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Abstract
Silicate and oxide frameworks are pervasive materials with remarkable structural complexity and tunability, offering a wide
range of applications in catalysis, gas storage, drug delivery, electronics, and environmental remediation. Topological indices,
which are mathematical representations of molecular structure, and Shannon entropy, a measure of information content,
have emerged as powerful tools for studying the structural characteristics of these frameworks. In this study, we investigate
the effectiveness of topological indices and entropy levels in revealing the structural characteristics of silicate and oxide
frameworks. We formulate topological expressions for newly developed hybrid indices derived from geometric, harmonic,
and Zagreb indices and conduct a scaled bond-wise comparative analysis between the two frameworks.

Keywords Silicate and oxide frameworks · Degree and degree-sum indices · Information function · Entropies

1 Introduction

Silica minerals, the most prevalent minerals in Earth’s crust,
hold immense geological significance, exhibiting unique ver-
satility as they emerge from diverse environments, ranging
from high-temperature igneous settings to low aquatic con-
ditions [1]. Among these minerals, quartz stands out as one
of the most widely utilized and recognized [2]. Silica miner-
als, primarily composed of silicon dioxide (SiO2), serve as
a subset of the larger class of silicate minerals. They form a
broader andmorewidespread category, incorporating silicon,
oxygen, and additional metallic elements such as aluminum,
iron, magnesium, potassium, sodium, and calcium [3, 4].
Their prevalence and complexity are essential for under-
standing plate tectonics, mineral formation, and the earth’s
geological history. The basic structural unit of silicate miner-
als is the silicon-oxygen tetrahedron (SiO4), which provides
the basis for the vast diversity of silicate structures, rang-
ing from isolated tetrahedra to intricate three-dimensional
frameworks [5–7]. Silicate materials, especially zeolites, are
used in environmental applications such as water purification
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and air pollution control. They contribute to reducing envi-
ronmental pollutants and enhancing water quality [8]. Oxide
frameworks constitute a diverse class of materials primar-
ily composed of oxygen (O). Metal oxides like titanium
dioxide and cerium oxide exhibit heterogeneous catalysis,
influencing reactions in environmental cleanup and indus-
trial processes [9–13].

In recent years, researchers have been exploring 2-
dimensional, silicate, and oxide frameworks in various areas
to broaden the scope of their applications [14–33] where
Fig. 1 shows the2-Dviewof theSiO4 tetrahedron.Depending
on the arrangement of tetrahedra, various silicate structures
can be identified, including chain silicates, sheet silicates,
framework silicates, and cyclic silicates [5]. The unit block
of silicates is formed by placing six units of SiO4 in a cyclic
order as shown in Fig. 2a, and the removal of oxygen atoms
in silicates gives the oxide unit as shown in Fig. 2b.

Topological indices serve as essential tools in mathemati-
cal chemistry, providing quantitative measures of molecular
structure and offering a graph-theoretical approach to char-
acterize the structural complexities of molecules. They
represent a mathematical concept derived from molecular
graphs, gaining prominence in QSAR/QSPR studies. These
indices encode structural information and connectivity pat-
terns within molecules, facilitating predictions of biological
activities and physicochemical properties [34–40]. In QSAR
andQSPR studies, topological indices serve as valuable tools
for assimilating andpredicting complexmolecular behaviors,
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Fig. 1 2-dimensional view of SiO4 tetrahedron

with applications in drug design, environmental chemistry,
and materials engineering [40–45]. Topological indices are
classified into three main types, including degree, distance,
and eigenvalues of graphs. Exploring topological indices for
silicate and oxide frameworks is essential for interpreting the
structural features of these materials and their wide-ranging
properties. Numerous research articles have already exam-
ined both distance-based [16, 17] and degree-based indices
[18–31]. However, to our knowledge, no work has been
reported on entropy indices.

Shannon entropy is a promising tool for describing the
information content of molecules in the field of molecular
analysis [46–48]. This approach offers the advantages of
deriving a numerical value, facilitating easier comparisons

among different molecules, and obviating the need for cum-
bersome, high-dimensional, and computationally intensive
matrix processing. Their ability to quantify information con-
tent has drawn significant interest across various fields in
recent years [49–54]. This paper explores the formulation of
topological expressions for recently proposed hybrid indices
based on geometric, harmonic, and Zagreb degree-based
indices, emphasizing their efficacy in determining bond-wise
entropy measures along with comparison between silicate
and oxide frameworks.

2 Computational Techniques

We provide the graph theoretical parameters to describe
the topological indices and entropies. Our study primarily
focuses on topological indices, including geometric, har-
monic, and Zagreb, along with their hybrid counterparts.
These indices serve to quantify the entropies of silicate and
oxide frameworks. We represent these chemical frameworks
as connected graphs, where vertices symbolize atoms and
edges represent chemical bonds between two atoms. The
atoms and bonds of frameworks are generally grouped into
sets V (G) and E(G), respectively, for a chemical graph G.

The vertex degree of a ∈ V (G), denoted as dG(a),
represents the count of neighboring vertex members asso-
ciated with vertex a. Additionally, we define the degree-sum
of the vertex a as sG(a), which is determined by adding
the degrees of vertex members within the neighborhood
of a. That is, sG(a) = ∑

p∈NG (a)

dG(p) in which we used

NG(a) = {p ∈ V (G) | pa ∈ E(G)}. Let d(p,a)(G) =
|{i j ∈ E(G) : dG(i) = p and dG( j) = a}| and
s(p,a)(G) = |{i j ∈ E(G) : sG(i) = p and sG( j) = a}|.

Fig. 2 Unit blocks (a) silicate
(b) oxide
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Consequently, the total number of edges in G would be
structured into distinct partition classes in accordance with
symmetrical criteria of d(p,a)(G) and s(p,a)(G), with these
partition classes referred to as D(G) and S(G), respectively.

The degree and degree-sum metrics of G can be readily
converted into numerical indices through the utilization of a
designated index function denoted as χ . This function is for-
mulated by employing two distinct mathematical operations,
as outlined below [30, 31, 35, 55–58].

χd(G) =
∑

d(p,a)(G)∈D(G)

d(p,a)(G)χ(p, a)

χd∗(G) =
∏

d(p,a)(G)∈D(G)

d(p,a)(G)χ(p, a)

χ s(G) =
∑

s(p,a)(G)∈S(G)

s(p,a)(G)χ(p, a)

χ s∗(G) =
∏

s(p,a)(G)∈S(G)

s(p,a)(G)χ(p, a)

Thebondadditive and scalarmultiplicative indices defined
above,which correspond to self-powered index functions, are
presented as follows.

χdp(G) =
∑

d(p,a)(G)∈D(G)

d(p,a)(G)χ(p, a)χ(p,a)

χdp∗(G) =
∏

d(p,a)(G)∈D(G)

d(p,a)(G)χ(p, a)χ(p,a)

χ sp(G) =
∑

s(p,a)(G)∈S(G)

s(p,a)(G)χ(p, a)χ(p,a)

χ sp∗(G) =
∏

s(p,a)(G)∈S(G)

s(p,a)(G)χ(p, a)χ(p,a)

The index function χ(p, a) for geometric, harmonic, and
Zagreb, along with their respective hybrid indices is given
below [38].

• Geometric G(p, a) = √
pa

• Harmonic H(p, a) = 2

p + a
• Bi-Zagreb BM(p, a) = p + a + pa
• Tri-Zagreb T M(p, a) = p2 + a2 + pa

• Geometric − Harmonic GH(p, a) =
√
pa(p+a)

2

• Geometric − Bi-Zagreb GBM(p, a) =
√
pa

p+a+pa

• Harmonic − Bi-Zagreb HBM(p, a) = 2
(p+a+pa)(p+a)

• Harmonic−Tri-Zagreb HTM(p, a) = 2
(p2+a2+pa)(p+a)

• Bi-Zagreb − Geometric BMG(p, a) = (p+a+pa)√
pa

• Bi-Zagreb − Harmonic BMH(p, a) = (p+a+pa)(p+a)
2

• Tri-Zagreb − Geometric T MG(p, a) = p2+a2+pa√
pa

• Tri-Zagreb−HarmonicT MH(p, a) = (p2+a2+pa)(p+a)
2

The above described index functions could be consid-
ered as the non-negative real valued structural information
function χ on E(G) in order to calculate the entropies of a
graph G with degree and degree-sum metrics. Let E(G) =
{c1, c2, ..., cr }. The graph entropy of G is determined as fol-
lows:

Iχ (G) = −
r∑

i=1

χ(ci )
∑r

j=1 χ(c j )
log(

χ(ci )
∑r

j=1 χ(c j )
)

= log(
r∑

i=1

χ(ci )) − 1
∑r

i=1 χ(ci )
log(

r∏

i=1

χ(ci )
χ(ci ))

As discussed in series of papers in recent years [51–53, 59–
61], the substitution of the multiplicative component with a
scalar multiplicative index has been considered. Therefore,

Iχ (G) = log(χ(G)) − 1

χ(G)
log(χ p∗(G))

The significance of entropy generally depends on the spe-
cific system being considered. In a thermodynamic context,
smaller entropy suggests a more ordered and structured state,
while in information theory, it implies that information is
more predictable or less uncertain.

3 Results and Discussion

The foundation of silicate frameworks comprises (SiO4)
tetrahedra, which combine in diverse ways to create various
peripheral configurations, including chain, cyclic, hexago-
nal, rhombic, and trapezium shaped networks of silicates. In
our study, we analyze the prevalent hexagonal framework,
resembling honeycomb benzene systems where each bond
in this system is replaced by a tetrahedron.

We use the notation SLn to represent silicate frameworks
of dimension n. As mentioned earlier, the oxide frame-
works (OXn) are obtained as a byproduct of silicates, where
each silicon and its associated bond are deleted. The three
dimensional silicate and oxide frameworks are shown in
Figs. 3 and 4.

The number of vertices and edges for silicate and oxide
frameworks are ordered in the sets as {3(5n2 + n), 36n2}
and {3(3n2 + n), 18n2}, respectively. Silicate and oxide
frameworks have been extensively covered in several papers
[18–31] for computing various degree-based indices through
bond partitions. We will utilize these partitions to derive the
entropies for the first time and conduct a comparative analy-
sis between them.
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Fig. 3 Silicate framework SL3

The bond partitions of silicate and oxide frameworks
induced from degree parameters are given as d(3,3)(SLn) =
6n, d(3,6)(SLn) = 18n2+6n, d(6,6)(SLn) = 18n2−12n, and
d(2,4)(OXn) = 12n, d(4,4)(OXn) = 18n2−12n, respectively.
Similarly, we tabulated the degree-sumbond distributions for
silicate and oxide frameworks in Tables 1 and 2.

The degree and degree-sum index expressions for silicate
and oxide frameworks can be represented by

χ {d,s}(G) =
{

χd(G),

χ s(G)

Fig. 4 Oxide framework OX3

Table 1 Degree-sum partition of silicate frameworks

Bond Degree-sum Number of Bonds in SLn
X−Y sSLn (X) − sSLn (Y)

Si−O 15 − 15 6n

15 − 24 24

15 − 27 24(n − 1)

18 − 27 12(n − 1)

18 − 30 18n2 − 30n + 12

O−O 24 − 27 12

27 − 27 3(4n − 6)

27 − 30 12(n − 1)

30 − 30 18n2 − 36n + 18

whereG ∈ {SLn,OXn}.Wenow ready to compute the degree
and degree-sum indices for the topological function χ , in
which χ ∈ {G, H , BM, T M,GH ,GBM, HBM, HTM,

BMG, BMH , T MG, T MH}. The indices are calculated
using the following equations:

For degree type,

χd(SLn) = d(3,3)(SLn) χ(3, 3) + d(3,6)(SLn) χ(3, 6)

+ d(6,6)(SLn) χ(6, 6)

= 6nχ(3, 3) + (18n2 + 6n)χ(3, 6)

+ (18n2 − 12n)χ(6, 6),

and for degree-sum type,

χ s(SLn) = s(15,15)(SLn) χ(15, 15) + s(15,24)(SLn) χ(15, 24)

+s(15,27)(SLn) χ(15, 27) + s(18,27)(SLn) χ(18, 27)

+s(18,30)(SLn) χ(18, 30) + s(24,27)(SLn) χ(24, 27)

+s(27,27)(SLn) χ(27, 27) + s(27,30)(SLn) χ(27, 30)

+s(30,30)(SLn) χ(30, 30)

= 6nχ(15, 15) + 24χ(15, 24) + 24(n − 1)χ(15, 27)

+12(n − 1)χ(18, 27) + (18n2 − 30n + 12)χ(18, 30)

+12χ(24, 27)+3(4n−6)χ(27, 27)+12(n−1)χ(27, 30)

+(18n2 − 36n + 18)χ(30, 30).

Table 2 Degree-sum partition of oxide frameworks

Bond Degree-sum Number of Bonds in OXn
X−Y sOXn (X) − sOXn (Y)

O−O 8 − 12 12

8 − 14 12(n − 1)

12 − 14 12

14 − 14 3(4n − 6)

14 − 16 12(n − 1)

16 − 16 18n2 − 36n + 18
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Result 1 Let SLn be the silicate frameworks of dimension n
where n > 1.

1. G{d,s}(SLn)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(108+54
√
2)n2+(18

√
2−54)n,

(3(633318697598976(5+√
15)n2

+105553116266496(12
√
5

+6
√
6 + 6

√
10 − 10

√
15 − 37)n

+422212465065984
√
15

−633318697598976
√
10

−633318697598976
√
6

−1266637395197952
√
5

+1266637395197952
√
2

+2986965441045055))

/17592186044416

2. H {d,s}(SLn) =

⎧
⎪⎨

⎪⎩

(21n2 + 4n)/3,

(7142499n2 + 2601391n

+198126)/5290740

3. BM {d,s}(SLn) =
{
1350n2 − 324n,

27864n2 − 13770n + 702

4. T M {d,s}(SLn) =
{
3078n2 − 756n,

80352n2 − 39474n + 1350

5. GH {d,s}(SLn)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(243
√
2 + 648)n2 + (81

√
2 − 378)n,

(57699671657725845n2

−29037514943132454n

+1343876184123989)/

2199023255552

6. GBM {d,s}(SLn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((120
√
2 + 135)n2 + (40

√
2 − 18)n)/60,

3((15656146628016√
15 + 47946949048299)n2

+(10618009477824
√
10

−26093577713360
√
15

+17336749938368
√
6

+41189325356928
√
5

−30538219069302)n

+10437431085344
√
15

+20144945300032
√
10

−17336749938368
√
6

−41189325356928
√
5

+26339954841984
√
2

−4960029211893)/

255717061590928

7. H BM {d,s}(SLn) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

7(15n2 + 2n)/5,

9(36857178520121n2

+12720489145262n

+336745608377)/

63929265397732

8. HT M {d,s}(SLn) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4(16n2 + 3n)/7,

(4(3050143349481n2

+1095829472792n

+98072334141))/

6855826794705

9. BMG{d,s}(SLn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(81
√
2 + 144)n2 + (27

√
2 − 66)n,

(6333186975989760√
3(49 + 16

√
15)n2

−35184372088832(
√
5(

√
6

(3
√
10(490 + 117

√
15)

−578
√
15) − 1770

√
6)

−17880)n + √
5(

√
6

(
√
10(20688410788233216

+15625577989437259
√
15)

−20336567067344896
√
15)

−62276338597232640√
6) − 629096572948316160)/

527765581332480
√
5

10. BMH {d,s}(SLn) =
{
7371n2 − 2457n,

772416n2 − 518346n + 42660

11. T MG{d,s}(SLn)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(189
√
2 + 324)n2+(63

√
2 − 162)n,

(395824185999360√
2(45 + 49

√
3/5)n2

−13194139533312(−570
√
3

−604
√
10 + 490

√
30

+√
5(345

√
10 − 542))n

+2586051348529152
√
30 + √

5

(5610180619004941
√
10

−7151223627055104)

−7969260278120448√
10 − 7520659533987840

√
3)/

(10995116277760
√
2)

12. T MH {d,s}(SLn) =

⎧
⎪⎨

⎪⎩

16767n2 − 5589n,

2220048n2 − 1482138n

+109512
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We apply the bond partitions of oxide frameworks to
derive the topological indices using the equations provided
below. For degree type,

χd(OXn) = d(2,4)(OXn) χ(2, 4) + d(4,4)(OXn) χ(4, 4)

= 12nχ(2, 4) + (18n2 − 12n)χ(4, 4),

and for degree-sum type,

χ s(OXn) = s(8,12)(OXn) χ(8, 12) + s(8,14)(OXn) χ(8, 14)

+s(12,14)(OXn) χ(12, 14) + s(14,14)(OXn) χ(14, 14)

+s(14,16)(OXn) χ(14, 16) + s(16,16)(OXn) χ(16, 16)

= 12χ(8, 12) + 12(n − 1)χ(8, 14) + 12χ(12, 14)

+3(4n − 6)χ(14, 14) + 12(n − 1)χ(14, 16)

+(18n2 − 36n + 18)χ(16, 16).

Result 2 Let OXn be the oxide frameworks of dimension n
where n > 1.

1. G{d,s}(OXn)=

⎧
⎪⎨

⎪⎩

72n2 + (24
√
2 − 48)n,

288n2 + (48
√
7 +48

√
14− 408)n+48

√
6

−48
√
7 − 48

√
14 + 24

√
42 + 36

2. H {d,s}(OXn) =
{

(9n2 + 2n)/2,

(45045n2+19942n+2861)/40040

3. BM {d,s}(OXn) =
{
432n2 − 120n,

5184n2 − 3024n + 216

4. T M {d,s}(OXn) =
{
864n2 − 240n,

13824n2 − 8016n + 408

5. GH {d,s}(OXn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

288n2 + (72
√
2 − 192)n,

(10133099161583616n2

+(1161084278931456
√
7

−9169941668475777)n

−1161084278931456
√
7

+3482709361307204)/

2199023255552

6. GBM {d,s}(OXn)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21n2 + (12
√
2 − 14)n)/7,

(191486536n2 + 5626(12192√
7 + 6432

√
14 − 42545)n

+23689056
√
42 − 36186432√

14−68592192
√
7+79235808√

6 − 23935817)/191486536

7. H BM {d,s}(OXn) =

⎧
⎪⎨

⎪⎩

(84n2 + 16n)/7,

(191486536n2 + 84969478n+
3804919)/47871634

8. HT M {d,s}(OXn) =

⎧
⎪⎨

⎪⎩

(42n2 + 8n)/7,

(265475847n2 + 111022130n+
19214171)/176983898

9. BMG{d,s}(OXn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

108n2 + (42
√
2 − 72)n,

(79798155897470976n2

+13405245765844992
√
14n

+14144117579710464
√
7n

−112308515707551744n−
13405245765844992

√
14

−14144117579710464
√
7

+14284855068065792
√
6

+53102495442325371)/

246290604621824

10. BMH {d,s}(OXn) =
{
1728n2 − 648n,

82944n2 − 64848n + 7272

11. T MG{d,s}(OXn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

216n2 + (84
√
2 − 144)n,

3(17732923532771328n2

+2973079441506304
√
14n

+3272146604261376
√
7n

−25121641671426048n

−2973079441506304
√
14

−3272146604261376
√
7

+19511122232716877)/

61572651155456

12. T MH {d,s}(OXn) =
{
3456n2 − 1296n,

221184n2 − 172800n + 17952

We now provide the multiplicative self-powered degree as
well as degree-sum indices of silicate frameworks for deter-
mining the numerical values of entropies. We denote SD =
{(3, 3), (3, 6), (6, 6)} and SS={(15, 15), (15, 24), (15, 27),
(18, 27), (18, 30),(24, 27), (27, 27), (27, 30),(30, 30)}. Let
α(SLn)=∏

(p,a)∈SD χ(p, a)χ(p,a) and β(SLn)=∏
(p,a)∈SS

χ(p, a)χ(p,a). Therefore, the mathematical expressions for
silicate frameworks are given by

• χdp∗(SLn) = α(SLn)(1944n5 − 648n4 − 432n3)
• χ sp∗(SLn) = β(SLn)(23219011584n9 − 1896219279

36n8+673351335936n7−1358312177664n6+1702727
516160n5 − 1358312177664n4 + 673351335936n3 −
189621927936n2 + 23219011584n)
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Similary, for oxide frameworks, we denote OD =
{(2, 4), (4, 4)}, OS = {(8, 12), (8, 14), (12, 14), (14, 14),
(14, 16), (16, 16)}, α(OXn) = ∏

(p,a)∈OD χ(p, a)χ(p,a)

and β(OXn) = ∏
(p,a)∈OS χ(p, a)χ(p,a). Therefore, the

mathematical expressions for oxide frameworks are given
by

• χdp∗(OXn) = α(OXn)(216n3 − 144n2)
• χ sp∗(OXn) = β(OXn)(4478976n5 − 24634368n4 +

53747712n3 − 58226688n2 + 31352832n − 6718464)

As we can observe, the entropy formula involves incor-
porating mathematical expressions of topological indices
and self-powered topological indices. The resulting math-
ematical expressions are longer in terms of dimension n.
Therefore, we calculate the numerical entropy values for

degree and degree-sum index expressions for silicate and
oxide frameworks at some fixed dimensions n, which are
provided in Tables 3 and 4.

Data scaling is an essential preprocessing step in vari-
ous machine learning and statistical algorithms. Its primary
objective is to transform the features of a dataset into a com-
parable scale, thereby preventing any single feature from
unduly influencing the learning process of the models. The
necessity for data scaling emerges from the distinct units,
magnitudes, and ranges characterizing features within a
dataset, potentially impeding the performance of models. As
seen from our entropy calculations, the entropies of silicate
and oxide frameworks have been computed based on the total
number of bonds within those frameworks, which are not of
equal quantity. Hence, we calculate the bond-wise entropy
by scaling the total entropy through division by the number

Table 3 Entropies based on
χd (SLn) and χ s(SLn) of
silicate frameworks

χ d n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
s

G 7.938 8.396 8.769 9.082 9.353 9.591 9.804 9.997 10.172

9.515 9.994 10.379 10.700 10.976 11.218 11.434 11.628 11.806

H 4.651 5.122 5.501 5.819 6.091 6.331 6.545 6.737 6.913

1.775 2.617 3.221 3.685 4.058 4.370 4.638 4.871 5.079

BM 9.902 10.367 10.743 11.060 11.332 11.572 11.786 11.980 12.156

12.786 13.294 13.695 14.026 14.309 14.557 14.776 14.974 15.154

T M 10.722 11.189 11.566 11.882 12.155 12.395 12.609 12.803 12.979

13.832 14.345 14.748 15.081 15.365 15.613 15.834 16.032 16.212

GH 9.588 10.054 10.431 10.748 11.021 11.261 11.475 11.669 11.845

12.725 13.233 13.633 13.993 14.269 14.496 14.715 14.913 15.093

GBM 4.267 4.756 5.146 5.470 5.748 5.991 6.207 6.402 6.580

1.614 2.488 3.110 3.586 3.968 4.286 4.557 4.794 5.005

HBM 5.811 6.262 6.630 6.940 7.207 7.443 7.654 7.845 8.019

4.155 4.688 5.105 5.446 5.736 5.987 6.209 6.408 6.589

HTM 4.944 5.408 5.782 6.096 6.367 6.605 6.817 7.009 7.184

2.392 3.132 3.674 4.097 4.444 4.736 4.988 5.210 5.409

BMG 8.288 8.744 9.115 9.427 9.697 9.935 10.147 10.339 10.514

9.593 10.071 10.455 10.776 11.052 11.294 11.509 11.704 11.880

BMH 11.569 12.041 12.422 12.741 13.016 13.258 13.473 13.668 13.845

16.018 16.553 16.969 17.310 17.599 17.851 18.075 18.275 18.457

T MG 9.111 9.567 9.939 10.252 10.522 10.760 10.973 11.165 11.340

10.635 11.121 11.508 11.831 12.108 12.351 12.568 12.763 12.940

T MH 12.388 12.861 13.243 13.562 13.837 14.079 14.295 14.489 14.666

17.062 17.602 18.02 18.362 18.653 18.905 19.129 19.330 19.512
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Table 4 Entropies based on
χd (OXn) and χ s(OXn) of oxide
frameworks

χ d n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
s

G 6.983 7.445 7.820 8.135 8.406 8.646 8.859 9.052 9.228

8.291 8.776 9.163 9.487 9.764 10.007 10.224 10.420 10.597

H 4.217 4.687 5.065 5.381 5.654 5.893 6.106 6.299 6.474

2.030 2.742 3.268 3.680 4.019 4.305 4.554 4.773 4.969

BM 8.750 9.218 9.596 9.914 10.187 10.428 10.642 10.836 11.013

11.080 11.593 11.997 12.331 12.616 12.865 13.086 13.284 13.464

T M 9.440 9.909 10.288 10.606 10.880 11.120 11.335 11.529 11.706

12.045 12.564 12.972 13.307 13.593 13.843 14.064 14.263 14.444

GH 8.337 8.806 9.185 9.504 9.778 10.019 10.234 10.428 10.605

11.048 11.473 11.877 12.211 12.497 12.745 12.966 13.165 13.345

GBM 3.730 4.223 4.615 4.941 5.219 5.463 5.680 5.875 6.052

1.765 2.521 3.074 3.504 3.854 4.149 4.404 4.628 4.828

HBM 5.260 5.710 6.077 6.386 6.653 6.889 7.099 7.290 7.463

4.005 4.507 4.905 5.234 5.515 5.759 5.977 6.173 6.351

HTM 4.525 4.988 5.362 5.676 5.947 6.185 6.397 6.589 6.764

2.559 3.199 3.681 4.065 4.383 4.656 4.893 5.105 5.294

BMG 7.408 7.867 8.238 8.551 8.822 9.060 9.273 9.465 9.640

8.417 8.901 9.287 9.610 9.887 10.130 10.346 10.541 10.718

BMH 10.105 10.581 10.963 11.284 11.560 11.802 12.018 12.213 12.390

13.763 14.302 14.721 15.064 15.355 15.609 15.833 16.034 16.217

T MG 8.010 8.559 8.931 9.244 9.515 9.753 9.966 10.158 10.333

9.384 9.873 10.262 10.587 10.865 11.108 11.325 11.520 11.698

T MH 10.794 11.271 11.655 11.976 12.252 12.495 12.711 12.906 13.083

14.729 15.274 15.696 16.041 16.333 16.587 16.812 17.014 17.196

Table 5 Scaled entropy values
of silicate and oxide frameworks
based on degree indices

χd SL4 OX4 SL5 OX5 SL6 OX6 SL7 OX7

G 0.01378 0.02425 0.00933 0.01654 0.00677 0.01207 0.00515 0.00922

H 0.00807 0.01464 0.00569 0.01042 0.00425 0.00782 0.00330 0.00610

BM 0.01719 0.03038 0.01152 0.02049 0.00829 0.01481 0.00627 0.01124

T M 0.01862 0.03278 0.01243 0.02202 0.00892 0.01588 0.00674 0.01203

GH 0.01665 0.02895 0.01117 0.01957 0.00805 0.01418 0.00609 0.01078

GBM 0.00741 0.01295 0.00529 0.00938 0.00397 0.00712 0.00310 0.00560

HBM 0.01009 0.01826 0.00696 0.01269 0.00512 0.00938 0.00393 0.00724

HTM 0.00858 0.01571 0.00601 0.01109 0.00446 0.00828 0.00346 0.00644

BMG 0.01439 0.02572 0.00972 0.01748 0.00703 0.01271 0.00534 0.00970

BMH 0.02009 0.03509 0.01338 0.02351 0.00959 0.01692 0.00722 0.01279

T MG 0.01582 0.02812 0.01063 0.01902 0.00767 0.01378 0.00581 0.01048

T MH 0.02151 0.03748 0.01429 0.02505 0.01022 0.01799 0.00769 0.01358
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Fig. 5 Comparative graphs of
scaled degree entropies between
SLn and OXn

Table 6 Scaled entropy values
of silicate and oxide frameworks
based on degree-sum indices

χ s SL4 OX4 SL5 OX5 SL65 OX6 SL7 OX7

G 0.01652 0.02879 0.01111 0.01950 0.00801 0.01414 0.00607 0.01076

H 0.00308 0.00705 0.00291 0.00609 0.00249 0.00504 0.00209 0.00417

BM 0.02220 0.03847 0.01477 0.02576 0.01057 0.01851 0.00795 0.01398

T M 0.02401 0.04182 0.01594 0.02792 0.01138 0.02002 0.00855 0.01509

GH 0.02209 0.03836 0.01470 0.02550 0.01052 0.01833 0.00793 0.01385

GBM 0.00280 0.00613 0.00276 0.00560 0.00240 0.00474 0.00203 0.00397

HBM 0.00721 0.01391 0.00521 0.01002 0.00394 0.00757 0.00309 0.00593

HTM 0.00415 0.00889 0.00348 0.00711 0.00284 0.00568 0.00232 0.00461

BMG 0.01665 0.02923 0.01119 0.01978 0.00807 0.01433 0.00611 0.01090

BMH 0.02781 0.04779 0.01839 0.03178 0.01309 0.02272 0.00981 0.01708

T MG 0.01846 0.03258 0.01236 0.02194 0.00888 0.01584 0.00671 0.01200

T MH 0.02962 0.05114 0.01956 0.03394 0.01390 0.02422 0.01041 0.01819
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Fig. 6 Comparative graphs of
scaled degree-sum entropies
between SLn and OXn

of bonds in both silicate and oxide frameworks. That is, for
the index function χ and G ∈ {SLn,OXn},

Scaled Entropy of G = Iχ (G)

|E(G)|

Table 5 provides a detailed comparison between silicate
and oxide frameworks, highlighting their bond-wise degree
entropies values and emphasizing the consistent higher val-
ues of bond-wise entropies in OXn compared to SLn as
shown in Fig. 5. The trend persists for bond-wise degree-
sum entropies, where the scaled entropies are provided in
Table 6 and illustrated in Fig. 6.

This comparative analysis serves as a crucial tool in unveil-
ing the relative disorder or randomness within these systems.
It provides a quantitative measure, enabling the assessment
and ranking of their respective complexities, thereby aiding
predictions of stability under varied conditions. Ultimately,
this comparative entropy analysis enhances the understand-
ing of silicate and oxide frameworks and their implications
in structural properties, facilitating applications in material

design and property optimization across various scientific
and industrial fields.

4 Conclusion

In this paper, we have investigated topological indices and
entropy measures to comprehend the structural character-
istics of silicate and oxide frameworks. We have derived
the topological expressions for recently proposed indices
and conducted a scaled entropy analysis between these two
frameworks.Our formulation of topological expressions cou-
pled with scaled entropy has revealed a higher entropy in
oxide frameworks relative to their silicate counterparts. This
observation highlights the intricate structural arrangements
and versatile properties of silicate and oxide frameworks,
providing valuable insights for future advancements.
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