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Abstract
The numerical evaluation performed on the design of n-ln2S3/p-Si/p+-NiO solar cell reveals that it can come up with a high 
efficiency gain along with substantial values in other photovoltaic parameters. The pristine n-ln2S3/p-Si structure imparts 
a power conversion efficiency, PCE of 23.24%. The selection of NiO in back surface field (BSF) layer makes an improve-
ment of ~ 0.1 V in open circuit voltage, VOC and a slight improvement in short circuit current density, JSC. Under single 
sun and AM 1.5G spectrum, the optimum thickness (Window = 0.2 μm, Base = 350 μm, BSF = 0.2 μm), doping concentra-
tion (Windowdonor = 1.0 × 1018 cm−3, Baseacceptor = 1.0 × 1017 cm−3, BSFacceptor = 1.0 × 1020 cm−3) and defect density (Win-
dow = 1.0 × 1014 cm−3, Base = 1.0 × 1012 cm−3, BSF = 1.0 × 1014 cm−3) provide an enhanced PCE of 26.74% with the applica-
tion of NiO as BSF in the pristine structure. The other photovoltaic parameters results with VOC = 0.79 V, JSC = 40.37 mA/cm2 
and FF = 83.85%. Insertion of a thin and optimized NiO reduces recombination at the back surface by a potential barrier that 
enhances VOC and current in the device. Such a cost-effective solar cell exhibits enough possibility of fabricating a highly 
efficient, reliable and promising performance device.
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1  Introduction

P-type (p-Si) based solar cells have received a lot of inter-
est due to their to substantial accessibility, lower cost [1]. 
In application field they are frequent in space technologies 
and have proven to be resilient to radiation [2]. Their cell 
operation mainly involves: (i) absorption of sunlight and cor-
responding generation of electron–hole pair, (ii) separation 
of charge carriers at the terminals and (iii) external circuit 
capable of collecting the carriers [2, 3]. Such a cell consider-
ing an infinite number of connections and extremely focused 
sunlight can achieve a limiting efficiency of 86.8% [4, 5]. In 
today's marketplace, a variety of tandem, two-layer or mul-
tilayered cells are frequently offered with ~ 30% efficiency 
under one-sun illumination. For instance, a recent work with 
the application of methyl ammonium tin mixed halide based 
materials in different layers of a Si-based tandem solar cell 

displays 30.7% PCE with high VOC of 2.14 V [6]. Such per-
formance can be improved to nearly 40% under centralized 
rays, but it may rise the overall complexity and the manu-
facturing costs [7, 8].

In an effort to find a fantastic answer to the problem at 
hand, various combinations of window, base and back sur-
face materials have been sought in some recent works and 
the end result is always a lightweight and uncomplicated 
construction approach [9–11]. In the similar pattern, we pro-
pose a solar cell with three different materials namely sili-
con, indium sulphide (In2S3) and nickel oxide (NiO) which 
can form two heterojunctions and theoretically comes up 
with high standard of exemplary cell performance.

The bandgap value of Si (Eg = 1.12 eV and correspond-
ing wavelength for light absorption λcut-off = 1107 nm) are 
extremely close to the ideal values for single absorber 
solar-to-electric energy conversion. The amount of light 
that is coupled into the silicon absorber can be maximized 
by reducing losses due to parasitic absorption and surface 
reflection regardless of the stacking or deposition method 
[12].

With thin film technology, the bandgap of In2S3 has 
been found to vary between 2.0–3.7 eV providing high 
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transmittance between 380 to 700 nm. In comparison with 
popular CdS in window, In2S3 is nontoxic and comes up 
with high stability and high carrier mobility [13]. More-
over, good transparency and photoconductive ability of 
In2S3 has made it an alternative candidate to replace CdS 
window [14]. Some diverse in-line processing techniques 
for deposition of In2S3 thin films such as thermal evapo-
ration, chemical bath deposition, physical vapor deposi-
tion, atomic layer deposition, successive physical layer 
adsorption and reaction, pyrolysis etc. are commonly rec-
ognized [13, 15, 16]. Likewise, NiO thin film can also 
be deposited using varieties of methods like pulsed laser 
deposition, e-beam technique, chemical vapour deposi-
tion, sputtering or even spin coating and inkjet printing 
[17]. It is possible to tailor some properties of the NiO 
thin films with annealing or plasma treatment. Addition-
ally, a wide variety of tunings of work function from 3.7 
to 6.7 eV, can be achieved by varying the surface dipole, 
composition, or defect density [18].

Effects like surface recombination will become more 
prominent as the p-type monocrystalline wafer gets thinner. 
Hence, measures to control or lessen this effect are ought to 
be taken. One way to reduce back surface recombination in 
a p-type wafer is to apply BSF layer with the base structure 
[19, 20].

Previously, NiO has demonstrated its capacity to signif-
icantly reduce carrier recombination at the contacts when 
used as a BSF with CdTe based cells, leading to improved 
VOC [21]. By several research groups, NiO has been suc-
cessfully found to be employed as hole transport layer in 
CdTe and SnS based cells along with some perovskite 
structures [22–24]. Non-stoichiometric oxygen-rich NiO 
films develop into reasonably excellent p-semiconductors 
with wide band gap of 3.7 eV. Properties like exceptional 
chemical stability, low cost, and magnetic, electric, and 
optical properties of NiO films have made them a desir-
able p-type oxide semiconductor for use in optoelectronic 

applications [25]. The recombination at the back of solar 
cells becomes an issue and can directly lower efficiency 
when charge carriers are slightly out of the field. Studies 
reveal that the addition of NiO causes increment of poten-
tial barrier at the back contact along with reduction of 
recombination with higher VOC. Therefore, we suggest the 
formation of heavily doped p+-NiO at the back surface of 
p-Si centric bulk Si, enabling efficient separation of hole 
and electron at the back which in turn can reduce their 
recombination and can increase total quantum efficiency. 
Thick NiO can lead to a dominant potential barrier caus-
ing deteoriation in the cell performance [26]. To overcome 
such complexities, the thickness as well as other param-
eters like doping concentration and defect density have 
been optimized here as suggested by the previous studies 
[27]. To the best of our knowledge, such possibility of 
In2S3 and NiO has never been studied with silicon before.

In this work, we propose n-ln2S3/p-Si/p+-NiO-based 
double-junction structure where we perform numerical 
simulations for obtaining band diagram, J-V charachteristics, 
quantum Efficiency, optimization of associated layers and 
observing other features related to solar cell. The standard 
AM 1.5G global spectrum has been utilized throughout the 
simulations to identify overall performance parameters.

2 � Device Architecture and Calculation

Figure 1 represents the structured layout of the propounded 
Si solar cell along with its illuminated energy band diagram. 
Incident photons from sun first fall on to n-type thinner 
window and reaches to the n/p window-absorber junction 
as shown in Fig. 1(a). It is evident that p-Si makes a sat-
isfactory band alignment with n-ln2S3 window as well as 
p+-NiO BSF layer as illustrated in Fig. 1(b). The changes in 
photovoltaic characteristics i.e. VOC, JSC, FF and PCE with 
optimized values have been discussed later with this work.

Fig. 1   a Proposed p-Si centric solar cell showing layer optimized thickness and b its energy band diagram (not to scale) when lit with AM 1.5G 
solar spectrum
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The simulation software SCAPS-1D (version 3.3.07) 
has been exerted to calculate solar device outcomes 
[11, 23]. The absorption interpolation model for ln2S3 
and NiO have been chosen from traditional model of 
the simulator. The absorption profile for p-Si has been 
selected from SCAPS default files. Rest of the param-
eters required for simulation have been selected from 
previous reports and are included in Table 1 [24, 28, 29]. 
With such parameters, the bending of the energy band 
at junctions have been happened in such a way that an 
easy path has been created for electron to be collected by 
Ti metal grid above the window layer. On the contrary, 
the proper collection of holes has been ensured by the 
BSF with EV values above the Si layer. EV indicates the 
energy of valence band while Fn and Fp denote the Fermi 
energy levels for electron and hole, in turn. The energy 
level of Fp lies below the EV of NiO and goes inside 
the energy band gap of In2S3. Likewise, Fn energy level 
goes over by a small amount of conduction level energy 
EC of In2S3 and passes between NiO energy bandgap. 
Note that, the EC and EV values are at 1.37 and -0.97 eV, 
respectively at In2S3 layer that contains a bandgap of 
2.35 eV and electron affinity of 4.40 eV [30]. In the 
rear field, NiO has the electron affinity of 1.45 eV with 
a bandgap of 3.4 eV creating EC and EV values at 2.28 
and 5.37 eV, respectively [31]. Thus, they create proper 
dual heterojunctions with Si containing the bandgap of 
1.12 eV and electron affinity of 4.05 eV.

Moreover, the following values in Table 2 have been 
also considered in each layer. In all levels, Gaussian 
energetic distribution with reference for defect energy 
above EV(< 2.7), energy level with respect to reference 
0.35 eV with characteristic energy of 0.10 eV have been 
considered.

3 � Results and Discussion

3.1 � J‑V Characteristics and QE Performance 
of the Proposed Model

Figure 2(a) signifies the J-V characteristics of the proposed 
cell along with its photon absorption performance corre-
sponds to wavelength between 300–1400 nm. The pristine 
structure with single n+/p junction cell exhibits 0.72 V of 
VOC and 38.12 mA/cm2 of JSC with corresponding FF of 
84.75% and resultant PCE of 23.24%. On the contrary, the 
addition of only 0.2 μm thick NiO in optimized condition 
provides an improvement in VOC as well as a marginal rise 
in JSC. The addition of NiO (Eg = 3.4 eV) creates a proper 
heterojunction with Si (Eg = 1.12 eV) and thereby the dou-
ble heterojunction of n/p/p+ in the proposed structure pro-
vides an enhanced VOC of 0.79 V. The suppression of carrier 
recombinations at the surface owing to the diminishing of 
speed of surface recombination by the electric field of Si/
NiO interface escalates both the VOC and JSC of the silicon 
device and exalted the PCE to 26.74% [10, 11, 24].

The QE graph illustrated in Fig. 2(b) further explains 
corresponding absorption of photons due to addition of NiO 

Table 1   Properties of different 
layers in the p-Si solar cell 
structure

Parameters n-ln2S3 p-Si p+-NiO

Thickness (µm) 0.20 350.00 0.20
Bandgap, Eg (eV) 2.35 1.12 3.40
Electron affinity (eV) 4.40 4.05 1.45
Dielectric permittivity (relative) 13.50 11.90 10.07
CB effective density of states (1/cm3) 2.20 × 1017 1.05 × 1019 2.80 × 1019

VB effective density of states (1/cm3) 1.80 × 1019 3.92 × 1018 1.00 × 1019

Electron mobility (cm2/Vs) 1.0 × 102 3.9 × 103 1.2 × 101

Hole mobility (cm2/Vs) 2.5 × 101 1.9 × 103 2.8 × 100

Shallow uniform donor density, ND (1/cm3) 1.0 × 1018 0.00 0.00
Shallow uniform acceptor density, NA (1/cm3) 0.00 1.0 × 1017 1.0 × 1020

Density of defects (cm−3) (above Ev w.r.t. Eref (eV)) 1.0 × 1014 1.0 × 1012 1.0 × 1014

Type of defects Single acceptor Single donor Single donor
Energetic distribution Gaussian Gaussian Gaussian
Energy level with respect to Reference (eV) 1.91 0.35 0.65

Table 2   Constant properties considered in proposed p-Si solar cell

Parameters Value

Electron and hole thermal velocity (cm/s) 1.0 × 107

Electron capture cross section (cm2) 1.0 × 10–15

Hole capture cross section (cm2) 1.0 × 10–17

Temperature (K) 300
Incident( or bias) light power (W/m2) 1000
Transmission(%) 100
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with this regard. According to the QE, all photons with com-
parable wavelengths less than 1200 nm have been absorbed. 
It indicates that the entire wavelength has been absorbed 
by the p-Si base. Figure 2(b) makes evident how the NiO 
facilitates the extra electron–hole (e–h) separation generated 
by the photons of slightly longer wavelengths in Si absorber. 
For comparison, the QE for the pristine structure is ~ 72% 
in the wavelength of 970 nm while the proposed model 
still displays QE of ~ 96%. In 1050 nm, the QE of pristine 
structure falls to ~ 23% and the addition of BSF provides the 
advantage of having QE of ~ 46%. In light of this, it is evi-
dent that a NiO BSF even with a small thickness can prevent 
minority carriers from entering the recombination surface, 
which in turn contributes to the upsurge and persistence of 
the VOC and JSC [20]. Some previous studies with dual het-
erojunctions also come up with an intensification of this 
voltage [28, 32–35]. As the bandgap of NiO is a bit higher 
than that of p-Si, it creates well prevention to the minority 
carrier progression which in turn reduces surface recombi-
nation velocity [10, 11, 24]. As a result, JSC gets enhanced 
nearly about 2.25 mA/cm2 and displays a JSC of 40.37 mA/
cm2 in the proposed structure [36]. Thus, the amelioration 
of both VOC and JSC with the establishment of n-ln2S3/p-Si/
p+-NiO causes overall PCE to improve about 3.5% and cul-
minate in 26.74%.

3.2 � Consequences of Changes in Operating 
Temperature

Like the most of the semiconductor devices, the proposed Si 
solar cell has been modeled at an operating temperature of 
300 K. The changes in the temperature follows the conven-
tional cell output pattern as shown in Fig. 3. From previous 
reports, it is usual for Si based cell that the rise in temperature 
decreases VOC and slightly elevates JSC [37–39]. From the gen-
eral expression of VOC, we know,

(1)VOC = Vth.ln(
JSC

Jo
+ 1)

The reliance of VOC on temperature can be explained from 
the following equation for the temperature range of 273–523 K 
in p-Si [38].

Here, Jo represents reverse saturation current density, Eg(0)

=Eg indicates bandgap at T = OK with T being the absolute 

(2)
dVOC

dT
=

VOC

T
+ Vth

1

JSC

dJSC

dT
− (

Eg(0)

T
+

�T

(T + �)2
)

Fig. 2   The (a) J-V character-
istic curves and (b) Quantum 
efficiency in the proposed 
optimized Si solar cell

Fig. 3   The effect of variation in operating temperature on proposed 
cell parameters
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temperature and �, � are two empirical parameters. Vth = kT∕q 
defines the thermal voltage, where k is the Boltzmann’s con-
stant and q represents the electron charge. Thus, the variation 
of temperature ranging from 270–360 K causes a decrement 
of VOC from 0.81 V to 0.71 V in the proposed structure. In 
the same range, we also see a small enhancement of current 
from 40.22 to 40.44 mA/cm2 attributed to the fact of capturing 
more photons leading by a shrunk in bandgap [38]. Moreo-
ver, the Fermi–Dirac distribution can represent how carriers 
populate energy levels [40]. As the bandgap decreases with 
thermal energy, the JSC slightly increases the as the photon 
cut-off wavelength shifts to a longer wavelength of the spec-
trum enabling creation of more e–h pairs. However, such a 
change for JSC is very small compared to the change in VOC 
[41]. As the change in VOC dominates, FF and corresponding 
PCE follows the similar pattern [38]. Thus, FF shows a decre-
ment from 86.07 to 79% and corresponding PCE suffers a fall 
of 28.3 to 22.92% for the proposed structure.

3.3 � Series and Shunt Resistance’s Impact 
on the Proposed Model

Though the optimized structure has been experimented 
without any parasitic parameters namely series and shunt 
resistances, the effect of their addition has been delineated 
in Fig. 4. In reality, it is natural for a cell to show certain 
series resistance originating from the lump and contacts. In 
contrast, leakage current forming fabrication defects drive 
the shunt resistance [10]. In general, low values of series 
and higher values of shunt resistances of the devices must 
be achieved in order to design and construct efficient PV 

devices [42]. From Fig. 4(a), we hardly find any effect on 
VOC and JSC due to change in series resistance from 0 to 5 
Ω.cm2. However, like previous findings, FF drastically falls 
from 83.35 to 60.8% due to change in 5 Ω.cm2 which in turn 
takes the value of PCE down to 19.4% [10, 42].

Shunt resistance also has a considerable effect on the 
observed output as depicted in Fig. 4(b). With shunt resist-
ance starting from the lower order of ten, VOC advances until it 
touches its maximum value at 0.79 V. Considering zero shunt 
the device results the JSC of 40.37 mA/cm2. JSC remains on the 
same value as expected from the general theoretical expres-
sions of Si solar cell. Consequently, FF follows the changes 
of VOC. At the order of 102 Ω.cm2, VOC gets raised at 0.78 V 
with FF of 70.02%. In the higher order of shunts, we find 
gradual rise of FF to 83.84% as VOC reaches at 0.79 V and the 
corresponding PCE displays the optimized value of 26.74%.

3.4 � Optimization of Window, Absorber and BSF 
Layer in the Proposed Model

The simulation has been run with variation of three param-
eters namely thickness, carrier and defect density in each 
part to find the highest PCE with considerable amount of 
VOC, JSC and FF. The simulations result three figures in each 
layer while keeping the values of corresponding layers in 
optimum condition. The outputs give an indication on how 
the device performance may vary during fabrication of real 
time cells. However, the ultimate target is to find the theo-
retical optimized condition that gives the highest PCE.

Figure 5(a), (b) and (c) display the consequences of 
changes in the parameters of In2S3 window layer. The 

Fig. 4   a The remifications of 
changing series and (b) shunt 
resistance to the proposed 
structure
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disparity in thickness, doping concentration or defect density 
in the window does not seem to make a significant effect in 
the operation of the propound structure. Here, the breadth 
of window layer has been deviated between 0.1 and 0.4 μm 
while the doping concertation and defect densities have been 
varied between the ranges from 1015 to 1019 cm−3 and 1011 
to 1015 cm−3, respectively. As In2S3 possess wide bandgap of 
2.35 eV, a trivial fluctuation occurs in the investigated range 
of thickness. Even the alteration in other parameters does 

not seem to affect the cell performance at all [34, 43]. Thus, 
the optimum width and carrier concentration have been cho-
sen at 0.2 μm and 1018 cm−3, respectively with considerable 
defect density of 1014 cm−3.

In Fig. 6, we observe the cell performance due to the 
similar variation of parameters in p-Si layer. The addition 
of 300 μm absorber width does not create a notable change 
in output as illustrated in Fig. 6(a). However, the addendum 
of thickness provides the opportunity of greater absorption 

Fig. 5   a Thickness, b carrier and c defect density variation in In2S3 window layer of proposed Si solar cell

Fig. 6   a Thickness, b doping and c defects variation in p-Si absorber of proposed solar cell
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of photons than before [34, 44]. As a consequence, we see 
a gradual increment in the values of JSC. At 350 μm of 
thickness the VOC results with 0.79 V and JSC comes with 
43.43 mA/cm2. These values provide an acceptable FF of 
83.76% and PCE with 28.86% which tend to rise with further 
addition.

There are no significant variations in VOC and JSC with 
addendum of higher order of carriers from 1014 cm−3 to 
1017  cm−3 as delimitates in Fig. 6(b). FF drops down to 

76.06% at 1016 cm−3 which is 82.59% at 1014 cm−3. This 
reduction can be explained by a declining ratio between the 
rates of charge carrier production and recombination in the 
p-Si layer [45]. At higher acceptor densities, in the order of 
1018 cm−3, the FF again rises to 83.85%. This is attributed to 
a rise in the electric field (Schottky barrier) close to NiO, as 
well as an increase in the creation and recombination rates of 
free charges [45]. Furthermore, FF also gets improved with 
the small value of series resistance and a drop of diode ideal-
ity factor at higher acceptor densities [11, 46]. The efficiency 
seems to follow the FF pattern and at 1017 cm−3 the optimum 
efficiency is found to be 26.74% with FF of 83.85%.

It seems obvious that, the cell performance gets 
degraded with the addition of defect density in the absorber 
layer. It is seen from the Fig. 6(c) that VOC faces a detri-
mental performance with the incremental order of defect 
densities. At the order of 1010 cm−3, the PCE comes with 
28.72% with voltage of 0.82 V and current of 40.61 mA/
cm2. These values get lowered as the order is changed to 
1014 cm−3 and result the voltage of 0.68 V with photocur-
rent of 35.51 mA/cm2 and PCE of 20.52%. The SRH car-
rier recombination mechanism plays the principal role at 
higher order of defect densities. It causes recombination of 
carriers which in turn stimulates the dark current and low-
ers corresponding VOC as well as the JSC [34, 43, 47]. With 
the above findings we choose 350 μm thick p-Si absorber 
to be doped in the concentration order of 1017 cm−3 while 
maintaining the defect in the order of 1012 cm−3 to achieve 
the highest PCE.

Fig. 7   Variation of QE for different p-Si thickness in the proposed 
structure

Fig. 8   a Thickness, b doping and c defect density variation in NiO BSF layer of proposed solar cell
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Figure 7 illustrates the QE variation over the p-Si thick-
ness ranging from 10 to 450 μm. It is inferred that, with 
the addition of absorber thickness, the longer wavelength 
photons take part in generation of additional e–h pairs [6, 
45]. For instance, the QE related to 10 μm of Si thickness 
drops to 60% correspond to incident photon wavelength 
of 790 nm. Increasing the thickness to 50 μm achieves QE 
of 99% for same wavelength of photons and similar drop 
occurs at wavelength of around 940 nm. This is happened 
as at least a width of 30 μm for silicon is needed to absorb 
photons of wavelength upto 900 nm [48]. When the layer 
is too thick, photo generated carriers must travel a larger 
distance to window and BSF for collection of carriers and 
a significant loss can occur [45]. QE does not show any 
major enhancement after the increment of absorber thick-
ness over 400 μm.

The width of NiO BSF layer, doping concentration and 
defect densities have been varied and the corresponding 
outcomes are delineated in Fig. 8. All the figures show that 
the alteration in thickness, doping and defects of NiO has 
negligible effect on the operation of the Si solar cell. The 
results are similar to the results of some previous works [10, 
29]. The VOC is almost constant at 0.79 V with thickness but 
has got a slight increment along with doping. The JSC also 
remains constant at 40.37 mA/cm2 which might have faced 
a slight improvement with increment in doping orders. Such 
increment may come with the possible enhancement in the 
carrier dependent lifetime along with the surface recombi-
nation speed and the reduction in excess minority carriers 
with relative high potential in n+/p/p+ interface [49]. The 
defects in the studied range do not tend to cause any decli-
nation in cell performance as the carrier diffusion length is 
high enough compared to the width of the BSF that can rise 
recombination current in the device [9, 10]. Therefore, we 
have chosen an optimum thickness of NiO of 0.2 μm with a 
doping of 1020 cm−3 with defects of 1014 cm−3.

4 � Conclusions

In this work, the performance of a p-Si based cell with 
n-ln2S3 window has been analyzed with and without the 
addition of NiO BSF layer. The band diagram of n-ln2S3/p-
Si/p+-NiO solar cell reveals the perfect alignment of each 
layer. The proposed design comes with a PCE of 26.74% 
with VOC = 0.79 V, JSC = 40.370 mA/cm2 and FF = 83.85%. 
The optimized thickness and doping density of Si are 
350 μm and 1.0 × 1017 cm−3, in turn. The addition of 0.2 μm 
of NiO BSF can effectively enhance VOC to ~ 0.1 V. The 
optimization of p-Si base thickness results a QE ~ 86.83% for 
the photons wavelength of 1000 nm. The changes in other 
parameters like working temperature, series and shunt resist-
ances have notable impact on the operations of the device. 

Therefore, a p-Si wafer based heterojunction arrangement 
like this could lead to an enhanced efficiency in future solar 
market.
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