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Abstract
The current investigation inquiry involves silicon dioxide (SiO2) and nickel oxide (NiO) nanoparticles to enhance the struc-
tural and dielectric properties of a polyvinyl alcohol (PVA) with polyethylene glycol (PEG) combination for use in flexible 
pressure sensors and nanoelectrical devices. Solution casting was used to fabricate PVA-PEG-SiO2/NiO nanocomposites 
at various weight percentages of (SiO2/NiO) N.Ps (0, 2, 4, 6 and 8) wt%. The structural properties of PVA-PEG-SiO2/NiO 
nanocomposites were studied by X-ray diffraction (XRD), and the amorphous state of the mixture consisting of polyvinyl 
alcohol (PVA) and polyethylene glycol (PEG) was revealed. Furthermore, the characteristic peak of the original polymers 
was much smaller at higher doping concentrations. According to field emission scanning electron microscopy (FE-SEM), 
when the weight percentage approaches 8%, the top surface of the (PVA-PEG-SiO2/NiO) N.Cs films exhibits homogenous 
and cohesive clumps or fragments dispersed randomly. Optical microscopy made it possible to observe that nanoparticles 
(SiO2/NiO) generate an integrated network inside the matrix of polymers, unlike the pure film of (PVA-PEG). The electrical 
properties of alternating current illustrate that as the frequency of the applied electrical field increases, the dielectric constant 
and dielectric loss of nanocomposites decline. Also, on the contrary, these values increase in conjunction with the increase 
in the concentration of nanoparticles, and the highest value is at a frequency of 100 Hz at a concentration of 8%. The (PVA-
PEG) blend’s dielectric constant and A.C. electrical conductivity were improved by almost 300% and 112%, respectively, 
at the highest addition rate (8 wt.%). The findings obtained revealed that the structural and AC electrical conductivity were 
enhanced by doping (PVA-PEG) with (SiO2/NiO) NPs. Findings indicated that the (PVA-PEG-SiO2/NiO) nanostructures 
would be excellent materials for a range of nanoelectronics industries. The results obtained showed an increase in parallel 
capacity. It reached 400 pf with an increase in applied pressure, as well as an increase in sensitivity to pressure of about 77.2 
with the biggest percentage of weight addition of nanoparticles.
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1  Introduction

The quantity of plastic garbage that is everywhere these 
days is getting to the point that it is polluting the entire 
planet. There are an infinite amount of applications for 

polymers, thus finding ecologically and human-friendly 
polymers is imperative [1, 2]. One of the various meth-
ods available today for producing polymeric materials 
is mixing polymers. This procedure combines at least 
two different kinds of polymers to produce a novel sort 
of polymeric matrix [3, 4]. Two methods to increase the 
AC conductivity of polymeric materials are plasticizers 
and polymer mixing. It is easy to produce polymer blend 
complexes from PVA and PEG because of their tunable 
chemical and physical characteristics. Toughness, non-
toxic, biodegradable, and heat stability are some of these 
characteristics [5, 6]. Over the past many years, polymer 
nanocomposites have garnered significant interest from 
both academia and industry. They are now an essential 
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part of creating new, cutting-edge materials for a vari-
ety of uses, notably electrical engineering [7, 8]. There 
are several options within the field of nanotechnology 
to evolve nanomaterials with better qualities; this will 
allow to be utilized across a range of sectors. The gen-
eral definition of nanotechnology is the manipulation of 
materials at the atomic or molecular level through proce-
dures including consolidation, deformation, and separa-
tion [9, 10]. Our way of life may be enhanced by nano-
technology in many ways, including quicker electronics, 
massive memory, and more affordable energy through 
more efficient transformation of energy, and heightened 
safety with the creation of nanoscale [11, 12]. Despite 
all technological specialties, nanotechnology is one of 
the newest favored fields for study and advancement. 
With the use of nanotechnology, innovative materials 
will be created that may be used to construct and create 
new structures and properties with greater functioning, 
decreased upkeep expenses, and increased performance 
[13, 14]. Given that they are considered to be essential 
technologies for the 21st-century, a large sum of research 
has been done in this area. The particular chemical, bio-
logical, and physical features of nanoscale structures in 
relation to their macroscopic counterparts may soon lead 
to new uses [15, 16]. An innovative method for producing 
materials made from polymer is to profit from polymer 
blends, which merge two or more different polymers to 
create composite materials. One of the blend’s most nota-
ble qualities is its adaptability to many uses [17, 18]. Due 
to their remarkable effectiveness and variety of features, 
which are achieved by adding a small plenty of nanopar-
ticles to the polymer mixture / polymer nanocomposites 
have generated a lot of curiosity. When nanoparticles and 
polymer are combined, nanocomposites perform notice-
ably better at far lower loadings than when polymer is 
used alone [19, 20]. Polymer electrolytes are used in 
sensors, electrochemical devices, and rechargeable bat-
teries; they have attracted a lot of interest lately. A num-
ber of beneficial characteristics of biopolymer materials 
include their affordability, non-toxicity, natural avail-
ability, biodegradability, and ecological advantages [21, 
22]. Polyvinyl alcohol, or PVA, is widely used in many 
important uses and fields and is recognized as one of 
the most important polymers. Batteries, electro chromic, 
detectors, and the medical sectors are a few instances 
of these industries and uses. PVA has superior durabil-
ity, resistance to corrosion, and high thermal properties 
compared to other kinds of polymers [23, 24]. Because of 
its exceptional electrical characteristics, high dielectric 
strength, and remarkable storage capacity, PVA shows 
great promise as a material. This adaptable material has 
several important uses; including medicine systems for 
distribution, packing, and polymer reuse [25].

Polyethylene glycol (PEG) is an additional artificial 
polymer with a broad molecule weight range that is sol-
vent in water. Blending it with stiff polymers to create 
novel materials with specific qualities is a suitable option 
because of its elastic chain [26]. Due to its special phys-
icochemical characteristics, polyethylene glycol (PEG) 
is a polyether compound that finds use in a wide range 
of scientific fields and enterprises. PEG is widely used in 
biomedicine, pharmacology, and other sectors because 
of its chemical solubility in water and organic solvents, 
as well as its non-toxic nature [27]. Nanoparticles of sili-
con dioxide (SiO2) are utilized as reinforcements in elec-
tronic packaging and thermoplastic polymers. Known for 
its substantial particular area of surface, strong thermal 
properties, and developed mechanical properties, silica 
is a white powder that may be found in nature. SiO2 is 
environmentally friendly, amorphous, and may be molded 
into an optoelectronic nanocomposite material by filling 
it with polymers that have nanopores [28]. The SiO2 par-
ticles serve as a solid plasticizer, enhancing the mechani-
cal, chemical, and dimensional integrity of the composite 
polymer. in the field of materials science, SiO2 NPs are 
employed as fillers or reinforcements in composite mate-
rials for bettering mechanical properties, such as strength 
and toughness, their small size and huge surface area 
enable effective dispersion within matrices, leading to 
boosted material performance [29]. Amidst the plethora 
of available nanomaterials, nickel oxide (NiO) nanopar-
ticles have garnered significant attention mainly because 
of their remarkable stability and excellent magnetic, elec-
trical, optical, and catalytic properties. These properties 
also account for their many applications, including gas 
detectors, electro chromic components, fuel cells, batter-
ies, solar cells sensitive to dyes, solar energy absorbers, 
and magnetic cameras [30]. In addition, compared to other 
metal oxide nanoparticles, NiO nanoparticles are incred-
ibly affordable, environmentally friendly, and highly fixed 
conductive materials. Among the medical applications for 
these nanoparticles were biological identification, imaging, 
drug delivery, and antibacterial. Apart from their previ-
ously mentioned applications, (NiO) NPs have the ability 
to effectively remove both organic and inorganic pollutants; 
hence, they are crucial for maintaining the integrity of the 
environment [31]. Furthermore, the drugs, catalysis, and 
dye manufacturing sectors are more possible uses for silica 
nanoparticles. Likewise, silica may be used to reinforce 
polymer combinations in thermoplastic polymers, volatile 
flavorings, compound polymer gel solutions, coatings for 
preventing corrosion, and plastic containers [32]. The most 
common materials employed by pressure sensors contain 
silicon, sputtered thin films, polysilicon thin films, bonded 
metal foils, and inkjet-printed films. Piezoresistive pressure 
sensors are the most widely utilized technique within the 
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pressure sensor industry because of its high sensitivity and 
inexpensive cost [7]. Based on whether behavior is more 
suited in a particular case, the piezoresistive or pseudoca-
pacitive behavior of the nanocomposite pressure sensors 
drives their operation. Important performance parameters 
like pressure sensitivity, pressure range, ability to detect 
small pressures, and endurance of larger forces set apart 
various types of pressure sensors [33]. This study addresses 
the manufacturing of (PVA-PEG-SiO2-NiO) nanocompos-
ites (NCs) for optoelectronics applications, with an aim of 
offering a low-cost and straightforward process.

2 � Experimental Part

The casting approach was utilized to create nanocom-
posites from polyvinyl alcohol (PVA)/Polyethylene gly-
col (PEG) and silicon dioxide (SiO2), nickel oxide (NiO) 
NPs. It involved creating a more homogenous solution by 
dissolving pure PVA and PEG in 45 ml of water distilla-
tion for 50 min while stirring with a magnetic stirrer at 
seventy degrees Celsius. Silicon dioxide (SiO2) and nickel 
oxide (NiO) NPs were included to the polymer mixture at 
weight percentages of 2%; 4%; 6%; and 8%, respectively. 
After casting it, it was left to dry for 6 days at room tem-
perature and the polymer nanocomposites were formed. 
Square pieces of (PVA-PEG-SiO2/NiO) nanocompos-
ites were taken for different measurements. Using field 
emission scanning electron microscopy (fesem), (model/
InspectTM F50—DETAILS\1.2 nm at 10 kV; pressure 
3.11e-3 par country/ Holland), was used to examine the 
structural properties of nanocomposites. Olympus offers 
the Optical Microscope (OM) (Top View Model Num-
ber: Nikon-73346) with a camera for microscopic images 
with a magnification of 20x, in alongside employing a 
diffract meter with a radiation wavelength of 1.5418 Å 
to measure X-ray diffraction (XRD). Utilizing an LCR 
meter (HIOKI; 3532–50; LCR HI TESTER), the dielec-
tric properties of nanocomposites were examined between 

Fig. 1   Depicts the XRD pat-
terns of (PVA-PEG -SiO2-NiO) 
NCs with varying amounts of 
(SiO2-NiO) NPs where (A) rep-
resents the SiO2 phase and (B) 
represents the NiO phase
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Table 1   The mean crystallite size for “SiO2/NiO” nanoparticles 
determined from patterns of XRD utilizing the Scherer equation

Material 2Ө(°) hkl FWHM (rad) Crystallite
size (nm)

SiO2

  A1 37.2463 110 0.3023 28.98
  A2 50.4078 210 0.501 18.31
  A3 66.2561 310 0.5821 17.03
NiO
  B1 43.3726 200 0.285 31.34
  B2 62.872 220 0.5334 18.24
  B3 75.4065 311 0.7246 14.48
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Fig. 2   FE-SEM photographs of (PVA-PEG-SiO2-NiO) NCs: (A) for (PVA-PEG), (B) for 2 wt.% (SiO2/NiO), (C)for 4 wt.% (SiO2/NiO), (D) for 
6 wt% (SiO2/NiO), (E) for 8wt% (SiO2/NiO)
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Fig. 3   Optical microscope photographs of (PVA-PEG-SiO2-NiO) NCs at a magnification (10x):- A (PVA-PEG); B 2 wt.% (SiO2/NiO); C 4 wt.% 
(SiO2/NiO); D 6 wt.% (SiO2/NiO); E 8 wt.% (SiO2/NiO)
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100 Hz and 5 MHz. By means of LCR meter to calculate 
the parallel capacitance between both poles above and 
below the test piece over a range of pressures (80–160 
bar), the effectiveness of the pressure sensor of (N.Cs) 
was determined.

The dielectric constant ( � ′) is calculated from the follow-
ing function [34]:

Capacitance is indicated by Cp, while a vacuum capacitor 
is indicated by (Co). We find the dielectric loss ( � ") using [35]:

(D) is displacement. Here is the formula for calculating 
AC electrical conductivity [36]:

(1)�
� = C

P
∕C

0

(2)�
�� = �

�
D

(3)σ
a.c

= ω����
0

where (ω) is the angular frequency. The following is a defini-
tion of pressure sensor sensitivity [37, 38]:

When blends and nanocomposites’ capacitances are rep-
resented by the symbols Cb and Cn, respectively.

3 � Results and Discussions

3.1 � XRD Analysis

The XRD of the PVA-PEG mixture and nanocomposites 
is displayed in Fig. 1. The structure of PVA-PEG blends 
and nanocomposites with different concentrations of 
nanoparticles (SiO2/NiO) was investigated using X-ray 
diffraction (XRD). The nanocomposites and (PVA-PEG) 

(4)SAP(%) =
(

1 − Cb∕Cn

)

× 100%
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Fig. 4   Impact of (SiO2/NiO) NPs ration on dielectric constant of PVA-PEG blend at different frequencies
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blend display a broad band located at 2θ = 20.26°, indicat-
ing the amorphous nature of PVA and PEG, according to 
XRD analysis [7]. The primary mechanism responsible 
for the preservation of PVA and PEG amorphous nature is 
between molecules hydrogen bonding, different monomer 
structures and the molecules inside each component form 
this link [39]. A reduction in the polymer blend’s degree 
of amorphous form was seen upon insertion of (SiO2/NiO) 
nanoparticles. The results confirm that there is variation 
in the electrostatic forces that occur between (SiO2/NiO) 
NPs and the polymer blend. As the (SiO2-NiO) concen-
tration in the polymer nanocomposite samples varies as a 
result of this change, the polymer blend’s structures vary 
as well, eventually raising the degree of crystallization of 
the nanocomposites. Ion mobility is accelerated and con-
ductivity is raised in the absence of a well-defined struc-
ture. The crystalline state of nanoparticles (SiO2/NiO) is 
responsible for the steep peaks seen at (2θ = 37°, 43°, 63° 

and 75°) which are linked to the increasing concentra-
tion of nanoparticles (SiO2/NiO) in the nanocomposites. 
The findings demonstrate that the specimen’s structural 
features may be altered by the addition of (SiO2/NiO) 
nanoparticles [40, 41], as indicated in Table 1.

3.2 � Field Emission Scanning Electron Microscopy 
(FE‑SEM) Measurements of (PVA‑PEG‑SiO2/NiO) 
NCs

Representative (FE-SEM) photographs of (PVA-PEG-
SiO2/NiO) films with and without varying SiO2 and NiO 
nanoparticle concentrations are shown in Fig. 1, which 
provides a good idea of their size and shape. It is discov-
ered that the polymer picture (A) is more coherence and 
homogeneous. The surface morphology of (PVA-PEG-
SiO2/NiO) nanocomposites alters noticeably when (SiO2/
NiO) nanoparticles are introduced (see figures B; C; D; 
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Fig. 5   Change of � ' with a frequency of (PVA-PEG-SiO2/NiO) NCs
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and E). The photographs also demonstrate that the gran-
ules particles’ (SiO2/NiO) nanoparticle concentration is 
increasing. The upper surface of (PVA-PEG-SiO2/NiO) 
nanocomposites has a lot of clumps or particles dispersed 
on the uppermost surface. Nanoparticles in (PVA-PEG-
SiO2/NiO) nanocomposite films are uniformly dispersed 
and have a tendency to cluster; the (FE-SEM) images 
also show the formation of paths and a connected net-
work within the nanocomposites that allow the passage 
of charge carriers [42, 43] (Fig. 2).

By comparing the results of XRD and SEM, it was 
clear from the X-ray examination that PVA and PEG 
are in amorphous form and the degree of amorphous 
decreases with the increase of nanoparticles in the poly-
mer blend. Also, the crystalline state of the nanopar-
ticles (SiO2/NiO) is responsible for the appearance of 
sharp peaks. As a result, the structural properties of the 

models change. As for the SEM examination, it showed 
the presence of clusters and aggregates on the surface of 
the nanocomposites when adding the filler, they tend to 
aggregate and show paths for the charge carriers to move 
through them, unlike the image of the more cohesive 
polymer blend.

3.3 � The Optical Microscope of (PVA‑PEG‑SiO2/NiO) 
N.Cs

The microscopic image of PVA-PEG-SiO2/NiO nano-
composites (at magnification 10 ×) is displayed in Fig. 3. 
A distinct variance among the samples can be seen in 
microscopic pictures as the amounts of (SiO2/NiO) nano-
particles climb. As can be seen in the photos (A-B-C-
D and E), the lack of any discernible holes or fractures, 
demonstrates the efficient interfacial contact between the 

Fig. 6   Impact of (SiO2/NiO) NPs ration on dielectric loss of PVA-PEG blend at different frequencies
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blending matrix and the (SiO2/NiO) nanoparticle compo-
sition. Nanocomposites have noticeable form uniqueness. 
At a percentage of 8% by weight for (SiO2/NiO) nanopar-
ticles, an ongoing network of nanoparticles forms. When 
multiple spherical particle pieces or clusters create on the 
surface of nanocomposites, it means that a homogene-
ous growth process is present. During which the well-
dispersed and aggregating nanoparticles in the PVA-PEG 
blend establish an ongoing network inside the polymers. 
As the quantities of (SiO2/NiO) nanoparticles increase, 
microscopy results clearly demonstrate the distinction 
among the samples, as seen in the photos (A-B-C-D and 
E). Hence, charge carriers are permitted to pass through 
specific channels in this network, which lowers the com-
posite material’s resistance (PVA-PEG) [44, 45].

3.4 � The A.C electrical Properties of (PVA‑PEG‑SiO2/
NiO) NCs

At room temperature, Fig. 4 illustrates the alteration in the real 
dielectric constant with nanoparticles concentration at frequen-
cies ranging from 100 Hz to 5 MHz. The dielectric constant 
of the nanocomposites (PVA-PEG-SiO2/NiO) is high at low 
frequencies, as the Fig. 5 shows, since the electric dipoles 
have enough relaxation time to be maintained by the field. 
Consequently, the dielectric constant is large. Nevertheless, 
by increasing the frequency, the dipoles are not given enough 

time to be maintained by the field, resulting in a decrease in 
relaxation time and dielectric constant, as seen in Fig. 5.

We notice that the behavior of the dielectric constant 
increases with increasing proportions of (SiO2/NiO) nano-
particles for all frequencies, as is clear in Fig. 4 [46, 47].

There is a group of polarizations that occur in nanocom-
posites, including: directional polarization, which results 
from the effect of the applied electric field that makes the 
dipoles align with their direction, and ionic polarization, 
which occurs due to an exterritorial electric field that affects 
the ions and is opposite, and these polarizations determine 
the behavior of the dielectric constant by altering added 
nanoparticles and their concentration [48, 49].

At ambient temperature, Fig. 6 illustrates the alteration 
in the dielectric loss with nanoparticle concentration at fre-
quencies ranging from 100 Hz to 5 MHz. The graph displays 
that when the amount of nanoparticles increases, dielectric 
loss rises as well. Dielectric loss depends on the electrical 
conductivity, as well as the distance and internal polarization 
factors of the (PVA-PEG-SiO2/NiO) nanocomposites. Also 
the nanocomposite forms an ongoing network of particles 
when the concentration of these nanoparticles approaches 8 
weight percent. Then the dielectric loss becomes the highest 
possible [50, 51]. Polarization causes a change in dielectric 
loss, including: interfacial polarization resulting from the 
non-homogeneity of materials, and dipole polarization. The 
fluctuation of (PVA-PEG-SiO2/NiO) nanocomposites dielec-
tric loss with frequency at room temperature is demonstrated 

Fig. 7   Change of �′′ with a 
frequency of (PVA-PEG-SiO2/
NiO) NCs
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in Fig. 7. The graph displays that dielectric loss lowers with 
increasing frequency. This phenomenon can be explained by 
a failure of dipoles made of composite molecules to rotate 
in parallel, which causes an interval between the dipole’s 
frequency and the electric field’s frequency. In other words, 
dipoles cannot keep up with the frequency of the applied 
electric field. As a result, neither charge accumulation nor 
ion dispersion occurs [52, 53].

Figure 8 illustrates the alteration in the A.C electri-
cal conductivity with nanoparticle concentration at fre-
quencies ranging from 1 × 102 Hz to 5 × 106 Hz. SiO2/
NiO nanoparticle concentrations rise are accompanied by 
a growth in conductivity, as indicated in Fig. 8. A rise 
in electric charge results from to configure of saturated 

nanoparticles. The findings may be explained by the 
effect of space charge brought about by the increase in 
charge carriers and their even distribution throughout the 
polymer matrix [54, 55].

The A.C. electrical conductivity efficiency of the (PVA-
PEG-SiO2/NiO) NCs as an indicator of frequency is depicted 
in Fig. 9. The electrical conductivity of (PVA-PEG-SiO2/
NiO) nanocomposite samples is found to increase with a rise 
in the applied electric field frequency. The polarization of 
free charge, which happens at extremely low frequencies in 
combination with the jumping mobility of charge carriers, 
is responsible for the aforementioned phenomena [56, 57]. 
Table 2 shows the sample values of (ɛ', ε", and σ a.c) for 
(PVA-PEG-SiO2/NiO) NCs at 1kHz.
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Fig. 8   Impact of the percentage of (SiO2-NiO) NPs on (σ a.c) of the PVA/PEG blend at different frequencies
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3.5 � Utilizing (PVA‑PEG‑SiO2‑NiO) NCs for Pressure 
Sensor Applications

The parallel capacitance fluctuation in (PVA-PEG-SiO2/
NiO) nanocomposites at various proportions of weight 
of (SiO2/NiO) nanoparticles during applied pressure is 
displayed in Fig. 10. There is a direct correlation between 
the value of capacitance and the load pressure’s scale, as 
pressure rises, the capacitance increases because of the 
crystal’s several interconnecting domains that contain 
both positive and negative charges, as the graph depicts 
[58, 59]. These symmetric regions inside the crystal 

structure lead to the absence of any net charge in the 
crystal. This symmetry is disrupted when the crystal is 
under stress. To bring symmetry back, these domains 
reposition, generating a current and raising the capaci-
tance in this step [60].

Figure 11 illustrates the effect of (SiO2/NiO) nanopar-
ticles on the electrical capacitance (Cp) for (PVA-PEG-
SiO2/NiO) NCs at 80 bars. This graph makes it evident that 
when the concentration of (SiO2/NiO) nanoparticles rises, 
so does the electrical capacitance of nanocomposites. This 
might be caused by the increase in charge carriers density 
in nanocomposites [61]. The effectiveness of the nano-
structures (PVA-PEG-SiO2/NiO) is strongly influenced by 
the concentration of (SiO2/NiO) nanoparticles, establishes 
the pressure sensing range, leading to a range of applica-
tions that call for greater forces. The impact of (SiO2/NiO) 
nanoparticles on (PVA-PEG-SiO2/NiO) NCs sensitivity is 
seen in Fig. 12 and Table 3. This graph makes it evident 
that when the concentration of (SiO2/NiO) nanoparticles 
climbs, so does the sensitivity of nanocomposites. This is 
due to an internal dipole moment [62].

Table 2   Values of dielectric [constant—loss] and A.C. electrical con-
ductivity (σa.c) for (PVA-PEG-SiO2/NiO) N.Cs at 103 Hz

Con. Of SiO2/NiO
(wt.%)

ɛ' ε" σ a.c (S/ cm)

0 1.84992 1.866 1.54222E-10
2 2.46034 2.685 2.59807E-10
4 2.66204 3.346 3.40286E-10
6 3.01212 3.945 5.77556E-10
8 3.17872 4.518 6.36E-10

Fig. 9   Change of σ a.c with a 
frequency of (PVA-PEG-SiO2/
NiO) NCs
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Fig. 10   Adjustment in parallel 
capacitance for (PVA-PEG-
SiO2/NiO) NCs under pressure
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Fig. 11   The impact of concen-
tration of (SiO2/NiO) NPs on 
parallel capacitance for (PVA-
PEG-SiO2/NiO) NCs at 80 bar
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4 � Conclusions

In this work, (PVA-PEG-SiO2/NiO) NCs were created by 
the solution casting approach. X-ray diffraction (XRD) 
revealed that the structure of the PVA/PEG mixture is 
amorphous, mainly due to the hydrogen bond between 
the molecules. Sharp peaks appear when nanoparticles 
are added, due to the crystalline state of the nanoparticles 
and the change in the structural properties of the samples. 
FE-SEM has been used to examine the surface morphol-
ogy of the films formed from (PVA-PEG-SiO2/NiO) NCs. 
The findings show that a wide variety of aggregates or 
pieces are present and are dispersed randomly over the 
top surface. The combination of silicon dioxide (SiO2) 
and nickel oxide (NiO) nanoparticles at a concentration 
of 8% weight percent leads to the creation of an inte-
grated network inside the polymer mix, according to 
optical microscope (O.M.) photographs. The dielectric 

properties of (PVA-PEG-SiO2/NiO) nanocomposites 
were investigated, and the outcomes showed that a rise in 
the concentration of (SiO2/NiO) NPs was associated with 
an increase in the dielectric constant, dielectric loss, and 
A.C. electrical conductivity of the (PVA-PEG) blend to 
(3.17872, 4.518, and 6.36E-10 S/ cm)respectively. Even 
though the A.C. electrical conductivity rises, the dielec-
tric constant and dielectric loss decline in proportion to 
an increase in the frequency of the electric signal. The 
(PVA-PEG-SiO2/NiO) nanostructures are well-suited 
for use in a variety of nanoelectronics technologies that 
value flexibility, cost-effectiveness, high energy storage, 
as well as low loss due to their advantageous structure 
and dielectric characteristics. The (PVA-PEG-SiO2/NiO) 
nanocomposites are lightweight, malleable, and very effi-
cient, but they also show great pressure sensitivity. The 
highest reported sensitivity of nanocomposites is 77.27% 
at 8 w.t % concentration.
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