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Abstract
Methylene blue dye (MB), prevalent in textiles like cotton, wood, and silk, raises environmental and health concerns. This 
study presents a successful synthesis of a Bayerite/zeolite nanocomposite powder using fumed silica by-product and alu-
minum nitrate. Hydrothermal exploration of factors, including duration, temperature, and Al/Si ratios, revealed that high 
temperature (160°C) and short duration (6h) favored optimal crystallization of bayerite/zeolite phases. Subsequently, an 
integrated photocatalytic adsorbent (IPA) was developed by mechanically mixing the synthesized bayerite/zeolite with TiO2, 
followed by calcination (500 °C, 2 h), demonstrating superior efficiency in MB photodegradation under UV–Vis light. The 
IPA achieved 100% degradation efficiency for 60 mg/L of MB and maintained good photostability over three cycles. The 
bayerite/zeolite-supported TiO2 nanocomposite exhibited the generation of positive holes (h +) and active hydroxyl radicals 
(OH•), showcasing its potential as a promising material for wastewater treatment applications.

Highlights
• Successful synthesis of Bayerite/zeolite nanocomposite powder from fumed silica waste and aluminum nitrate.
• Development of an integrated photocatalytic adsorbent (IPA) by mixing synthesized bayerite/zeolite with TiO2.
• IPA demonstrated superior efficiency in Methylene Blue (MB) photodegradation under UV-Vis light
• The bayerite/zeolite-supported TiO2 nanocomposite maintained good photostability over three cycles, showcasing its 
potential for wastewater treatment applications.
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1  Introduction

Water pollution is a serious problem and significant danger 
that has a hazardous impact on both aquatic life and the well-
being of humans [1]. Even in areas that are now thought to 
have abundant water, the rise in pollutant percentage that 
causes global pollution is a severe environmental issue, that 
can occur as a result of water contamination [2]. Various 
contaminants, including toxins and industrial or agricultural 
dyes, contribute to this issue. Exposure to these impurities 
through tainted water sources can have profound and endur-
ing health consequences, including the development of con-
ditions such as cancer, neurological diseases, and digestive 
problems [3].
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The increase in industrial activities has led to the emer-
gence of various industrial wastes and organic pollutants, 
becoming primary sources of environmental contamination. 
In particular, Methylene Blue (MB), a dye classified in the 
Thiazine group, is frequently employed in pharmaceuticals, 
textiles, printing, and other sectors [4, 5]. MB is known for 
its toxicity and persistence in the environment as it can dis-
rupt aquatic ecosystems and have harmful effects on organ-
isms, leading to reduced biodiversity and environmental 
imbalances [6]. However, the incorrect disposal of this dye 
can seriously pollute the water supply. Efforts to mitigate 
the impact of this pollutant require effective water treatment 
methods.

Several processes can be employed to remove this indus-
trial dye from water sources namely adsorption [7], ion 
exchange process [8], electrocoagulation [9], biological 
treatment process [10], and membrane filtration process 
[11]. However, these methods are inefficient and lack of des-
orption process. Furthermore, advanced oxidation processes 
such as photocatalysis employing materials like TiO2 or ZnO 
have demonstrated highly promising outcomes in capturing 
and removing these pollutants, due to the degradation and 
complete breakdown of pollutant molecules through oxida-
tion reactions ensuring its reusability [12, 13].

TiO2 is widely recognized as a highly efficient catalyst 
for the removal of MB through photocatalysis [14–16]. The 
robust photocatalytic performance of TiO2 can be attrib-
uted to its capacity for producing reactive oxygen species 
upon exposure to light, facilitating the efficient degrada-
tion of MB molecules [17, 18]. However, two factors in the 
photodecomposition process can restrict the use of titania 
oxide semiconductors. Firstly, its wide bandgap utilizes only 
3–4% of the solar light spectrum [19, 20]. Secondly, the hole 
electron pairs generated by UV irradiation are easily recom-
bined, which can reduce its overall efficiency for the photo-
degradation of MB [21]. Additionally, it was reported that 
one of the primary issues with using photocatalysis is the 
energy waste that results from the predominance of this elec-
tron–hole recombination since the quantum yield is limited 
in the absence of an appropriate electron acceptor or donor 
[22]. Therefore, it is essential to migrate the electron–hole 
recombination to guarantee the effective photodecomposi-
tion of pollutant molecules.

To overcome these limitations and to enhance the activ-
ity of TiO2, significant attention has been devoted to the 
immobilization of this semiconductor on various supports 
due to their potential applications in photocatalysis and 
environmental remediation. This approach aims to aug-
ment adsorption capacity and improve separation efficiency 
without drastically altering the overall structure and stabil-
ity [23–25]. For instance, recent research by Khanmoham-
madi et al. (2024) highlighted the use of mesoporous silica 
matrix as a support material for Cu–Ti–O heterojunction 

immobilization, demonstrating improved photocatalytic 
performance for the degradation of tetracycline pollutant 
[26]. Additionally, the study by Moradi et al. (2014) inves-
tigated the immobilization of TiO2-WO3 particles on diato-
mite supports, revealing enhanced photocatalytic activity for 
paraquat herbicide treatment in agriculture applications [27]. 
Furthermore, the work by Haghighi et al. (2019) focused 
on the immobilization of TiO2/PS composites on titanium 
dioxide spherical arrays, elucidating the synergistic effects 
between the semiconductors and the support structure in 
promoting photocatalytic degradation processes [28]. These 
studies collectively underscore the importance of exploring 
diverse support materials and immobilization techniques to 
harness the full potential of TiO2 semiconductors in various 
photocatalytic applications. Accordingly, Materials, such as 
zeolite, serve as substrates for TiO2, providing improved sur-
face area and adsorption properties that are quite beneficial.

The exceptional qualities of zeolites, including their 
porous structure, great hydrothermal stability, catalytic 
activity, superior shape selectivity, and binding capabilities, 
make them particularly interesting adsorbents [29–32]. Fur-
thermore, zeolite was extensively utilized as a substrate for 
TiO2, thereby enhancing its surface area and enabling better 
access of MB to TiO2 [2, 14, 22]. Consequently, this increase 
contributed to the enhancement of its photocatalytic deg-
radation performance [25, 33]. Similarly, prior researches 
has shown that boehmite, bayerite, or gibbsite crystalline 
nanomaterials have strong filtering capabilities because 
both the surface hydroxyl groups and the aluminum anions 
participate in the ion exchange process. This involvement 
may, in turn, restrict TiO2 dispersion [34–36]. Moreover, 
the use of so-called bayerite/zeolite nanocomposites as the 
combination of filtration and adsorption processes can be 
quite beneficial due to their small size and highly reactive 
character as one of the most broadly used, quick, and afford-
able technologies for managing groundwater and industrial 
wastewater [37, 38]. Thus, TiO2 exhibits remarkable effi-
ciency as a photocatalyst for the removal of MB through 
photocatalysis.

The removal mechanism of MB using zeolite-TiO2 com-
posites has been extensively investigated [39, 40]. The 
mechanism involves the adsorption of MB onto the surface 
of zeolite, promoting better interaction between MB and the 
composite. This interaction results in enhanced degradation 
efficiency, accompanied by the generation of reactive oxygen 
species (ROS) upon the activation of TiO2 by light. These 
ROS then react with the adsorbed MB molecules, break-
ing them down into smaller, less harmful by-products or 
CO2 and H2O [41]. Despite these favorable attributes, it is 
important to note certain limitations associated with these 
composites. One limitation is the possibility of photocorro-
sion, where the composite's performance may deteriorate 
over time due to the degradation of TiO2 in the presence of 
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light and water [16]. Another limitation is the potential for 
reusability and stability of the composite, as repeated use 
and prolonged exposure to environmental conditions can 
affect its overall performance and efficiency [42].

Recent advancements have shown that the incorpora-
tion of bayerite and zeolite as substrates for TiO2 signifi-
cantly contributes to the overall performance of the com-
posite [23, 37]. Specifically, zeolite and bayerite exhibit 
considerable potential as substrates for TiO2, improving 
its activity performance and stability, and resulting in 
enhanced photocatalytic performance. Further exploration 
and development of these composite systems could lead 
to the advancement of efficient and sustainable methods 
for the removal of MB and other organic pollutants from 
wastewater.

The current research focuses on the synthesis of new 
pair compounds based on nanocomposites bayerite/zeolite 
from fumed silica by-product and aluminum nitrate using 
hydrothermal reaction. The influence of different param-
eters on the different aspects of bayerite/zeolite crystal-
lization was investigated in detail by structural analysis, 
morphological properties, and surface area analysis. The 
removal capacity of bayerite/zeolite-supported TiO2 pho-
tocatalyst was measured by the decomposition of MB dye. 
However, to the best of our knowledge, no attention was 
paid to the bayerite/zeolite combined with TiO2. thus, while 
using the photodegradation approach, consideration was 
given to the photocatalyst's properties such as surface area, 
pHpzc value, hydrophobicity, as well as other experimental 
measurements.

2 � Experimental

2.1 � Bayerite/Zeolite synthesis

All chemicals were used straightaway without any addi-
tional purification. Aluminum nitrate nonahydrate 
(Al(NO)3 9H2O, Sigma-Aldrich) and fumed silica were 
used as alumina and silica sources, respectively. The syn-
thesis of bayerite/zeolite through conventional hydrothermal 
involved the use of a 60 mL hydrogel with a mass ratio of 
1.75Na2O:0.5Al2O3:3SiO2:150H2O. Aluminum nitrate was 
dissolved in an aqueous solution of sodium hydroxide pellets 
(99%, Sigma-Aldrich), and fumed silica was subsequently 
added to the mixture. The resulting hydrogel was placed in 
a stainless steel autoclave lined with Teflon and hydrother-
mally treated for 6–48 h at temperatures ranging from 100 
to 160 °C after being stirred for 1 h at room temperature.

Throughout the synthesis period, a pH solution of around 
8 was achieved by collecting, filtering, and washing the solid 
products with deionized water. Finally, the filtrates were 
dried in an oven at 100 °C for 24 h.

2.2 � Bayerite/Zeolite characterization

The obtained products were acquired and characterized 
using several conventional techniques. Powder X-ray dif-
fraction (XRD) patterns were obtained using a RIGAKU 
D/Max-IIIB diffractometer with Cu radiation, operated at 
20 mA and 40 kV. The diffraction patterns were gathered 
in the 2θ range of 5–85° at a scan speed of 5°/min. SEM 
images were captured using a Tescan Vega 3 microscope 
with a cold-field emission gun operating at 2 kV and 10 A. 
Transmission IR spectra were recorded using a VERTEX70 
DTGS spectrometer with a KBr method. The crystallite size 
of the samples was calculated using the Scherrer equation. 
Nitrogen adsorption–desorption experiments were carried 
out under nitrogen degassing at 200°C for 7 h using a micro-
metrics 3-Flex 5.00 version instrument. The optimum sam-
ple was calcined at 300°C for 3 h before photodegradation 
tests. The density of the optimized sample was measured 
with a high degree of precision using a pycnometer device. 
The zeolite-only density was derived by filling the cavities 
of the particles with Diethyl phthalate. Furthermore, the ion 
exchange capacity was determined using the cobalthexamine 
method.

2.3 � Preparation of Bayerite/Zeolite‑TiO2 catalyst

The TiO2 powder, which was purchased from Sigma Aldrich, 
served as the starting material for the catalyst preparation. 
Subsequently, an adsorbent-photocatalyst 50:50 wt% sample 
was prepared from bayerite/zeolite and TiO2 by mechanical 
mixing [43]. TiO2 and the synthesized material were com-
bined and kneaded with the necessary quantity of distilled 
water. The prepared past was dried at 90 °C for 3 h and sub-
sequently subjected to heating at 500 °C for 2 h to achieve 
the final Bayerite/zeolite-TiO2 catalyst.

2.4 � Hydrophilicity experiments

The hydrophobicity of the bayerite/zeolite support pow-
der was evaluated to determine its affinity. Wettability 
experiments were conducted to assess the bayerite/zeolite 
nanocomposite’s interaction with water using the contact 
angle method, with a focus on its role in the photodegra-
dation of Methylene blue. In a typical experiment, 2 g of 
zeolite (density = 2.12) was packed into a column with 
a filling height of 40.48 mm. The column was vertically 
brought into contact with the surface of a hexane sam-
ple to determine the capillary ray. Hexane, selected for 
its nonpolar nature, possesses a density of 0.65, viscosity 
of 0.309 mPa·s, and surface tension of 18.4 mN·m-1 at 
room temperature and atmospheric pressure. Subsequently, 
the contact angle was measured using the capillary ray 
method with 2 g of zeolite and distilled water. Distilled 
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water, characterized by a surface tension of 72.8 mN·m-1, 
was used over a specified integration time of 30 s. These 
experiments aimed to provide insights into the hydrophilic 
properties of the bayerite/zeolite nanocomposite and its 
potential influence on the photocatalytic degradation of 
Methylene Blue.

2.5 � Photocatalysis procedure

Methylene blue (Aldrich 99%) was subjected to photocata-
lytic degradation in aqueous solutions. The photocatalytic 
process utilized a 300 W Xe-lamp (white LEDs) with a 
high-pressure tungsten filament as the UV–visible light 
source (Brand, Ltd. China). The lamp was positioned at 
a distance of 20 cm from the solution. Reactions were 
conducted both in the absence and presence of a photo-
catalyst. Various initial concentrations of Methylene blue 
(MB) were introduced into 100 mL of the solution. The 
experimental setup is schematized in Fig. 1.

To establish adsorption–desorption equilibrium, each 
suspension was agitated for 60 min in a dark box before 
initiating illumination with the visible light source. The 
irradiation phase commenced afterward and extended for 
4 h, maintaining the reaction system's temperature at 25 
°C. At regular one-hour intervals during the photoreaction, 
samples were withdrawn using a 15 mL syringe, centri-
fuged, and separated. The changes in MB solution concen-
trations were assessed at 666 nm using a 2 mL cylindrical 
glass reactor fitted with an inner quartz tube. This reactor 
was equipped with a UV–vis spectrophotometer, specifi-
cally a Spectroscan50, featuring a pen-ray mercury lamp 
(λ = 365 nm, I0 = 4400 W·cm-2).

The degradation efficiency (DE%) and adsorbed 
amounts (Qa) of MB were calculated by the change in 
absorbances by the following equations:

where DE(%) , Qa (mg/g), C
0
 (mg∙L−1), Ct (mg∙L−1), V (L), 

and mc (g) are the degradation efficiency, adsorbed amount, 
initial MB concentration, MB concentration at different 
times, solution volume, and mass photocatalyst, respectively.

It is significant to note that the Langmuir–Hinshel-
wood model predicts that the photodegradation of MB 
follows pseudo-first-order kinetics. Consequently, the 
following equation might be used to represent the rate of 
MB photodegradation:

The slopes of the straight-line part of the plots of lnCt 
vs t as a function of the experimental parameters were 
utilized to compute the rate constants (kt).

Utilizing a commercial TiO2 photocatalyst that 
responds to UV light, identical tests were conducted to 
compare the photocatalytic activities.

2.6 � Determination of active radicals

The investigation of the photocatalytic mechanism for 
Methylene blue (MB) decomposition by the bayerite/
zeolite-TiO2 nanocomposite under irradiation conditions 

(1)DE(%) =

(

C
0
− Ct

)

C
0

× 100

(2)Qa =

(

C
0
− Ct

)

mc

× V

(3)lnCt = lnC
0
− kt

Fig. 1   Experimental setup of 
MB degradation
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was conducted in detail. The aim is to elucidate the pho-
tocatalytic reaction pathway and identify the types of 
photogenerated reactive species responsible for MB deg-
radation on the surface.

In order to understand the involvement of various 
active species in the degradation process, different scav-
engers were separately employed to eliminate the relevant 
active species. The formation of radicals was detected 
using three chemical scavengers used to capture hydroxyl 
radicals (OH•), positive holes (h +), and electron and 
superoxide anion radicals (e − , O2•−), specifically tert-
butyl alcohol, triethanolamine Diamine Tetra-acetic Acid 
EDTA-2Na, and L-Ascorbic Acid (ASC), respectively.

Furthermore, the roles of these primary active radi-
cals were investigated where a mixture of MB and added 
traps (4 mM) was stirred with the nanocomposite catalyst 
and irradiated under the same conditions. Consistent with 
previous research findings, the OH• radicals generated a 
variety of intermediate products before achieving com-
plete mineralization, resulting in the generation of CO2 
and H2O [44, 45].

3 � Results and discussion

3.1 � Bayerite/zeolite synthesis

3.1.1 � Effect of crystallization time

The microstructure evolution of bayerite/zeolite phases from 
1.75Na2O:0.5Al2O3:3SiO2:150H2O mixture at 90°C was sys-
tematically investigated by mean of XRD and FTIR meas-
urements, focusing on the impact of synthesis time (ranging 
from 6 to 48 h). As seen from the trend of XRD patterns in 
Fig. 2, the synthesis duration of 6h promoted the formation 
of o Bayerite phase (B) with the appearance of weak peaks 
corresponding to the quartz phase (Q). This observation sug-
gests the persistence of some initial material of fumed silica. 
With the increase in synthesis time, a decrease in XRD peak 
intensities was noted, indicating near completion of the bay-
erite crystallization within the initial 6 h due to its hexagonal 
structure and simple units. Consequently, a significant por-
tion of the aluminum nitrate was transformed into bayerite 
during the shorter crystallization period.

Figure 3 presents the FT-IR spectra of samples at various 
reaction periods. Samples crystallized at 90 °C for 6 h exhibit 
characteristic bands of bayerite and aluminosilicate, some of 
which diminish with increased synthesis time. The bands in 
the range of 1300–450 cm-1 are associated with aluminosili-
cate species such as Si–O-Al, Si–O-Si, and Al-O [46, 47]. In 
detail [48, 49], the IR band at 470 cm-1 is attributed to vibra-
tions of internal bonds (T-O) of SiO4 and AlO4 tetrahedra. 
The vibrations at about 551 cm−1 are attributed to external 

bonds of double five-membered rings. The bands observed 
at about 802 cm−1 are related to symmetric stretching of 
external bonds between tetrahedra. The strongest absorp-
tion peak at about 1104 cm−1 corresponds to the internal 
asymmetric stretching of Si–O-T bonds. Transmittance bands 
around 1386 cm-1 and 1555 cm-1 can be attributed to N–O 
species. The gradual decrease in transmittance bands around 
1445 cm-1 and 1365 cm-1 over time indicates a reduction 
in the amorphous material content in the sample [50]. This 
reduction is due to the gradual transformation of the amor-
phous phase into crystalline bayerite and aluminosilicate 
phases. The band at 1647 cm-1 observed in the samples is 
related to the vibration of water molecules within the zeo-
lite [51, 52]. The transmittance band at 3374 cm-1 is linked 
to the airborne water physically absorbed. Surface hydroxyl 
groups of Al–OH are responsible for the FTIR band at 1104 
cm-1. The spectra also confirm that the synthetic aluminum 
hydroxide nanofiller Al–OH corresponds to bayerite [34], as 
indicated by the distinctive stretching bands at 3661–3858 
cm-1. These various characteristic bands provide insights into 
the molecular composition and structural changes during the 
synthesis process. The FTIR and XRD data exhibit excellent 
agreement, providing a comprehensive understanding of the 
structural evolution during bayerite/zeolite synthesis.

3.1.2 � Effect of crystallization temperature

The influence of crystallization temperature on the synthesis 
of bayerite/zeolite nanocomposites was investigated, with a 
focus on the XRD patterns of samples produced at various 
temperatures within the range of 100 °C to 160 °C after 6 h 
of crystallization (Fig. 4).

These patterns revealed the formation of a unique zeolite 
known as Aluminum silicate hydrate (ASH). As the incuba-
tion temperature increased from 100 °C to 160 °C, both ASH 

Fig. 2   X-ray diffraction patterns of materials at various stages of syn-
thesis
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and Bayerite's crystallinity exhibited steady growth. This 
phenomenon can be attributed to the influence of the reaction 
temperature on the crystallization and nucleation processes, 
where higher temperatures facilitate more energy and shorter 
crystallization times. Additionally, higher temperatures can 
lead to an increased concentration of a chemical group in 
the solution, which is advantageous for the formation of 
crystalline materials. This observation of ASH aligns with 
Ostwald's law of consecutive transformation, suggesting that 
this zeolite was formed through the transformation of alu-
minum nitrate and fumed silica into a thermodynamically 
stable zeolite segment [53] [54]. Nevertheless, crystallization 
at 160 °C resulted in the formation of pure phases consisting 
of Bayerite/zeolite composite with traces of quartz.

Figure 5 displays SEM images of samples along with their 
EDS analysis outcomes, providing insights into structures 
with an approximate diameter of 10 μm. Octahedral-shaped 
samples were obtained within the temperature range of 100 

°C to 160 °C. The SEM images reveal the presence of numer-
ous zeolite and hydroxide crystals, with some exhibiting a 
hexagonal shape. It is worth noting that samples synthesized 
at higher temperatures displayed larger mean crystal diameters 
and thicknesses. Upon raising the temperature to 160 °C, the 
octahedral morphology disappeared, giving way to lepispheri-
cal particles of aluminum silicate. The SEM images also 
reveal the presence of a few damaged microspheres within 
the gel particles. These observations align with the XRD and 
IR data and indicate the formation of hollow solid structures.

3.1.3 � Effect of Al2O3/SiO2 mass ratio

The influence of the Al2O3/SiO2 ratio on the structure of 
the final products (hydrothermally treated at 160°C for 6 
h) was explored. Bayerite and zeolite were synthesized at 
mass ratios of 2.0, 2.5, and 3.8 by varying the quantity of 
aluminum nitrate.

The XRD diffractograms are presented in Fig. 6. As 
observed when the molar composition is 3.8, the powders 
derived from the synthesis hydrogel exhibit an amorphous 
phase, indicating a less defined crystalline structure. The 
sample produced at an Al2O3/SiO2 ratio of 2.5 is attributed 
to bayerite and poorly crystallized Aluminum Silicate. How-
ever, at an Al2O3/SiO2 mass ratio of 2.0, high-purity and 
well-crystallized bayerite/zeolite were formed, as evident 
in the XRD diffractogram.

Figure 7 presents SEM micrographs of samples, accom-
panied by their EDS analysis outcomes, illustrating vari-
ations in Al2O3/SiO2 ratios. It is clear that the aggregates 
in the samples (Al2O3/SiO2 = 2.0, 2.5, and 3.8) consist of 
densely packed crystals. However, unique morphologies 
resulting from the presence of hydroxide and zeolite can 
be observed in the Al2O3/SiO2 = 2.0 sample. Additionally, 
the sample produced at Al2O3/SiO2 = 2.5 exhibits a similar 
micrograph. This observation implies that the formation of 
a double four-membered ring (D4R) is more likely when 
there is a higher concentration of Al4+ in the solution [55]. 
This suggests that bayerite/zeolite is most likely produced 
at a lower Al2O3/SiO2 ratio.

In summary, the optimal conditions for the synthesis of 
high-purity bayerite/zeolite involve a hydrothermal tem-
perature of 160 °C, a shorter synthesis duration of 6 h, 
and a lower Al/Si mass ratio of 2.0. The crystallite sizes 
of bayerite and zeolite are 76.8 nm and 60 nm, respec-
tively. The development of nanoporosity in this com-
posite was confirmed by employing the BET technique 
to measure the specific surface area, as shown in Fig. 8. 
The specific area was determined to be 24.81 m2/g. The 
pore size distribution curve obtained using the Barrett-
Joyner-Halenda (BJH) method revealed an average volume 
pore of 0.163827 cm3/g, with adsorption and desorption 
pore sizes centered at 4.07 nm and 4.92 nm, respectively. 

Fig. 3   IR spectra of obtained samples at different synthesis times

Fig. 4   X-ray diffractograms of data obtained at various synthesis tem-
peratures
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Furthermore, the ion-exchange capacity (IEC), capillary 
ray, and contact angle of the optimized composite were 
measured to be 35 meq/100g, 0.07 μm, and 75.24 degrees, 
respectively, falling within the typical range for zeolite's 
IEC and wettability. These findings align with existing 
literature on similar nanocomposite systems [30, 37, 56].

3.2 � Photodegradation testing

The investigation into the photodegradation of Methylene 
Blue (MB) at an initial concentration of 60 mg/L and pH 
12 was conducted, with comparisons made between TiO2 

and Bayerite/zeolite-TiO2 photocatalysts. The results have 
been summarized in Fig. 9a and b, revealing notable insights 
into the photolytic and photodecomposition behavior under 
UV–vis light irradiation.

In both figures, it is evident that the photolysis of MB 
did not affect its photodecomposition. Analogous behavior 
was observed by different researchers [33, 43, 57]. The 
presence of TiO2 helped reach a removal rate of 82.2%, 
showcasing its efficacy in the photodegradation process. 
Moreover, MB is adsorbed quite strongly on the bayerite/
zeolite-TiO2 surface, reaching 100%, indicating a robust 
adsorption capability of MB on the composite surface. 
The adsorption step is an important factor since bayerite/
zeolite sorption capability enhanced the photocatalytic 
activity of TiO2.

The kinetics follow-up data of the same initial con-
centration are presented in Fig. 10. The linear projections 
lnCt = lnC

0
− kt exposed that they practically matched the 

pseudo-first-order model. The higher R2 reveals that the sec-
ond-order kinetic law provides a more accurate description 
of the kinetic, which is reflected by the responsive fixation 
of solutes on the most reactive sites and photocatalyzed. The 
rate constant (k) and regression coefficients are presented, 
further supporting the conclusion that the photocatalytic 
degradation follows pseudo-first-order kinetics.

However, key parameters influencing the efficiency of the 
photocatalyst were identified. The results indicated that a 
pH solution of 12, a mass photocatalyst of 1.5 g/L, and an 
initial concentration of 60 mg/L are the optimum level fac-
tors. Under these conditions, the photocatalyst demonstrated 

Fig. 5   SEM images of samples 
obtained at different synthesis 
temperatures

Fig. 6   X-ray diffraction patterns of samples synthesized in the syn-
thesis gel with different Al2O3/SiO2 mass ratios
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efficient degradation, achieving complete removal (100%) of 
MB within 1 h of adsorption and 4 h of irradiation. These 
findings underscore the importance of optimizing environ-
mental conditions for maximum photocatalytic efficiency 
[13].

•	 Choice of initial pH of the solution

One of the most important variables influencing the effi-
ciency of the photocatalytic process is the pH solution, with 
a profound impact on the surface properties and charge states 
of the bayerite/zeolite-TiO2 photocatalyst. Previous research 
indicates that due to the numerous functions of the photo-
catalyst, understanding the impact of pH on its productivity 
is quite challenging [22, 33].

The first is connected to the oxidation states of the bay-
erite/zeolite-TiO2 surface, which, following the subsequent 
processes, is positively charged under an acidic environment 
and negatively charged under a basic one. This phenomenon 
is associated with reactions involving hydroxide ions and 
protons:

Al(OH)
3
+ H+ = Al(OH)+

4
 

Al(OH)
3
+ OH− = AlO

2
− + 2H

2
O 

 Na
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(Al
2
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The second is the interaction between positive holes and 
hydroxide ions, which results in the production of hydroxyl 
radicals. At high or neutral pH values, hydroxyl radicals are 
thought to predominate, but at low pH levels, positive holes 
are thought to be the main oxidation species [58].

To assess the primary effect of the solution's pH on the 
photocatalytic degradation of MB on the surface of the bay-
erite/zeolite-TiO2 photocatalyst, the pH drift method was 
employed. Solutions with varying pH values (pH 2, 3.3, 
11.3, and 12) were prepared with NaCl (0.01 M), and 1.5 
g/L of zeolite was added. The mixtures were stirred for 72 
h, and the pH of the solutions was subsequently measured. 
The pHpzc (point of zero charge) of the photocatalyst is 
determined by the intersection of the curves (initial pH) = f 
(initial pH) and (final pH) = f (final pH), as illustrated in 
Fig. 9c. The pHpzc was found to be 10.8.

As a result, for a solution with a pH greater than the 
pHpzc, the adsorption of MB on bayerite/zeolite-TiO2 is 
favored. For solutions with a pH lower than the pHpzc, the 
surface of the photocatalyst becomes positively charged, 
leading to a potential repulsion of the dye cations. Therefore, 
as the pH increases, the proportion of negatively charged 

Fig. 7   SEM images of synthesized samples with different Al2O3/SiO2 
mass ratio

Fig. 8   Specific area and pore size distribution of the Bayerite/zeolite 
nanocomposite
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sites on the photocatalyst's surface increases while the 
proportion of positively charged sites decreases [51]. This 
understanding is crucial in optimizing the environmental 
conditions for enhanced photocatalytic performance.

•	 Effect of initial concentration of the solution

The initial concentrations of the solutions used in this 
investigation ranged from 40 to 100 mg/L. Fresh solutions 
were prepared as needed for the experiments. In each case, 
100 ml of the solution was added to the reactor, stirring 
commenced, and the light source was turned on. As shown 
in Fig. 9d, it is evident that the adsorbed amount at equi-
librium increases with the concentration of solution. This 
phenomenon is indicative of the significant influence of 
concentration on the photocatalysis rate. Higher dye con-
centrations accelerate the diffusion of dye molecules from 

Fig. 9   Experimental degradation data of MB on Bayerite/zeolite-TiO2 surface by photocatalysis (tungsten filament—lamp 300 W)

Fig. 10   Kinetics follow-up of degradation data of MB on Bayerite/
zeolite-TiO2
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the solution to the adsorbent's surface, a behavior attributed 
to the abundance of active sites available on the surface of 
bayerite/zeolite at the beginning of the adsorption process 
and during photocatalysis with TiO2.

However, over time, the photocatalysis rate decreases for 
higher concentrations due to a saturation phenomenon. This 
can be explained by the occupation of previously vacant sites 
on the adsorbent's surface and the emergence of repulsive 
forces between the adsorbed dye molecules on the photo-
catalyst and those in the solution. The insulating nature of 
zeolite further contributes to this effect. Some authors have 
attributed this occupancy to the formation of intermedi-
ates during the photodecomposition [2, 45]. In summary, 
at an initial concentration of 100 mg/L, 58.47 mg/g of MB 
molecules were adsorbed with a degradation efficiency of 
87.7% within 5 h of the reaction. This finding emphasizes 
the intricate interplay between initial concentration, adsorp-
tion dynamics, and photocatalytic efficiency, providing 
valuable insights for optimizing the photocatalytic process 
under varying dye concentrations. In comparison, the pho-
tocatalytic performance of Bayerite/zeolite-TiO2 composites 
towards methylene blue was significantly better than that of 
the zeolite-TiO2 photocatalysts reported in the literature in 
terms of photocatalytic dose, MB concentration and degra-
dation efficiency (Table 1).

Type of photogenerated reactive species responsible for 
MB deterioration and their mechanism

Understanding the primary reactive species responsible 
for the photodegradation process of MB on the bayerite/
zeolite-TiO2 surface is crucial in unraveling the intricate 
photocatalytic mechanism. Trapping experiments employ-
ing chemical scavengers shed light on the nature of these 
species and their contributions to the degradation process.

Figure 11 depicts the results of trapping experiments 
using tert-butyl alcohol and Ethylene Diamine Tetra-acetic 
Acid (EDTA). As can be seen, the addition of tert-butyl 
alcohol or Ethylene Diamine Tetra-acetic Acid (4 mM) 
inhibits the kinetic follow-up and the degradation efficiency 
of MB from 100 to 94%. These results suggest that pho-
togenerated hydroxyl radicals (OH•) and positive holes (h+) 

in the valence band are the primary reactive substances in 
the photocatalytic reaction pathway.

Moreover, superoxide radicals (O2•−) were not involved 
in the photodegradation since L-Ascorbic acid was experi-
mented to be a direct electron acceptor and has been used 
to promote the photodecomposition rate [19]. In addition, 
it was found that the L-ascorbic acid powder intervened 
in the improvement of the equilibrium adsorption stage 
[59]. All in all, according to the reactions, positive holes 
are trapped by the H2O molecules to generate hydroxyl 
radicals which can oxidize MB molecules, and L-Ascor-
bic acid having reductant properties prevents the elec-
tron–hole recombination forming more hydroxyl radicals 
[24, 59]. Thus, the addition of optimal concentration of 
L-Ascorbic acid C6H8O6 would have a valuable effect on 
the photocatalytic degradation of MB (100%).

Al(OH)
3
+ H+ = Al(OH)+

4

L − ascorbic acid + e− = OH ∙ +CO
2
 

L − Ascorbic acid + O
2
∙ − = OH ∙ + OH − + CO

2
 

L − Ascorbic acid + OH∙ = HO
2
∙ + H

2
O 

HO
2
∙ + OH∙ = H

2
O + O

2
. 

In summary, when the photocatalyst absorbs energy 
above the energy of its energy band, electrons are stimu-
lated from the valence band to the conduction band, as 
shown in Fig. 12. Nevertheless, the former still has holes 
in it. Since L-Ascorbic acid is an electron scavenger, the 
created holes directly interacted with MB molecules, H2O, 
or OH− adsorbed in the photocatalyst surface to gener-
ate the active species as shown by the equations below. 
Finally, using a bayerite/zeolite-TiO2 nanocomposite, the 
hazardous MB dye decomposes into fairly benign H2O, 
CO2, and simple molecules when exposed to photogen-
erated holes (h+) and hydroxyl-radicals (OH•). These 
findings are consistent with earlier studies and contrib-
utes valuable insights into the photocatalytic degradation 
mechanism of hazardous dyes [18, 33, 36, 45].

(4)
Bayerite∕zeolite − TiO

2
+ h� → e−CB + h+VB → heat

Table 1   Comparison of 
photocatalytic performance 
with other previously reported 
photocatalysts for the 
degradation of the pollutant MB

Photocatalysts Catalyst dose MB concentration Degradation efficiency Ref

TiO2-zeolite 0.1 g/100 mL 20 ppm 97.32% in 3 h [60]
CdS/TiO2/CeO2-zeolite 0.15 g/100 mL 10 mg/L 99.9% in 2 h [61]
TiO2-zeolite 0.2 g/100 mL 20 mg/L 98.25% in 50 min [62]
RGO/TiO2/Zeolite-4A 0.3 g/100 mL 25 ppm 100% in 80 min [63]
TiO2-Coated NaY 0.1/250 mL 50 ppm 100% in 4 h [64]
Fe3+/TiO2-zeolite 0.1 g/100 mL 25 mg/L 92%% in 90 min [65]
TiO2-ZSM-5 0.055 g/100 mL 10 mg/L 99.08% in 2 h [14]
TiO2/NaY 0.2 mg/100 mL 10 mg/L 88% [66]
Bayerite/zeolite-TiO2 0.15 g/100 mL 60 mg/L 100% in 4 h This study
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•	 Recyclage and reusability efficiency

Assessing the recyclability and reusability of Bayerite/
zeolite-TiO2 is vital for its practical application in waste-
water treatment. The study focused on the stability and per-
formance of the photocatalyst over multiple usage cycles.

(5)h + VB + H2Oads → H + +OH⋅

(6)h+VB + OH−ads → OH ∙ ads

(7)MB + h+VB → Oxidation products

(8)
MB + OH ∙ + h+ → CO

2
+ H

2
O + simple molecules

During each photocatalytic cycle, the powder was filtered, 
washed with ethanol and distilled water, and then dried for 
12 h at 80°C. This process was repeated three times using 
the same photocatalyst. This regeneration process aimed to 
ensure the removal of any residual contaminants and restore 
the photocatalyst's active surface.

For the MB concentration solution of 60 mg/L, the pho-
tocatalyst exhibited good stability during the second use, 
achieving a degradation efficiency of 100%. This indicates 
that even after the first cycle, the photocatalyst retained 
its efficacy. However, a gradual decrease in efficiency was 
observed during the third use, reaching 93%.

These findings underscore the promising recyclability 
and reusability of Bayerite/zeolite-TiO2, making it a reliable 
candidate for multiple water treatment cycles. The observed 
decrease in photocatalytic activity in the third use may be 
attributed to the poisoning of the photocatalyst's active sur-
face or the occupation of active sites by intermediates that 
have strongly adsorbed to the surface of the photocatalyst 
[41].

It can be concluded above results and discussion that 
the synthesized bayerite/zeolite nanocomposite, especially 
when coupled with TiO2, presents itself as a promising can-
didate for advanced photocatalytic applications in wastewa-
ter treatment. The multifaceted analysis conducted in this 
study lays the groundwork for future research endeavors 
aimed at refining and optimizing the performance of such 
nanocomposite materials for sustainable water treatment 
solutions.

Fig. 11   Effect of radical scavenger addition on the photodecomposition of MB

Fig. 12   schematic diagram of the photocatalytic mechanism of bayer-
ite/zeolite-TiO2
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4 � Conclusion

In this study, we successfully fabricated a bayerite/zeo-
lite nanocomposite utilizing fumed silica and aluminum 
nitrate as the silica and aluminum sources, respectively. 
The physicochemical properties, morphology, crystal size, 
and nucleation of the final products were significantly 
influenced by factors such as the selection of silicon and 
aluminum sources, crystallization duration, temperature, 
and Al2O3/SiO2 mass ratio. Our findings reveal that a well-
developed bayerite/zeolite composite can be achieved after 
6 h of hydrothermal treatment at 160 °C, with an Al2O3/
SiO2 mass ratio of 2.0 leading to the formation of pure and 
well-crystallized bayerite/zeolite.

The bayerite/zeolite-TiO2 nanocomposite demonstrated 
exceptional photocatalytic activity in degrading methyl-
ene blue (MB), achieving complete (100%) degradation of 
60mg/L within 1 h of adsorption and 4 h of illumination. 
This degradation can be attributed to the generation of posi-
tive holes and hydroxide radicals. The significant insights 
gained from this study contribute to the advancement of effi-
cient wastewater treatment technologies, offering promising 
avenues for preserving our precious water resources. These 
results hold particular relevance for researchers and practi-
tioners in the field of powder technology, paving the way for 
the development of innovative materials for environmental 
applications.
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