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Abstract Looming drug resistance cases of leishmaniasis

infection are an undeniably serious danger to worldwide

public health, also jeopardize the efficacy of available

drugs. Besides this, no successful vaccine is available till

date. Since the ancient era, many plants and their parts

have been used as medicines against various ailments.

Hence, the importance of drug development for new

molecules against Leishmania infection is significant that is

a cost-effective and safer drug preferably from the natural

herbal resources. We evaluated the GC–MS screening and

efficacy of Putranjiva roxburghii (PR) against the sensitive

and resistant promastigotes of L. donovani. GC–MS pro-

filing revealed that the extract was rich in myo-inositol-4-

C-methyl, azulene and desulphosinigrin. Quantitative

investigation of phytoconstituents confirmed that PR was

rich in phenols, flavonoids and terpenoids. We found an

IC50 25.61 ± 0.57 lg/mL and 29.02 ± 1.21 lg/mL of PR

against sodium stibogluconate sensitive and resistant strain

respectively. It was found to be safer in cytotoxicity assay

and generated ROS mediated oxidative stress in the para-

sitic cells which was evidenced by the increased and

decreased levels of superoxide radicals, lipid peroxidation

products, lipid bodies and levels of thiol, plasma membrane

integrity respectively. Therefore, our results support the

importance of P. roxburghii as a medicinal plant against L.

donovani and showed potential for exploration as an

antileishmanial agent.
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Introduction

Our planet is immensely rich in the biodiversity and we

could not scrutinize more than a pinch of it. Hence, still

there is vast inventory of plants having important phyto-

constituents; those are biologically active molecules

against various infections. Moreover, drug resistance is a

serious issue which is being developed with time and it

prompted the need of new molecules against different

infections with safety profile.

Looming drug resistance cases of leishmaniasis infec-

tion are an undeniably serious danger to worldwide public

health, also jeopardize the efficacy of available drugs

(Ponte-Sucre et al. 2017). The drug resistance crisis has

been credited to the excessive use and abuse of these

medicaments and lack of new medication advancement

(Ayukekbong et al. 2017). Besides this, no successful

vaccine is available till date (Goyal et al. 2021a). Hence,

coordinated endeavours to develop new, safe, cost effec-

tive, and easily accessible treatment option to manage the

crisis are significantly required. Secondary metabolites of

plant extracts are immensely capable of partial reversal of

resistance and control of parasitic diseases (Molnár et al.

2010).

Leishmaniasis is a vector-borne and neglected tropical

disease, which represents 3 major forms: mucocutaneous,

cutaneous, and visceral. It is spread by the sand fly through

the transmission of a flagellate protozoan parasite of the

genus Leishmania. Its prevalence is high among popula-

tions of resource deprived nations. An estimated 0.7–1.5
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million fresh cases come to notice each year in around 100

countries, which are endemic to leishmaniasis throughout

the globe (Rezvan and Moafi 2015; Gannavaram et al.

2016; Kaye et al. 2020).

Visceral leishmaniasis (VL) is more crucial due to its

severity than other forms. In the absence of timely treat-

ment, the infection can be fatal (Goyal et al. 2021b). It is

caused by Leishmania donovani or Leishmania infantum

and characterized by clinical manifestations such as fever,

anemia, weight loss, hepatomegaly, and splenomegaly. Ten

countries account for more than 95% burden of the disease

i.e. India, Brazil, Sudan, Ethiopia, Nepal, South Sudan,

Somalia, China, Iraq, and Kenya (WHO 2018).

For the last 70 years, pentavalent antimonials are the

established treatment agents for leishmaniasis, although,

their irregular use has posed the risk of resistance devel-

opment to the standard drugs. Sodium stibogluconate (SG)

is a first-line drug treatment against the Leishmania

infection. However, fast-growing drug resistance fails to

treat the patients in more than 50% cases especially in the

key endemic state; Bihar in India and the drug is abun-

dantly toxic as well. Second-line drug amphotericin B has

now emerged as a first-line drug due to its efficacy and

fewer side effects than the former. SG and Amphotericin B

are administered through the injection and the only option

for oral drug available is miltefosine but, resistance is

being developed against it too. Apart from the resistance

and toxicity, lengthy regimen and high cost are the key

restricting factors for their use (Guerin et al. 2002; Roy

et al. 2017).

The long half-life of Amphotericin B and miltefosine

poses the risk of creating resistance against Leishmania.

The risk of resistance increases with the discontinued use

of these drugs especially in the areas of low literacy rate

and underprivileged societies of the Indian Sub-continent

and Sudan (East Africa) (Bryceson 2001; Croft et al. 2006;

Sundar et al. 2014). The major considerations such as

safety profile and risk of resistance should be taken into

account at the time of drug development against this

infection. It could be achieved by the evaluation of new

drug candidates against the resistant strain along with the

sensitive strain of parasite (Hefnawy et al. 2017).

Since the ancient era, many plants and their parts have

been used as medicines against various ailments. Plants and

derived products hold potential to develop novel and

promising chemotherapeutics. Therefore, we selected Pu-

tranjiva roxburghii to explore its potential against parasitic

infection by Leishmania. P. roxburghii belongs to the

family Putranjivaceae and its parts are used as a good

source of traditional medicines. It signifies its name as it is

considered to be helpful in conception in females by

inducing fertility (Gupta 2016). The leaves and fruits of

this plant are useful for curing cold, cough, fever, and

arthralgia. P. roxburghii has been reported to be active as

anthelmintic, hypoglycemic, antibacterial, antifungal,

anticancer, antipyretic, anti-inflammatory, and aphrodisiac,

etc. (Reanmongkol et al. 2009; Varma et al. 2011; Gupta

2016; Dar et al. 2018; Balkrishna et al. 2020; Kumar 2020).

In the present study, we assessed the antileishmanial

potential of P. roxburghii against the sensitive and resistant

strains of L. donovani.

Material and methods

Plant material collection and extraction procedure

The leaves of P. roxhburghii (PR) were collected from the

botanical garden of Panjab University, Chandigarh. The

plant material was authenticated by the Department of

Botany, Panjab University, Chandigarh. The leaves were

shade dried, crushed, and grounded to get the fine powder

and extracted with hydroethanol (30:70) in a soxhlet

extractor. The extracted solution was subjected to a rota

evaporator and lyophilized. The final extract was kept at -

20 �C until further use.

Phytochemical screening

The extract was analyzed for the presence of various

phytochemical components following the standard methods

(Harborne 1973).

Quantitative analysis

Total terpenoid content (TTC)

The method illustrated by Ghorai et al. (2012) was

employed for the determination of total terpenoid content

in PR extract. Linalool was used as the standard for TTC

estimation. In 1.5 mL chloroform the crude plant extract

(200 lL) was mixed thoroughly and kept for 3 min fol-

lowed by the addition of concentrated sulphuric acid

(100 lL). The mixture was incubated for 2 h at room

temperature and checked for the presence of reddish brown

precipitate. Around 1.5 mL methanol (95%) was used for

dissolving the precipitate and the absorbance was read at

538 nm on spectrophotometer. The results were quantified

as mg/g of linalool equivalent.

Total flavonoid content estimation (TFC)

Determination of total flavonoid content in the

hydroethanolic extract of P. roxburghii was carried out by

employing AlCl3 colorimetric method. 200 lL of 1 mg/mL

sample was dissolved in 800 lL distilled water. 60 lL, 5%
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NaNO2 was added and incubated for 5 min. Then 60 lL of

10% AlCl3 solution was added to the reaction mixture and

rested for 5 min. Following this 1 M NaOH (400 lL) and
distilled H2O was added. The volume was adjusted to 5 mL

and absorbance was measured by UV–visible spectropho-

tometer at 510 nm. Quercetin was used as a standard to

estimate total flavonoid content and the result was

expressed as mg quercetin equivalent per g dry weight

(Park et al. 2008).

Total phenol content estimation (TPC)

The total phenolic content in the crude extract was esti-

mated using Folin-Ciocalteu reagent as described by Zhou

et al. (2009). To 200 lL, 1 mg/mL sample 500 lL Folin-

Ciocalteu reagent was added and mixed well. To neutralize

the mixture 2 mL of Na2CO3 solution was added and

incubated for 1 h in dark at room temperature with inter-

mittent shaking for the development of colour. The sample

absorption was determined at 765 nm on spectropho-

tometer. For plotting calibration curve gallic acid was used

as a standard. The total phenol content was expressed as

gallic acid equivalents (GAE) mg/1 g of the extract.

The GC–MS profiling

The PR extract was subjected to GC–MS analysis for

chromatographic separation. It was carried out with

Thermo Scientific TRACE 1300 GC equipped with

Thermo TSQ 8000 Triple Quadrupole MS.

A TraceGOLDTM TG 5MS GC column (phase: 5%

diphenyl/95% dimethyl polysiloxane; dimensions:

30 mm 9 0.25 mm, 0.25 lM film thickness) was used.

The oven temperature was programmed as initial temper-

ature was 60 �C with hold time 2 min and it was rose to

200 �C with hold time 4 min. Helium was the carrier gas

with a constant flow rate of 1.5 mL/min. The injection

volume was 1 lL. The sample was run at a range of

50–600 m/z. The total running time of GC–MS was

20.77 min. The retention time was used as basic criterion

for the peak identification. The components were identified

by NIST mass spectral library.

Parasite culture

Leishmania donovani sensitive strain (MHOM/IN/80/Dd8)

was obtained from the Post Graduate Institute of Medical

Education and Research (PGIMER), Chandigarh, UT,

India. The sodium stibogluconate (SG)-resistant strain

(P.B.-0014) of L. donovani was acquired from RMRIMS,

Patna, Bihar. Both the strains were grown and cultured in

modified NNN and RPMI-1640 media at 22 ± 2 �C in a

B.O.D. chamber.

Antipromastigote analysis

Sensitive and resistant strain promastigotes of L. donovani

were harvested from the culture vials. After washing with

PBS, 1 9 106 cells/mL were seeded in a culture plate and

incubated in a B.O.D. at 22 ± 2 �C with different con-

centrations of SG (sodium stibogluconate, Sigma-Aldrich)

and PR for 72 h. DMSO (0.01%) served as negative control

and SG as the positive control. Sample and trypan blue

(1:1) were mixed and loaded on a Neubauer’s chamber for

counting (Strober 2001). The % growth was calculated as

follows:

%Viability ¼ number of viable cells in treatedwell

number of viable cells in blankwell
x100

%growth inhibition ¼ 100�%Viability

The IC50 was computed by the Probit analysis using

SPSS software.

Cytotoxicity assay

Human monocytic leukemia cell line THP-1 was utilized to

assess the cytotoxicity of standard and tested drug. It is

done by the colorimetric assessment of mitochondrial

activity based on the depletion of MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) or

tetrazolium salt (yellow) to formazan crystals (purple)

showing the metabolic activity of cells. The THP-1 cell

line was differentiated by PMA and cultured in RPMI-1640

medium at 37 �C and 5% CO2 in an incubator. SG and PR

(20–1000 lg/ml) concentrations were added to different

wells. After 72 h, MTT was added (10 lL of 1 mg/mL) and

again incubated for the next 4-5 h. The plate was read at

550 nm in an ELISA reader after formazan crystals were

dissolved by the addition of DMSO (Essid et al. 2015). The

following formula was considered for the calculation of %

cytotoxicity:

Percentage cytotoxicity ¼ ðAt� AbÞ
ðAc� AbÞ x100

where At- O.D. of treated, Ab- O.D. of Blank, Ac-O.D. of

untreated cells.

The computation of the CC50 value was calculated by

SPSS software.

Selectivity index (SI)

It is an indicator of safety and efficacy. The drug with less

toxicity and higher activity at mammalian macrophages is

sorted by its selectivity index. It is a relationship between

IC50 and CC50:
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SI ¼ CC50 of drug againstmacrophages

IC50 of drug against promastigotes

ROS generation

Promastigotes of L. donovani (1 9 106 cells/mL) were

kept with the IC50 values of the drug (SG or PR) and

without a drug in a B.O.D. for 72 h at 22 ± 2 �C. H2-

DCFDA, a cell-permeable probe was employed for the

detection of intracellular reactive oxygen species (ROS)

generation. It was added (10 lM) after washing with PBS

and incubated for 20 min in dark at room temperature. The

plate was read at excitation and emission wavelength of

504 nm and 529 nm respectively in a microplate reader.

The results were represented as fluorescence intensity units

after triplicate measurements (Cataneo et al. 2019).

Total lipid peroxidation products

The method described by Mukherjee et al. (2016) was

followed for the estimation of lipid peroxidation products.

The promastigotes were harvested and pelleted down after

treatment with SG or PR for 72 h. The cells were washed

with PBS and the final pellet was dissolved in 15% SDS

solution in PBS (2 mL). The total lipid peroxidation

products were measured by reading fluorescence intensities

at 360 nm and 430 nm excitation and emission

wavelengths.

Thiol content

The total intracellular thiol content was assessed from the

deproteinized cell extract of sensitive and resistant pro-

mastigotes. SG and PR treated promastigotes for 72 h were

pelleted down and washed with PBS. The final pellet was

suspended in TCA (0.6 mL of 25%) and kept on ice for

10 min. Cell debris and denatured proteins were removed

by centrifugation at 4 �C for 10 min. The thiol content was

assessed spectrophotometrically in the resulting super-

natant using 0.6 mM 5, 50- dithio-bis (2-nitrobenzoic acid)

in 0.2 M Na3PO4 buffer (pH 8.0) and OD as read at

412 nm (Purkait et al. 2012).

Superoxide radicals

SG or PR treated Leishmania promastigotes were harvested

and washed with PBS and the final pellet was dissolved in

PBS (100 lL). 10 lL of this suspension was mixed with

reaction mixture (1 mL) having 0.1 mM EDTA, 50 mM

sodium carbonate, 50 lM nitrobluetetrazolium, and 0.5%

Triton X-100. The absorbance was read in a spectropho-

tometer at 560 nm (Das et al. 2017).

Lipid bodies

Nile red dye was used for the determination of lipid bodies.

SG or PR treated promastigotes of L. donovani for 72 h

were garnered and given two washings with PBS. 10 lg/
mL Nile Red was added to the promastigotes containing

wells and incubated at room temperature for 30 min.

Washing with PBS followed by plate reading for fluores-

cence at 485 nm and 535 nm of excitation and emission

wavelengths in a microplate reader (De MacEdo Silva et al.

2018).

Cell membrane integrity

The propidium iodide (PI) was employed to assess cell

membrane integrity. Untreated or treated promastigotes

with SG or PR were harvested and centrifuged. These were

washed and incubated at room temperature with PI (0.2 lg/
mL) for 5 min in dark in a 96-well microplate. The plate

was read in a microplate reader at 535 nm and 617 nm (da

Silva Rodrigues et al. 2019).

Data analysis

One way ANOVA with Bonferroni multiple comparison

was applied to analyze the data. The results are expressed

as mean ± SD and p\ 0.05 taken as statistically

significant.

Results

Phytochemical analysis

These are 2� plant metabolites and their presence indicates

the strength of any drug of herbal origin. All the major

phytoconstituents were present in PR such as alkaloids,

phenols, flavonoids, terpenoids, glycosides, and saponins.

The quantitative phytochemical analysis revealed that the

maximum quantity of total phenol was present in PR

extract. It was observed that the total phenolic content was

46.58 ± 2.52 mg/g GAE. The extract was also enriched

with 29.0 ± 2 mg/g QE of total flavonoid and

23.6 ± 1.6 mg/g LE of total terpenoid content.

GC–MS screening

The extract of P. roxburghii leaves was screened by GC–

MS for the chemical composition and the results depicted

the presence of various bioactive compounds. A total of 10

chemical compounds were observed in screening (Table 1).

The corresponding peaks of reported compounds are rep-

resented in the chromatogram (Fig. 1). The components
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associated with diverse classes of phytochemicals are

present in it. Myo-inositol-4-C-methyl showed maximum

abundance (90.05%), followed by azulene (3.99%) and

desulphosinigrin (2%).

Anti-promastigotes activity

The effects of different concentrations of SG and PR were

assessed for their activity against the sensitive and resistant

strains of L. donovani. A dose-dependent curve was

observed for the percentage growth inhibition of parasites.

The IC50 value of PR and SG was 25.61 ± 0.57 lg/mL

and 14.40 ± 0.53 lg/mL after 72 h of exposure to sensi-

tive strain whereas, the IC50 value of PR and SG against the

resistant strain of L. donovani was 29.02 ± 1.21 lg/mL

and 49.84 ± 1.09 lg/mL respectively (Fig. 2).

Table 1 Bioactive chemical components ascertained in Putranjiva roxburghii hydroethanolic extract by gas chromatography coupled with mass

spectrometry (GC–MS)

RT % PA Compound MF

6.14 3.99 Azulene C10H8

8.08 0.57 2-Dodecanol C12H26O

8.14 0.67 Pentadecane C15H26O

9.74 0.92 1-Hexadecanol C16H34O

9.79 0.23 Undecane-2-methyl C12H26

10.04 2.00 Desulphosinigrin C10H17NO6S

10.44 90.05 Myo-inositol-4-C-methyl C7H14O6

12.62 0.70 1-( ?)-Ascorbic acid-2,6-dihexadecanoate C38H68O8

12.68 0.65 Phthalic acid, di (2-propylpentyl) ester C24H38O4

22.92 0.20 Phthalic acid-butyl hex-3-ester C18H26O4

RT retention time; % PA percentage peak area; MF molecular formula

Fig. 1 GC–MS chromatogram of bioactive components present in P. roxburghii extract

Fig. 2 Inhibitory concentration (50%). IC50 of sodium stibogluconate

(SG) and Putranjiva roxburghii (PR) against sensitive (S) and

resistant (R) strain after 72 h. *p value: S ? SG vs S ? PR, *p\ 0.05

(significant). #p value: R ? SG vs R ? PR, #p\ 0.05 (significant).
@p value: S ? SG vs R ? SG, @p\ 0.05 (significant)
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Cytotoxicity against THP-1 cell line

The cytotoxicity of drugs was tested on the THP-1 cell line

by MTT assay. The test signifies the cellular energy profile

and mitochondrial respiration. The CC50 value of SG was

52.34 ± 2.43 lg/mL and 1182.36 ± 73.14 lg/mL for PR.

The SG resulted as a toxic compound as compared to PR

which was non-toxic and safe.

Selectivity index (SI)

An active and safe drug with a selectivity index[ 10

shows its safety and efficacy in terms of less toxicity with

high antiparasitic activity. In our observations, SI of SG

and PR were\ 10 and[ 10 respectively. This indicates

the toxic nature of SG and the safety of PR.

Treatment derived ROS augmentation

The key property of ROS is to combat the pathogens. The

H2DCFDA was employed for the assessment of ROS

generation. It is a fluorogenic dye that diffuses into the cell.

The cellular esterases deacetylate the H2DCFDA from

fluorescent to non-fluorescent. Reactive oxygen species

regulate their oxidation from non-fluorescent to highly

fluorescent DCF (20,70-dichlorofluorescin). PR was able to

generate the ROS in promastigotes of the sensitive and

resistant strain. The ROS generation was observed signif-

icantly (p\ 0.05) more in PR exposed resistant pro-

mastigotes in comparison to resistant promastigotes

exposed to SG. Augmentation of endoparasitic ROS in

both the strains upon PR treatment than untreated pro-

mastigotes was observed and concluded in Fig. 3, which

could lead to the apoptosis in parasites.

Lipid peroxidation

Total fluorescent lipid peroxide products were measured in

drug-treated promastigotes. The SG or PR treatment to

sensitive Leishmania promastigotes leads to the higher

(p\ 0.05) lipid peroxides in comparison to the untreated

cells. The resistant strain parasites exposed to PR increased

(p\ 0.05) the lipid peroxides whereas SG did increase non

significantly (p[ 0.05) in contrast to untreated cells

(Fig. 4).

Total thiol content

Reduced thiol level is the characteristic of the action

potential of antimonials that depends upon redox potential.

Antimonials diminish the thiol levels in parasitic cells. The

higher thiol level in resistant parasites is the escaping

mechanism from the ROS mediated oxidative stress. The

level of thiols after treatment with PR was significantly

(p\ 0.05) less in contrast to SG in resistant promastigotes

(Fig. 5). Sensitive promastigotes also showed less thiol

with high ROS after PR exposure that indicates the con-

necting activation for the apoptosis.

Superoxide radicals

Oxidative stress-induced by drug exposure interrupts the

normal cellular physiology and leads to cell death. There-

fore, drug-treated promastigotes were assessed for the

generation of superoxide radicals. The superoxide radicals

generation was higher (p\ 0.05) in the cell lysate of

promastigotes exposed to SG or PR than untreated pro-

mastigotes (Fig. 6).

Fig. 3 Reactive oxygen species (ROS) generation. Levels of ROS

after exposure to sodium stibogluconate (SG) or Putranjiva rox-
burghii (PR) against sensitive (S) and resistant (R) strain in contrast to
untreated control of sensitive (UCS) and untreated control of resistant

(UCR) respectively. *p value: UCS vs S ? SG; S ? PR, *p\ 0.05

(significant). $p value: S ? SG vs S ? PR, $p\ 0.05 (significant).
%p value: UCR vs R ? SG, %p[ 0.05 (non significant). #p value:

UCR vs R ? PR, #p\ 0.05 (significant). @p value: R ? SG vs

R ? PR, @p\ 0.05 (significant)

Fig. 4 Total lipid peroxidation. Levels of fluorescent lipid peroxi-

dation products after exposure to sodium stibogluconate (SG) or

Putranjiva roxburghii (PR) against sensitive (S) and resistant

(R) strain. *p value: UCS vs S ? SG; S ? PR, *p\ 0.05 (signifi-

cant). $p value: S ? SG vs S ? PR, $p\ 0.05 (significant). #p value:

UCR vs R ? SG; R ? PR, #p\ 0.05 (significant). @p value:

R ? SG vs R ? PR, @p\ 0.05 (significant)
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Lipid Bodies

Neutral lipid bodies were measured by utilizing a

metachromatic dye in treated and untreated parasites. The

increased level of lipid bodies was evidenced by the

treatment of drugs (SG or PR) (Fig. 7). PR treated pro-

mastigotes were found to have higher (p\ 0.05) lipid

bodies in both the strains than untreated promastigotes. The

sensitive promastigotes showed an increased (p\ 0.05)

level of lipid bodies in sensitive but not in resistant

promastigotes.

Cell membrane integrity

The cell membrane integrity was also checked using pro-

pidium iodide as it enters the disrupted cell membrane and

represents the loss in membrane integrity. A high

(p\ 0.05) level of integrity loss was observed in pro-

mastigotes of sensitive strain after treatment with SG or

PR. Whereas it was higher (P\ 0.05) in resistant pro-

mastigotes when exposed to PR only (Fig. 8).

Discussion

The widespread availability of pentavalent antimonials and

their rampant misuse contributed to developing resistance,

especially in the Indian Sub-continent. The major possible

reasons for misuse include inappropriate use by unqualified

practitioners and break in regimen causing sub-therapeutic

blood concentration that results in more parasitic tolerance

Fig. 5 Thiol content. Levels of thiol after exposure to sodium

stibogluconate (SG) or Putranjiva roxburghii (PR) against sensitive
(S) and resistant (R) strain. *p value: UCS vs S ? SG; S ? PR,
*p\ 0.05 (significant). $p value: S ? SG vs S ? PR, $p\ 0.05

(significant). %p value: UCR vs R ? SG, %p[ 0.05 (non significant).
#p value: UCR vs R ? PR, #p\ 0.05 (significant). ^p value: R ? SG

vs R ? PR, ^p[ 0.05 (non significant)

Fig. 6 Superoxide radicals. The levels of superoxide radicals after

exposure to sodium stibogluconate (SG) or Putranjiva roxburghii
(PR) against sensitive (S) and resistant (R) strain. *p value: UCS vs

S ? SG; S ? PR, *p\ 0.05 (significant). $p value: S ? SG vs

S ? PR, $p\ 0.05 (significant). %p value: UCR vs R ? SG,
%p[ 0.05 (non significant). #p value: UCR vs R ? PR, #p\ 0.05

(significant). ^p value: R ? SG vs R ? PR, ^p[ 0.05 (non

significant)

Fig. 7 Lipid bodies. Levels of lipid bodies after exposure to sodium

stibogluconate (SG) or Putranjiva roxburghii (PR) against sensitive
(S) and resistant (R) strain. *p value: UCS vs S ? SG; S ? PR,
*p\ 0.05 (significant). $p value: S ? SG vs S ? PR, $p\ 0.05

(significant). %p value: UCR vs R ? SG, %p[ 0.05 (non significant).
#p value: UCR vs R ? PR, #p\ 0.05 (significant). @p value: R ? SG

vs R ? PR, @p\ 0.05 (significant)

Fig. 8 Plasma membrane Integrity. The loss in plasma membrane

integrity after exposure to sodium stibogluconate (SG) or Putranjiva
roxburghii (PR) against sensitive (S) and resistant (R) strain. *p value:
UCS vs S ? SG; S ? PR, *p\ 0.05 (significant). $p value: S ? SG

vs S ? PR, $p\ 0.05 (significant). #p value: UCR vs R ? SG;

R ? PR, #p\ 0.05 (significant). @p value: R ? SG vs R ? PR,
@p\ 0.05 (significant)
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to the drug (Chakravarty and Sundar 2010). Therefore,

more pressure is being exerted on the safekeeping of the

available drug from the high risk of getting resistance

against them. Other than the issue of resistance, the toxic

nature of the drugs also is of great concern at the time of

drug development. It strongly favours the notion of herbal

research, which is proven to have options against various

ailments including the infectious diseases from the pre-

antibiotic era. Thus it’s the need of the hour to develop a

drug that is effective, safe with no or fewer side effects, and

can be available at a reasonable price to the main target of

the disease as the target population is the impoverished

community of developing nations.

Natural products derived from various plants are utilized

against different diseases as a drug. Several crude plant

extracts and plant-derived compounds have been evaluated

for their activity against infections by helminths, fungi, and

protozoa recently (Cragg and Newman 2013; Sales et al.

2016; Pramanik et al. 2019). Moreover, these are safe, non-

toxic, cost-effective, and efficiently active (Hammi et al.

2020). Therefore, it is a better way to get a drug of choice

based on today’s need and many more herbal sources are to

be explored for their active potential against this infection

by Leishmania spp.

In the wake of exploration of bioactive and novel herbal

leads phytochemical screening is the initial step. Phyto-

chemicals are plant secondary metabolites that serve as

significant defence against diseases and pathogens as well

as crucial for pertinent physiological processes (Forni et al.

2019). Phenols are most promising phytoconstituents

associated with the cure of myriad of human diseases. The

presence of excess of phenols and flavonoids in P. rox-

burghii extract drove us to study further and explore its

antileishmanial potential. Umpteen polyphenolic com-

pounds have shown antileishmanial activity (Montrieux

et al. 2014; Ogungbe et al. 2014; Monzote et al. 2016).

Furthermore, the extract is also rich in terpenoids and

alkaloids, substantiating the usage of this plant in folk

medicine.

Additionally the GC–MS profiling of P. roxburghii

revealed the identification of 10 compounds. Among the

identified components desulphosinigrin, 1-( ?)-Ascorbic

acid-2, 6-dihexadecanoate, phthalic acid-butyl hex-3-ester,

1-Hexadecanol, and pentadecane reported to have antimi-

crobial activity. Myo-inositol-4-C-methyl is a potent

hypoglycemic agent (Pintaudi et al. 2016; Owczarczyk-

Saczonek et al. 2018). Therewithal, azulene from Achillea

millefolium and pentadecane were also reported to have

antileishmanial activity against L. amazonensis and L.

infantum respectively (Rohloff et al. 2013; Bruno et al.

2015).

Based on the aforementioned phytochemical lavishness

of Putranjiva roxburghii we investigated it as an

antileishmanial drug candidate against the sensitive and

resistant strain as well. The antipromastigote activity of PR

in contrast to SG was assessed. Inhibitory concentration

(50%) of PR was evaluated by exposing the promastigotes

of sensitive and resistant strains to different concentrations

of PR. The PR showed its potential against both the strains

of L. donovani in vitro. It was noticed that the IC50 of PR

for both strains were non-significantly dissimilar. No

cytotoxicity in association with its efficacy showed its

potential. Our results are in agreement with the study of

Chouhan et al. (2015) where they assessed the efficacy of

Azadirachta indica against L. donovani and found an IC50

of 34 and 77.66 lg/mL for leaves and seeds respectively.

The IC50 values 12.5 mg/mL of Vigna radiata, 50 mg/mL

of Tamarix ramosissima, and 25/12.5 mg/mL of Cartha-

mus lanatus against L. major and L. trpoica respectively

were assessed by Akya et al. (2020). The IC50 of Physalis

angulata was reported to be 39.5 lg/mL ± 5.1 against L.

amazonensis (da Silva et al. 2015).

ROS is a key regulatory molecule for the parasite killing

and elimination. The generation of apoptosis-inducing

reactive oxygen species (ROS) takes place within the

mitochondria in uni- and multicellular organisms (Kathuria

et al. 2014). The cell death of parasite is a consequence of

increase in the level of reactive oxygen species due to

damage in various biomolecules such as lipids, proteins,

DNA, RNA, and membranes (Redza-Dutordoir and Aver-

ill-Bates 2016). Therefore, we evaluated the level of ROS

before and after treatment with standard and tested drug i.e.

SG and PR respectively. ROS generation was higher in

sensitive strain after exposure to SG or PR in contrast to

untreated promastigotes. PR treatment generated more

ROS in resistant strain in contrast to SG treatment. Dif-

ferent natural compounds such as curcumin, withaferin A,

eugenol-rich oil of S. aromaticum, and Piper betle

(ethanolic extract) have been tested and shown to generate

ROS and induction of apoptosis in promastigotes (Sen et al.

2007; Das et al. 2008; Misra et al. 2009; Islamuddin et al.

2013). Tan et al. (2016) observed the role of oxidative

stress generated by ROS and NO in DNA degradation and

cell death. Chandrasekaran et al. (2013) reported the

apoptotic like death of L. donovani by withanolides pow-

ered by ROS generation. The killing of L. donovani pro-

mastigotes through the production of ROS by the neem leaf

extract has been reported (Dayakar et al. 2015). Different

cell systems are affected by higher ROS production in

response to drug exposure, mefloquine killed the protozoan

parasite Plasmodium falciparum due to high ROS genera-

tion in treated cells (Gunjan et al. 2016).

Cellular metabolism and normal physiology rely on the

well-regulated redox state and fluctuations in the cellular

redox state can sensitize the thiols in eukaryotes (Baba and

Bhatnagar 2018). In leishmanial cells, the redox of ROS
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and thiol are inversely proportional to each other. The more

production of ROS in resistant strain after treatment with

SbIII successfully reduced the thiol content and made them

sensitive to it (Magalhães et al. 2018). In this study, thiol

content was evaluated and the higher level of thiol was

noted in resistant than sensitive promastigotes. Exposure of

resistant strain to SG could not produce sufficient ROS and

thereby the thiol level got increased whereas, it was lesser

after exposure to PR in both the strains with higher ROS

level. PR mediated oxidative stress due to the generation of

ROS and down-regulation of thiol in both the strains

contributed to their killing. Integrity disruption of the

plasma membrane and imbalanced homeostasis of thiol

causes the leishmanicidal potential of Allium sativum

(Sharma et al. 2009). SbIII-resistant promastigotes of L.

amazonensis were found to have higher thiol content (do

Monte-Neto et al. 2011). The increase and decrease in ROS

and thiol levels respectively was observed after the treat-

ment with leaf extract of Corchorus capsularis against the

L. donovani promastigotes (Pramanik et al. 2019).

Lipid deposition is ubiquitous in all life forms i.e.

prokaryotes and eukaryotes that stockpiled as lipid droplets

or lipid bodies in the cell (Lee et al. 2013; Onal et al.

2017). Lipid body accumulation is the repercussion of

different imbalances in the normal cellular functioning of

parasite and is a characteristic of stress in cellular physi-

ology. Hence, we analysed the levels of lipid bodies in the

parasitic cells to see the effects of drug exposure. Our

results depict that PR treatment to promastigotes of sensi-

tive and resistant strains enhance the lipid bodies forma-

tion. The accumulation of lipid bodies was also reported by

the study of Dantas et al. (2003) where they exposed

Trypanosoma cruzi with Taxol. One more study suggested

similar findings in promastigotes of L. amazonensis treated

with Ravuconazole (De MacEdo Silva et al. 2018).

Increased levels of intracellular lipid bodies caused alter-

ation in the sterol composition of the cell membrane of the

parasite, which is responsible for the membrane integrity

disruption and ultimately cell death. It was reported by the

treatment of L. amazonensis and L. donovani promastigotes

with 4-nitobenzaldehyde thiosemicarbazone (BZTS) and

zerumbone respectively (Britta et al. 2014; Mukherjee et al.

2016).

Free radicals are the possible agents those are respon-

sible for the lipid peroxidation that diminish fluidity,

plasma membrane integrity, physicochemical properties,

and eventually keeps the cell at the verge of apoptosis

(Abdel Moneim 2016; El-Khadragy et al. 2018). For that

reason, the total lipid perxidation products were assessed in

response to drug action on parasitic cells. The drug-ex-

posed generation of superoxide radicals and lipid peroxi-

dation products were also assessed in this study. The

treatment of Leishmania promastigotes with SG elevated

the levels of lipid peroxidation and superoxide radicals in

sensitive strain but could not in resistant strain. However,

PR exposure to promastigotes of both the strains success-

fully increased their levels. Our results are supported by the

study of Das et al. (2017) where they found an increased

level of lipid peroxidation and superoxide generation in

promastigotes of L. donovani treated with Sterculia villosa

extract.

The plasma membrane integrity is an essential factor

that predicts the health of cells and loss in the integrity

depicts that cell machinery is being disturbed and ulti-

mately leading to cell death. In this study, results showed

the loss in plasma membrane integrity due to drug treat-

ment as compared to untreated promastigotes. PR effi-

ciently disrupted the cell membrane of promastigotes of

both the strains whereas SG performed it only on sensitive

promastigotes. The study by da Silva Rodrigues et al.

(2019) supported our results where they observed loss in

plasma membrane integrity in L. amazonensis promastig-

otes after treated with clomipramine. The Caryocar cori-

aceum extract treatment degraded the plasma membrane of

L. amazonensis parasites (Tomiotto-Pellissier et al. 2018).

The depletion in mitochondrial membrane potential

generates ROS that down-regulate the GSH level and in

turn elevates the oxidative stress in the parasitic cell (Sen

et al. 2007). We found such a series of events; oxidative

stress required for the killing of parasitic cells induced by

decreased GSH level, higher ROS production, and depleted

membrane integrity following drug exposure. Therefore,

successful drug activated killing of the parasite was evident

in the present study.

Conclusion

Medicinal and restorative plants have been a focal point of

consideration since time immemorial. The synthetic drugs

have numerous clinical complexities; hence looking for-

ward to the herbal origin drugs and medicaments are an

excellent option. The results of the present study revealed

antileishmanial activity of Putranjiva roxburghii against

SG sensitive and resistant strain of L. donovani, which is

majorly potentiated by its capability to incite the parasite

killing through the ROS generation and thereby induce

oxidative stress in parasitic cells. These functions might be

due to the contributory action of rich phytochemical trea-

sure of P. roxburghii.
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