition of the ‘‘method’’ was ‘‘Poisson’’. This method

was used when the variable Y (distribution of the number

of parasites per host) is a vector or a two-column matrix. If

it is a matrix, the first column was the observation times

and the second was counts. Other argument referred to the

‘‘control parameters’’ was the complexity parameter. This

parameter was set at 0.001, which implies that the split

must decrease the overall lack of fit by a factor of 0.001

before being attempted. Therefore, it gave an indication of

the most appropriate number of splits in the classification

tree analysis. In the same way the program results showed

the values of cross-validation with an indication of the

error and also the percentage explanation of total variance

in each split. Those information were used to define the

appropriate number of splits in the model. The plots of

classification tree models were obtained using the R

package ‘‘rpart.plot’’ (v 3.0.8, Milborrow 2018).

Along with the use of software of the quantitative par-

asitology web portal, the rest of the statistical analyses and

all the figures were made using R statistical software (R

Core Team 2020 v 3.6.3).

Table 1 Quantitative descriptors of metacercariae infection in Haludaria fasciata

Parasite species Acanthostomum
burminis

Haplorchoides mehrai Tetracotyle wayanadensis Clinostomum
complanatum

Diplostomum
ketupanense

Prevalence % Confidence

Interval

48.9 (38.3–59.6%) 19.6 (12.0–29.1%) 6.5 (2.4–13.7%) 1.09 1.09

Mean Intensity Confidence

Interval

5.04 (4.13–6.13) 8.44 (5.06–13.9) 2.83 (1–4) 3.00 3.00

Range 1–14 1–32 1–5

Median Intensity

Confidence Interval

5 (3–6)* 4 (2–5)** 2.5F (1–5)***

Mean Abundance

Confidence Interval

2.47 (1.84–3.21 1.65 (0.859–3.2) 0.185 (0.0543–0.402) 0.03 0.03

Range 0–14 0–32 0–5 0–3 0–3

Aggregation index:

Variance to mean ratio
4.89 16.51 3.92

Aggregation index:

Poulin’s discrepancy D
0.686 0.894 0.947

Confidence Interval (0.619–0.753) (0.845–0.937) (0.904–0.975)

Aggregation index:

k parameter from NBD(?)

ML estimate (??)

0.3469

Fit to NBD is

acceptable P = 0.2717

0.0694

Fit to NBD is

acceptable P = 0.2316

Sample too small (of

infected fish) to check

NBD

*Actual (exact) confidence level: 95.6%; ** Actual (exact) confidence level: 95.2%;*** Actual (exact) confidence level: 96.9%; (?) Negative

Binomial Distribution; (??) Maximum Likelihood Estimate
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Results

Distribution patterns

All species of metacercariae showed over-dispersed dis-

tributions with the variance greater than the mean (Table 1)

and high abundance of zeros in both host fishes, H. fasciata

and P. cupanus. In H. fasciata, the negative binomial dis-

tribution fits acceptably to the distributions of the number

of parasites per host of the metacercariae A. burminis

(Table 1, X2, p = 0.2717) and H. mehrai (Table 1, X2,

p = 0.2316; Fig. 2a). In the case of T. wayanadensis the

sample of infected fish was too small to check for negative

binomial distribution. In P. cupanus, the negative binomial

distribution fits acceptably with the distribution of the

number of parasites per host in A. burminis (Table 2, X2,

p = 0.1159) and C. complanatum (Table 2, X2, p = 0.1127;

Fig. 2b).

Infection statistics and indices of aggregation

The metacercariae which showed the highest prevalence

were A. burminis in H. fasciata (48.9%) and C. com-

planatum in P. cupanus (33%) (Table 1 and 2). Despite the

relatively low prevalence of H. mehrai in H. fasciata

(19.6%), its mean intensity was remarkable (8.44) as well

as the range (1–32). In the case of remaining metacercariae,

the average intensity barely exceeds the value of five as

maximum, although the range was very wide in C. com-

planatum infection in P. cupanus (1–29). Mean abundance

of infection was low for all parasite species observed in

both hosts (Tables 1 and 2).

The variance to mean ratio was greater than one for all

metacercariae infected in both H. fasciata and P. cupanus,

confirming an over-dispersed (aggregated) distribution of

these parasites. The metacercariae showed indices D values

corresponded to aggregate distributions was higher than

Fig. 2 a Density plots

comparing the density function

of the fitted negative binomial

distribution (solid line) along

with the histograms, on a

density scale, of the empirical

distribution of metacercariae

(columns) in Haludaria fasciata
and b in Pseudosphromenus
cupanus
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0.85 in all cases, except A. burminis infection in H. fasciata

which reached a value of 0.686. The k values obtained for

the metacercarial infection in H. fasciata and P. cupanus

were low and none exceeds the value of 0.4. The k with the

lowest value was found for H. mehrai infection in H. fas-

ciata (Tables 1 and 2).

Influence of environmental factors on distribution

of metacercariae

Boxplots showed that seasonality had influence on the

distribution of the number of parasites per host in the case

of A. burminis in H. fasciata and P. cupanus (Fig. 3a, b)

and C. complanatum infection in P. cupanus (Fig. 3c).

Likewise, the distribution of the number of parasites per

host was inclined by difference in locality in A. burminis

and H. mehrai infection in H. fasciata (Fig. 3d, e) and to a

lesser extent C. complanatum infection in P. cupanus

(Fig. 3f).

The classification tree models indicated that among the

environmental factors considered, the difference in locality

was most influential on distribution of parasites in both H.

fasciata and P. cupanus, followed at a great distance by the

factor seasonality. In the case of A. burminis infection in H.

fasciata, the classification tree model resulted in four splits

explaining the 58.6% of the total variability. The first split,

based on the locality which explained 44% of the vari-

ability and the second split, based on seasonality with 8.6%

of variability (Fig. 4). The infected fishes were more

abundant in Kalpetta, Makkikolli and Venmani and with

higher mean abundance during the summer season. The

distribution pattern of H. mehrai in H. fasciata was also

influenced principally by the difference in locality with

Makkikolli and Palamukku showed highest infestation

levels (Fig. 3e). In the case of C. complanatum infection in

P. cupanus the classification tree model resulted in three

splits explaining the 47.7% of the total variability mainly

based on locality and seasonality factors. The first split,

based on locality which explained 34.8% of the variability

and the second split, seasonality, explained the 11.4% of

the total variability (Fig. 5). The infected fishes were more

abundant in Kakkancheri and Tharuvana with higher mean

abundance during the monsoon season.

Discussion

Over dispersed distributions of helminth parasites are

commonly observed within host populations (Shaw and

Dobson 1995; Shaw et al. 1998) and are important for

understanding many density-dependent processes in host-

parasite interactions (Anderson and May 1978; Keymer

1982). The proximate causes of such aggregated or

clumped frequency distributions are poorly understood,

especially from natural systems (May and Southwood

1990; Jaenike 1994), but heterogeneity among hosts in the

exposure to infective parasite stages is thought to be one

important factor (Crofton 1971).

Table 2 Quantitative descriptors of metacercariae infection in Pseudosphromenus cupanus

Parasite species Acanthostomum burminis Haplorchoides
mehrai

Clinostomum complanatum

Prevalence % Confidence Interval 20.8

(13.5–29.7%)

0.94 33.0

(24.2–42.8%)

Mean Intensity Confidence Interval 3.45

(2.18–5.73)

4.00 4.2

(2.66–7.23)

Range 1–14 1–29

Median Intensity Confidence Interval 1

(1–3)*

2

(1–3)**

Mean Abundance Confidence Interval 0.717

(0.371–1.32)

0.04 1.39

(0.821–2.49)

Range 0–14 0–29

Aggregation index: Variance to mean ratio 7.35 11.85

Aggregation index: Poulin’s discrepancy D 0.894 0.85

Confidence Interval (0.854–0.93) (0.793–0.9)

Aggregation index:

k parameter from NBD(?) ML estimate (??)

0.1159

Fit to NBD is acceptable P = 0.4625

0.179

Fit to NBD is acceptable P = 0.58

*Actual (exact) confidence level: 97.4%; ** Actual (exact) confidence level: 95.5%

(?) Negative Binomial Distribution; (??) Maximum Likelihood Estimate
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Fig. 3 The frequency distribution of Acanthostomum burminis
against the factor variable season in Haludaria fasciata (a) and in

Pseudosphromenus cupanus (b). c Frequency distribution of Clinos-
tomum complanatum against the factor variable season in Pseu-
dosphromenus cupanus. Frequency distribution of Acanthostomum

burminis (d) and Haplorchoides mehrai (e) against the factor variable

localities in Haludaria fasciata. Distribution of Clinostomum com-
planatum against the factor variable localities in Pseudosphromenus
cupanus (f). Number of fish sampled was indicated on each boxplot

Fig. 4 Classification tree plot of

the distribution of the numbers

of Acantostomum burminis in

Haludaria fasciata in

consideration with the

environmental factors. The

nodes include the name of the

factor. In the terminal nodes the

number of parasites with the

number of host samples and the

percentage were showed
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In the present study the infection of metacercariae in

hosts showed over dispersed distribution, which confirms

the general pattern of over dispersed distribution charac-

teristic to the parasites (Crofton 1971; Shaw and Dobson

1995). When the data showed over dispersion or a certain

degree of extra variation with respect to a Poisson distri-

bution, it implies that the infection rate is not homogeneous

in the population (Biggeri 2005). This is essential to

understand the causes and consequences of the spatial

distribution of parasites (Cohen et al. 2016).

The degree of aggregation of parasite populations has an

influence on the stability of the parasite-host interactions,

on the evolutionary biology of the parasites, on epidemi-

ological aspects and on the characterization of the eco-

logical processes in a given community and by extension in

the ecosystem (Anderson and May 1978; Begon et al.

2006; Poulin 2007; Warburton and Vonhof 2018). Despite

this importance, the causes that originate the widespread

pattern of aggregation in parasites still remain diffuse

(Grenfell and Gulland 1995; Tinsley et al. 2019) and it is

difficult to arrive at a general theory in view of the great

variety of cases and of possible explanations for the dif-

ferent parasite-host systems.

The index of discrepancy D, measures the departure

between the observed parasite distribution and a hypo-

thetical one in which all hosts harbor equal number of

parasites (Poulin 1993, 2013) and the index varies between

0 (no aggregation) and 1 (maximum aggregation). The

metacercariae showed indices D values, which corre-

sponded to aggregate distributions, higher than 0.85 in all

cases, except A. burminis infection in H. fasciata.

According to Poulin (2013) the heterogeneity in the

infection levels in the hosts can be explained based on two

broad criteria: the heterogeneity between the hosts in the

exposure to the parasites and the susceptibility to infection.

There are references putting the weight of reason on one or

another criterion or on a combination of both (Lester 2012;

Tinsley et al. 2019; Warburton and Vonhof 2018). How-

ever, the variance of parasite distribution in hosts is mostly

constrained by the value of the mean (Poulin 2013). Thus,

according to the meta-analysis studies of Shaw and Dobson

(1995) and Poulin (2013), it was observed that the

regression between log of the mean and the log of the

variance of the number of parasites per host, showed a r2 of

0.87–0.88, which indicates that only 12% of the variability

Fig. 5 Classification tree plot of

the distribution of the numbers

of Clinostomum complanatum
in Pseudosphromenus cupanus
taking in consideration the

environmental factors. The

nodes include the name of the

factor. In the terminal nodes the

number of parasites with the

number of host samples and the

percentage were showed

Fig. 6 Relationship between the variance (in log) and the mean

number of parasites per host (in log) across the trematode parasite

populations infecting Haludaria fasciata and Pseudosphromenus
cupanus. The dashed line is the fitted regression line (log vari-

ance = 2.0624 ? 1.3084 * log mean; r2 = 0.87, adjusted r2 = 0.83

and s.e. of the slope = 0.2903). The solid line represents the 1:1

relationship above which parasites are aggregated
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in the distribution of parasites remains under the explana-

tion of other factors. In the present study, the five trema-

tode populations analyzed showed an r2 of 0.87 (adjusted

r2 = 0.83) which is similar or slightly lower than the values

established in the previous reviews. This reflects that, in the

present study, it is the abundance of parasites (the mean)

which determines the level of aggregation observed and

17% of the variability would remain dependent on other

factors (Fig. 6).

The distribution of parasites and their corresponding

infection parameters are not static but dynamic and can

change temporally and spatially (Poulin 2007). In the

present study, seasonality plays a role in the distribution of

A. burminis in H. fasciata and P. cupanus and C. com-

planatum infection in P. cupanus. The individual level

heterogeneity, both inside the host and in the host’s envi-

ronment, provides a mechanism behind patterns of parasite

aggregation (Warburton and Vonhof 2018). Precisely,

environmental factors can influence the changes in abun-

dance and, therefore, in the aggregation pattern. Parasite

distribution patterns are shaped by a suite of abiotic and

biotic factors, which directly and/or indirectly influence

both parasites and their hosts (Ostfeld et al. 2005; Paterson

et al. 2019).

In lotic freshwater ecosystems, the combined influence

of the unidirectional water flow and the mobility of the

most mobile hosts are considered to be primary drivers that

structure the distribution of parasites, especially those with

complex life cycles such as trematodes (Blasco-Costa et al.

2013; Salgado-Maldonado et al. 2014; Paterson et al.

2019). According to Price (1990) attention needs to be

given to host properties such as geographic range, abun-

dance and reproduction because these factors drive the

nature of parasite assemblage. In the present study, the

distribution of metacercariae was mainly influenced by the

differences in ecological parameters prevailed in different

host localities. This is true in the case of obligate, multi-

host parasites, like trematodes as the successful completion

of their life cycles depend on the presence and abundance

of suitable hosts (Blakeslee et al. 2011). Trematodes are

highly specific to snail hosts (typically infecting only one

or few species), but infection to second-intermediate and

definitive hosts is often more general (Graczyk et al. 1997);

even then, specific groups of host species are typically

targeted. Therefore, the availability of suitable hosts

explain the presence or absence of specific parasite species

in an area (Blakeslee et al. 2011).

The present study represents the first approximation to

the infection patterns by metacercariae in H. fasciata and

P. cupanus. The authors consider this information as

essential, to be more precise, to properly direct to make

efforts in the formulation of new working hypotheses in

relation to infection by parasitic trematodes in the

freshwater fishes of the Western Ghats (India), an area of

high ecological interest.
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