
https://doi.org/10.1007/s12633-024-03081-x

RESEARCH

On the Computation of Temperature Indices of Silicates, with Strong
Potential to Predict the Boiling Point of Hydrocarbons

Jian Zhong Xu1 · Zaryab Hussain2 · Fairouz Tchier3 · Ferdous Tawfiq3

Received: 29 April 2024 / Accepted: 26 June 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
The molecular graph of a chemical compound can be measured using a topological index, which helps us to understand
its physical and chemical characteristics. Topological indices play a crucial role in characterizing the different chemical
properties of substances, such as SiO4, within the field of chemical graph theory. SiO4 is an important compound owing to its
versatility, accessibility, and quantifiability. In this study, we developed the methodology for calculating various temperature
indices for a linear molecular graph of SiO4. We compare and find the correlation of temperature indices of silicate chain. In
the last section of the paper, we present an application of benzenoid hydrocarbons to elucidate the significance of temperature
indices.

Keywords Topological indices · Temperature indices · SiO4 embedded in a chain · Benzenoid hydrocarbons · Correlation

1 Introduction

Mathematical chemistry uses functions and polynomials to
find symmetrical patterns within molecular graphs, which
has important implications in multiple domains of mod-
ern chemistry, especially in organic chemistry. Topological
indices are widely used in theoretical chemistry, specifically
in the study of relationships between molecular structure and
the characteristics or activities of molecules (QSPR/QSAR).
Several well-known researchers have extensively studied
topological indices to understand different properties of
graphs [1, 2]. Topological indices, employed in QSPR and
QSAR are quantitative measures that assess a molecule’s
biological, physical, and chemical characteristics. These
indices play a vital role in the chemical industry. Recently,
some researchers have examined a wide range of chemical
substances and calculated topological indices for different
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molecular graphs [3–6]. The primary impetus for this paper
stems from two recent publications [7, 8].

A graph invariant, frequently known as a topological
invariant, is a numerical measure that captures the relation-
ship between the molecular structure of a molecule and
its physical, biological, and chemical properties. Scholars
have investigatedmultiple topological features to forecast the
chirality and complexity. For a more comprehensive under-
standing of the applications of topological indices, we refer
the book [9].

Let G be a simple, connected and undirected graph. The
distance between vertices x and y in G, represented as
d (x, y), is the minimum number of edges in a shortest path
between x and y. The neighbourhood set is defined as the
set of vertices, denoted as Nx , in G that are next to vertex x ,
meaning they have a distance of 1 from x . The degree (dx )
of a vertex is the cardinality of the neighbourhood set of x .
Let �(du, dv) be a real-valued function. For a graph G, the
degree-based topological index (or graphical function-index)
T I (G) with edge-weight function �(du, dv) is defined as

T I (G) :=
∑

uv∈E(G)

� (du, dv) , (1)

where du and dv represent the degrees of vertices u and v

correspondingly.
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Several topological indices based on degrees have already
been defined, and some of them are shown in Table 1.

In the paper [10], Fajtlowicz defined the temperature of a
vertex as, for a graph G having n vertices, the temperature
of a vertex u is defined as

Tu = du
n − du

, (2)

Temperature-based topological indices can be defined
using Eq. 2. For example, the harmonic temperature (HT )

index of a graph G can be defined as

HT (G) =
∑

uv∈E(G)

2

Tu + Tv

, (3)

where Tu and Tv represent the temperatures of u and v cor-
respondingly.

Some more temperature based topological indices are
shown in Table 2.

In this paper, we discuss the construction of the temperature-
based indices (Table 2) based on the Si and O atoms
degrees-dependent atom-bonds partition of a silicate chain
SC p

q . Applying the atom-bonds partition to the molecular
structure of silicates, we also examine the silicon tetrahedron
SiO4 in a complicated structure and find the exact formulas
for various important temperature-based indices. Regarding
temperature indices, we consult [16]. We will determine the
methodology for calculating various temperature indices for
a linear molecular graph of SiO4. Moreover, we will give a
comparison and a correlation of temperature indices of the
silicate chain. In the last section of the paper, we will give
an application of benzenoid hydrocarbons to understand the
significance of temperature indices.

2 Chain of Silicates SCp
q

In this section, we will discuss the structure of the SC p
q .

The formula SiO4, which has tetrahedron geometry, empir-
ically represents the fundamental unit of silicates [17]. The

SiO4 tetrahedron is present in almost all silicates. From a
chemical perspective, a tetrahedron SiO4, as shown in Fig. 1,
has silicon atoms bound to evenly spaced oxygen atoms at
each corner of the tetrahedron. A single chain of silicates
is formed from the resulting SiO4, and a silicate tetrahe-
dron links with other SiO4 horizontally. Likewise, when two
SiO4 molecules unite corner to corner, as shown in Fig. 1,
each SiO4 shares its oxygen atoms with the other SiO4

molecule. Once this sharing procedure is done, these two
SiO4 molecules can be connected with two more molecules.
The silicate chain SC p

q is now obtained; here, p and q denote
the number of silicate chains created and the total number of
SiO4 in a single silicate chain, respectively. Here, pq num-
ber of tetrahedron SiO4 is employed in a chain of silicates
SC p

q ; see Fig. 1.
Here, we have three different kinds of atom bonding on

the valency bases of each SC p
q atom in the chain of silicates

SC p
q .We can create three distinct sets based on the valencies.

Let Ei j represent the collection of all edges where each edge
has a degree of i at one end and j at the other. For SC p

q , we
have

E33 = {uv ∈ E(G)|du = dv = 3} ,

E36 = {uv ∈ E(G)|du = 3, dv = 6} ,

E66 = {uv ∈ E(G)|du = dv = 6} .

FromFig. 1, it is clear |E33| = 3p+2, |E36| = 3q (p + 1)−4
and |E33| = 3q (p − 2) + 2 also

∣∣V
(
SC p

q
)∣∣ = p (3p − 1)

and
∣∣E

(
SC p

q
)∣∣ = 3p (2q + 1) − q.

3 Temperature Based Indices for SCp
q

In this section, wewill compute the temperature indicesmen-
tioned in Table 2 for the SC p

q when p = q. Therefore, we
will now refer to it as SC p

p .

Theorem 1 Let SC p
p be a chain of silicates. Then the har-

monic temperature index is
p2

(
3p

(
12+p

(
63p2−6p−209

))+488
)

18(p+1)(3p−4) .

Table 1 Some degree based
topological indices

Name Symbol Edge weighted function Reference

Harmonic index H 2
du+dv

[11]

Inverse sum indeg index I S I dudv

du+dv
[12]

First Gourava index GO1 du + dv + dudv [13]

Second Gourava index GO2 (du + dv) dudv [13]

Sombor index SO
√
d2u + d2v [14]

Geometric-arithmetic index GA 2
√
dudv

du+dv
[15]

Arithmetic-geometric index AG du+dv

2
√
dudv

[15]
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Table 2 Some temperature
based topological indices

Name Symbol Edge weighted function

Inverse sum indeg temperature I S I T TuTv

Tu+Tv

First Gourava temperature index GO1T Tu + Tv + TuTv

Second Gourava temperature index GO2T (Tu + Tv) TuTv

Sombor temperature index SOT
√
T 2
u + T 2

v

Geometric-arithmetic temperature index GAT 2
√
TuTv

Tu+Tv

Arithmetic-geometric temperature index AGT Tu+Tv

2
√
TuTv

Proof Using the bond partition from Table 3 in the formula
of the harmonic temperature index, we obtain

HT (SC p
p ) =

∑

uv∈E33

(
2

Tu + Tv

)
+

∑

uv∈E36

(
2

Tu + Tv

)

+
∑

uv∈E66

(
2

Tu + Tv

)
= (3p + 2)

(
2

3
3p2−p−3

+ 3
3p2−p−3

)

+ (
3p2 + 3p − 4

)
(

2
3

3p2−p−3
+ 6

3p2−p−6

)

+ (
3p2 − 6p + 2

)
(

2
6

3p2−p−6
+ 6

3p2−p−6

)
.

After some simple steps of calculations, we get

HT (SC p
p )= p2

(
3p

(
12 + p

(
63p2− 6p− 209

)) + 488
)

18 (p+ 1) (3p − 4)
.

��

Theorem 2 Let SC p
p be a chain of silicates. Then the inverse

sum indeg temperature index is 5 + 9p−6
6p2−2p−6

+ 32
7(3p−4) +

8
7(p+1) − 24−15p

p−3p2+6
.

Proof Using the bond partition from Table 3 in the formula
of the inverse sum indeg temperature index, we obtain

I S I T (SC p
p )=

∑

uv∈E33

(
TuTv

Tu + Tv

)
+

∑

uv∈E36

(
TuTv

Tu + Tv

)
+

∑

uv∈E66

(
TuTv

Tu + Tv

)

= (3p + 2)

⎛

⎝

(
3

3p2−p−3

) (
3

3p2−p−3

)

(
3

3p2−p−3

)
+

(
3

3p2−p−3

)

⎞

⎠

+ (
3p2 + 3p − 4

)
⎛

⎝

(
3

3p2−p−3

) (
6

3p2−p−6

)

(
3

3p2−p−3

)
+

(
6

3p2−p−6

)

⎞

⎠

+ (
3p2 − 6p + 2

)
⎛

⎝

(
6

3p2−p−6

) (
6

3p2−p−6

)

(
6

3p2−p−6

)
+

(
6

3p2−p−6

)

⎞

⎠ .

Fig. 1 Schematic representation
of chain of silicates
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Table 3 Atomic-bond
separation of SC p

q , for p = q (Tu , Tv)
(

3
3p2−p−3

, 3
3p2−p−3

) (
3

3p2−p−3
, 6
3p2−p−6

) (
6

3p2−p−6
, 6
3p2−p−6

)

Frequency 3p + 2 3p2 + 3p − 4 3p2 − 6p + 2

After some simple steps of calculations, we get

I S I T (SC p
p ) = 5 + 9p − 6

6p2 − 2p − 6
+ 32

7 (3p − 4)

+ 8

7 (p + 1)
− 24 − 15p

p − 3p2 + 6
.

��

Theorem 3 Let SC p
p be a chain of silicates. Then the

first Gourava temperature index for SC p
p is

9p2(−214+p(−216+p(528+p(488+9p(−53+3p(−10+7p))))))

(18+p(9+p(−26−6p+9p2)))
2 .

Proof Using the bond partition from Table 3 in the formula
of the first Gourava temperature index, we obtain

GO1T (SC p
p ) =

∑

uv∈E33

(Tu + Tv + TuTv) +
∑

uv∈E36

(Tu + Tv + TuTv)

+
∑

uv∈E66

(Tu + Tv + TuTv) = (3p + 2)

(
3

3p2 − p − 3

+ 3

3p2 − p − 3
+

(
3

3p2 − p − 3

) (
3

3p2 − p − 3

) )

+ (
3p2 + 3p − 4

) (
3

3p2 − p − 3
+ 6

3p2 − p − 6

+
(

3

3p2 − p − 3

)(
6

3p2 − p − 6

))

+ (
3p2 − 6p + 2

) (
6

3p2 − p − 6
+ 6

3p2 − p − 6

+
(

6

3p2 − p − 6

)(
6

3p2 − p − 6

))
.

After some simple steps of calculations, we get

GO1T (SC p
p )

= 9p2 (−214 + p (−216+ p (528+ p (488 +9p (−53 +3p (−10 +7p))))))
(
18+ p

(
9 + p

(−26 −6p +9p2
)))2 .

��

Theorem 4 Let SC p
p be a chain of silicates. Then the

second Gourava temperature index for SC p
p is

162p2
(−278+p

(−731+p
(
459+p

(
1276+9p

(−58−69p+33p2
)))))

(18+p(9+p(−26−6p+9p2)))
3 .

Proof Using the bond partition from Table 3 in the formula
of the second Gourava temperature index, we obtain

GO2T (SC p
p ) =

∑

uv∈E33

(Tu + Tv) TuTv +
∑

uv∈E36

(Tu + Tv) TuTv

+
∑

uv∈E66

(Tu + Tv) TuTv = (3p + 2)

((
3

3p2 − p − 3

+ 3

3p2 − p − 3

)
3

3p2 − p − 3

3

3p2 − p − 3

)

+ (
3p2 + 3p − 4

) ((
3

3p2 − p − 3
+ 6

3p2 − p − 6

)

× 3

3p2 − p − 3

6

3p2 − p − 6

)
+ (

3p2 − 6p + 2
)

×
((

6

3p2 − p − 6
+ 6

3p2 − p − 6

)

× 6

3p2 − p − 6

6

3p2 − p − 6

)
.

After some simple steps of calculations, we get

GO2T (SC p
p )

= 162p2
(−278+ p

(−731 + p
(
459+ p

(
1276 +9p

(−58 − 69p+ 33p2
)))))

(
18 + p

(
9 + p

(−26 − 6p + 9p2
)))3 .

��

Theorem 5 Let SC p
p be a chain of silicates. Then the sombor

temperature index for SC p
p is

3
√
2 (2 + 3p)

√
1

(
3 + p − 3p2

)2 + 6
√
2 (2 + 3p (−2 + p))

√
1

(
6 + p − 3p2

)2 + 3 (3p (p + 1) − 4)

√
1

(
p − 3p2 + 3

)2 + 4
(
p − 3p2 + 6

)2 .

Proof Using the bond partition from Table 3 in the formula
of the sombor temperature index, we obtain

SOT (SC p
p ) =

∑

uv∈E33

√
T 2
u + T 2

v +
∑

uv∈E36

√
T 2
u + T 2

v +
∑

uv∈E66

√
T 2
u + T 2

v

= (3p + 2)

√(
3

3p2 − p − 3

)2

+
(

3

3p2 − p − 3

)2
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+
(
3p2 + 3p − 4

)
√(

3

3p2 − p − 3

)2

+
(

6

3p2 − p − 6

)2

+
(
3p2 − 6p + 2

)
√(

6

3p2 − p − 6

)2

+
(

6

3p2 − p − 6

)2

.

After some simple steps of calculations, we get

SOT (SC p
p ) = 3

√
2 (2 + 3p)

√
1

(
3 + p − 3p2

)2

+ 6
√
2 (2 + 3p (−2 + p))

√
1

(
6 + p − 3p2

)2

+ 3 (3p (p + 1) − 4)

√
1

(
p − 3p2 + 3

)2 + 4
(
p − 3p2 + 6

)2 .

��
Theorem 6 Let SC p

p be a chain of silicates. Then the
geometric-arithmetic temperature index for SC p

p is

(
−12 + 34 − 6p2 − 21p3 + 9p4

) √
1

(
6 + p − 3p2

)2

+
(
−6 − 11p + 3p2 + 9p3

) √
1

(
3 + p − 3p2

)2

+ 2 (−4 + 3p (1 + p))

3 (1 + p) (−4 + 3p)
√

1
36+2p(9+p(−26−6p+9p2))

.

Proof Using the bond partition from Table 3 in the formula
of geometric-arithmetic temperature index, we obtain

GAT (SC p
p ) =

∑

uv∈E33

2
√
TuTv

Tu + Tv

+
∑

uv∈E36

2
√
TuTv

Tu + Tv

+
∑

uv∈E66

2
√
TuTv

Tu + Tv

= (3p + 2)
2

√(
3

3p2−p−3

) (
3

3p2−p−3

)

3
3p2−p−3

+ 3
3p2−p−3

+ (
3p2 + 3p − 4

) 2

√(
3

3p2−p−3

) (
6

3p2−p−6

)

3
3p2−p−3

+ 6
3p2−p−6

+ (
3p2 − 6p + 2

) 2

√(
6

3p2−p−6

) (
6

3p2−p−6

)

6
3p2−p−6

+ 6
3p2−p−6

.

After some simple steps of calculations, we get

GAT (SC p
p ) =

(
−12 + 34 − 6p2 − 21p3 + 9p4

) √
1

(
6 + p − 3p2

)2

+
(
−6 − 11p + 3p2 + 9p3

)√
1

(
3 + p − 3p2

)2

+ 2 (−4 + 3p (1 + p))

3 (1 + p) (−4 + 3p)
√

1
36+2p(9+p(−26−6p+9p2))

.

��

Theorem 7 Let SC p
p be a chain of silicates. Then the

arithmetic-geometric temperature index for SC p
p is

(
−12 + 34p − 6p2 − 21p3 − 9p4

) √
1

(
6 + p − 3p2

)2

+
(
−6 − 11p + 3p2 + 9p3

)√
1

(
3 + p − 3p2

)2

+ 3

2

(
16 − 8p − 27p2 + 6p3 + 9p4

)

√
1

36 + 2p
(
9 + p

(−26 − 6p + 9p2
)) .

Proof Using the bond partition from Table 3 in the formula
of the arithmetic-geometric temperature index, we obtain

AGT (SC p
p ) =

∑

uv∈E33

Tu + Tv

2
√
TuTv

+
∑

uv∈E36

Tu + Tv

2
√
TuTv

+
∑

uv∈E66

Tu + Tv

2
√
TuTv

= (3p + 2)

×
3

3p2−p−3
+ 3

3p2−p−3

2
√

3
3p2−p−3

3
3p2−p−3

+
(
3p2 + 3p − 4

)

×
3

3p2−p−3
+ 6

3p2−p−6

2
√

3
3p2−p−3

6
3p2−p−6

+
(
3p2 − 6p + 2

)

×
6

3p2−p−6
+ 6

3p2−p−6

2
√

6
3p2−p−6

6
3p2−p−6

.

After some simple steps of calculations, we get

AGT (SC p
p ) = (−12 + 34p − 6p2 − 21p3 − 9p4

)

×
√

1
(
6 + p − 3p2

)2 + (−6 − 11p + 3p2 + 9p3
)

×
√

1
(
3 + p − 3p2

)2 + 3

2

(
16 − 8p − 27p2 + 6p3 + 9p4

)

×
√

1

36 + 2p
(
9 + p

(−26 − 6p + 9p2
)) .

��

4 Comparison and Correlation of Indices
of SCp

p

In this section, we will analyze the indices of the SC p
p and

observe their trend. Additionally, we will also identify a cor-
relation among the indices. Table 4 displays the temperature
indices of SC p

p , allowing us to observe the trend. The indices
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Table 4 Temperature indices of SC p
p

p HT (SC p
p ) I S I T (SC p

p ) GO1T (SC p
p ) GO2T (SC p

p ) SOT (SC p
p ) GAT (SC p

p ) AGT (SC p
p )

2 34.5185 7.8810 54.8265 32.1166 30.9317 21.6407 26.8375

3 244.4000 5.8190 28.6848 1.6046 19.0128 51.3285 56.9149

4 840.7111 5.3648 24.5691 0.3652 16.9998 92.0997 100.1922

5 2122.6431 5.1898 23.0563 0.1305 16.2428 144.4462 155.9372

6 4473.2245 5.1053 22.3226 0.0587 15.8718 208.4223 224.0795

7 8359.4641 5.0591 21.9103 0.0304 15.6622 284.0428 304.6008

8 14332.3654 5.0317 21.6559 0.0174 15.5325 371.3133 397.4942

9 23026.9304 5.0145 21.4885 0.0107 15.4469 470.2367 502.7563

10 35162.1601 5.0033 21.3728 0.0069 15.3877 580.8142 620.3856

11 51541.0549 4.9958 21.2899 0.0047 15.3452 703.0467 750.3809

12 73050.6154 4.9906 21.2287 0.0033 15.3137 836.9348 892.7418

13 100661.8417 4.9871 21.1823 0.0024 15.2899 982.4787 1047.4677

14 135429.7341 4.9846 21.1465 0.0018 15.2714 1139.6787 1214.5585

15 178493.2927 4.9829 21.1185 0.0013 15.2570 1308.5350 1394.0140

HT , GAT , and AGT show an increasing trend, while all
other indices show a decreasing trend.

The table displays the correlation coefficients, coefficients
of determination, and standard errors of estimate for various
pairs of temperature indices of the silicate chain when p =
q. In the indices columns of Table 5, the index on the left
indicates the dependent variable, while the index on the right
represents the independent variable. For instance, in the case
of HT − I S I T , HT is the dependent variable, and I S I T
is the independent variable. Table 5 shows that specific pairs
of indices have highly significant positive correlations. The
pairsGO1T−SOT , I S I T −GO1T , andGAT −AGT have
strong connection. The correlation coefficients R exhibit a
value of one or go towards it, indicating a robust association.

Specific pairs exhibit a notably feeble association: HT −
I S I T , HT − GO1T , HT − GO2T , and HT − SOT .

These pairs have correlation coefficients (R values) that are
extremely near zero, indicating a weak association between
them. There are several moderate correlations, such as HT −
GAT , HT − AGT , I S I T −GO2T , and SOT −GAT , for
these pairs have 0.4 ≤ R ≤ 0.6 and 0.2 ≤ R2 ≤ 0.4. These
correlations indicate a statistically significant moderate lin-
ear relationship.

Briefly, the conclusion: Silicate chain temperature indices
range from highly strong to highly weak when p = q. Cer-
tain indices exhibit a high degree of similarity, whilst others
demonstrate a high degree of independence. The correla-
tion coefficients, coefficients of determination, and standard
errors of estimation offer valuable insights into the mag-
nitude, direction, and precision of the linear associations
between the indices. Fig. 2 shows the linear fitting among
the indices.

Table 5 R, R2, SEE between
temperature indices of SC p

p
Indices R R2 SEE Indices R R2 SEE

HT − I S I T 0.353 0.125 55513.75354 GO1T − GO2T 0.983 0.966 1.7021077

HT − GO1T 0.330 0.109 56015.70969 GO1T − SOT 1 1 0.1520726

HT − GO2T 0242 0.059 57561.90518 GO1T − GAT 0.465 0.216 8.2097650

HT − SOT 0.337 0.114 55852.88644 GO1T − AGT 0.464 0.216 8.2129110

HT − GAT 0.963 0.927 16028.41765 GO2T − SOT 0.9800 0.960 1.7761017

HT − AGT 0.963 0.927 16027.21639 GO2T − GAT 0.357 0.127 8.3111612

I S I T − GO1T 0.998 0.995 0.0543631 GO2T − AGT 0.356 0.127 8.3136136

I S I T − GO2T 0.968 0.938 0.2005317 SOT − GAT 0.474 0.225 3.7990858

I S I T − SOT 0.999 0.997 0.0414477 SOT − AGT 0.474 0.224 3.8005694

I S I T − GAT 0.495 0.245 0.6989952 GAT − AGT 1 1 0.3684196

I S I T − AGT 0.495 0.245 0.6992767
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Fig. 2 Scatter plots between temperature indices
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Fig. 3 Under consideration
molecular graphs of benzenoid
hydrocarbons

5 Application of Temperature Indices
on Benzenoid Hydrocarbons

The primary aim of this article is to establish the relationship
between temperature indices, π -electron energy E , and boil-
ing point (B.P(◦C)) of specific benzenoid hydrocarbons.

The variable E is defined for a graph G

E(G) =
n∑

i=1

|ϒi | , (4)

where ϒ1, ϒ2, ϒ3, . . . , ϒn are the eigenvalues of adjacency
matrix of G.

Table 6 The values of some temperature indices, E , and B.P of 21 benzenoid hydrocarbons

Molecule (G) HT (G) I S I T (G) GO1T (G) GO2T (G) SOT (G) GAT (G) AGT (G) E(G) B.P(◦C)

1 38.1228 1.5959 7.5587 0.6358 4.7120 10.8590 11.1461 8 218

2 80.3103 1.6131 7.2964 0.3064 4.7247 15.8226 16.1828 13.6832 338

3 79.7471 1.6003 7.2851 0.2965 4.7426 15.7634 16.2438 19.3137 340

4 138.2308 1.6154 7.1250 0.1763 4.7152 20.7841 21.2219 19.4483 431

5 137.5385 1.6067 7.1194 0.1726 4.7273 20.7301 21.2774 24.9308 425

6 138.9231 1.6240 7.1306 0.1799 4.7031 20.8381 21.1664 25.1875 429

7 136.8462 1.5981 7.1138 0.1689 4.7394 20.6761 21.3329 25.1012 440

8 172.2121 1.6884 7.4025 0.1525 4.9323 23.7383 24.2687 25.1922 496

9 172.9697 1.6958 7.4067 0.1550 4.9219 23.7906 24.2150 25.2745 493

10 172.9697 1.6958 7.4067 0.1550 4.9219 23.7906 24.2150 22.5055 497

11 210.0612 1.7452 7.6107 0.1317 5.1010 26.6937 27.3143 30.5440 547

12 210.8844 1.7517 7.6140 0.1334 5.0919 26.7448 27.2619 30.7255 542

13 211.8844 1.6149 7.0119 0.1138 4.7048 25.7448 26.2619 30.8805 535

14 211.0612 1.6084 7.0085 0.1121 4.7139 25.6937 26.3143 30.8795 536

15 211.0612 1.6084 7.0085 0.1121 4.7139 25.6937 26.3143 30.7627 531

16 211.8844 1.6149 7.0119 0.1138 4.7048 25.7448 26.2619 30.9990 519

17 252.6667 1.7965 7.7750 0.1154 5.2277 29.7000 30.3077 30.9362 590

18 254.5556 1.6789 7.2395 0.1022 4.8707 28.7500 29.2565 30.9386 592

19 249.6667 1.6991 7.3528 0.1053 4.9522 28.7000 29.3077 30.9432 596

20 253.6667 1.6732 7.2368 0.1009 4.8788 28.7000 29.3077 30.8390 594

21 254.5556 1.6789 7.2395 0.1022 4.8707 28.7500 29.2565 30.9418 595
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Table 7 R, R2, and SEE between E and temperature indices

Pair R R2 SEE

E − HT (G) 0.925 0.856 2.5208619

E − I S I T (G) 0.445 0.198 5.9478613

E − GO1T (G) 0.153 0.024 6.5642452

E − GO2T (G) 0.896 0.802 2.9560980

E − SOT (G) 0.391 0.153 6.1146432

E − GAT (G) 0.936 0.877 2.3308281

E − AGT (G) 0.939 0.881 2.2873682

Benzenoid hydrocarbons are a group of chemical com-
pounds that have at least one benzene ring in their structure.
Benzenoid hydrocarbons are highly prized for their distinct
physical and chemical properties, making them useful in
several commercial and scientific fields. One can analyze
the structure-activity relationship of benzenoid hydrocarbons
and their derivatives by utilizing E throughout chemistry,
biology, and mathematics. Benzenoid hydrocarbons are
essential compounds used in various research and techno-
logical applications. Refer to the book [18] for additional
information. Fig. 3 shows 21 benzenoid hydrocarbons.

One might calculate the indices in Table 6 using the ben-
zonid hydrocarbons’ chemical graphs illustrated in Fig. 3.

We took data for E from the paper [19, 20], and data for B.P
from reference [21].

Table 7 shows the relation of E with indices and Fig. 4
shows the linear fitting of E with the temperature indices.

E(G) = 0.095 (±0.009) HT (G) + 8.942 (±1.705) .

E(G) = 49.035 (±22.617) I S I T (G) − 55.169 (±37.506).

E(G) = −4.462 (±6.590)GO1T (G) + 58.595 (±48.021).

E(G) = −48.219 (±5.497)GO2T (G) + 34.459 (±1.151).

E(G) = 16.259 (±8.785) SOT (G) − 52.622 (±42.555) .

E(G) = 1.217 (±0.105)GAT (G) − 2.754 (±2.532) .

E(G) = 1.204 (±0.101) AGT (G) − 3.050 (±2.503) .

The temperature indices that have a substantial association
with E are HT , GO2T , GAT , and AGT . The relationship
between I S I T and E is moderate, while SOT has a weak
link and GO1T has a fragile association with E .

Table 8 shows the relation of B.P with indices and Fig. 5
shows the linear fitting of E with the temperature indices.

B.P(G) = 1.561 (±0.058) HT (G) + 207.187 (±10.996) .

B.P(G) = 1016.437 (±312.414) I S I T (G) − 1194 (±518.079) .

Fig. 4 Scatter plots between E and temperature indices
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Table 8 R, R2, and SEE between B.P and temperature indices

Pair R R2 SEE

B.P − HT (G) 0.987 0.975 16.2552084

B.P − I S I T (G) 0.568 0.358 82.1592661

B.P − GO1T (G) 0.007 0.000 102.5197291

B.P − GO2T (G) 0.893 0.797 46.1872748

B.P − SOT (G) 0.529 0.280 87.0186147

B.P − GAT (G) 0.997 0.993 8.2739494

B.P − AGT (G) 0.997 0.994 8.0045471

B.P(G) = −2.958 (±102.925)GO1T (G) + 511.262 (±749.987) .

B.P(G) = −741.885 (±85.887)GO2T (G) + 618.371 (±17.984) .

B.P(G) = 339.493 (±125.026) SOT (G) − 1153.928 (±605.609) .

B.P(G) = 19.997 (±0.371)GAT (G) + 15.778 (±8.987) .

B.P(G) = 19.729 (±0.354) AGT (G) + 12.056 (±8.758) .

Indices HT and GO2T exhibit a strong correlation with
B.P , while indices I S I T and SOT have amoderate relation-
ship with B.P . GO1T does not exhibit any correlation with
B.P . The correlation coefficient value (R) is almost 1 for the
indices GAT and AGT , indicating their potential use in pre-
dicting the future boiling point of benzenoid hydrocarbons.

6 Conclusions

This paper determined the methodology for calculating vari-
ous temperature indices for a linearmolecular graph of SiO4.
Additionally, we did a comparison and found correlation of
the temperature indices of the silicate chain. At the end of the
paper, we gave an application of benzenoid hydrocarbons to
elucidate the significance of temperature indices.We demon-
strated that the temperature geometric-arithmetic index and
temperature arithmetic-geometric index can forecast the boil-
ing points of benzoniode hydrocarbons.

Open Problem

The following unresolved issues are interesting for the char-
acterization of the silicate chain.

1. Do the temperature indices change when p and q are
either even or odd, when one is even and the other is odd,
and when p is less than q?

2. How does the situation change when p is greater than or
equal to q?

Fig. 5 Scatter plots between B.P and temperature indices
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