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Abstract
Al–20Si alloy was subjected to friction stir processing to find its effect on the microstructure and wear behaviour. The 
microstructures of as-cast and friction stir processed (FSP) alloy were studied using optical microscopy and field emission 
scanning electron microscopy. The microstructure analysis showed significant refinement of Si particles in Al–20Si alloy 
by FSP. Similarly, for the experimental study of the wear behaviour, three different parameters: sliding velocity, normal 
load, and sliding distance were considered. In this study, five different machine learning (ML) algorithms were used for the 
prediction of wear rate. The hyper parameter tuning of each model was carried out for accurate comparisons. The models 
were then evaluated on the basis of different statistical metrics to find the superior model. Random Forest model showed 
the highest prediction accuracy (R2 = 0.8846) and was considered for comparing the wear rates with experimental values.
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1 Introduction

Aluminium Silicon alloys are preferred over other alloys 
because of high strength-to-weight ratio, high castability, 
high weldability, good corrosion resistance, etc. [1, 2]. Cast 
aluminum-silicon (Al–Si) alloys that are hypereutectic pos-
sess a variety of unique and fascinating properties, includ-
ing high wear resistance, high strength and hardness, and 
low thermal expansion coefficients [3]. They are therefore 
used in various internal combustion engine components 
such as pistons, cylinder blocks, and compressors which 
are exposed to severe wear conditions [4, 5] and [6–8]. The 
frction and wear in the cylinder surace results in reduction 
of energy efficiency. The poor wear resistance of pure and 
non-machined aluminium resulted the use of grey cast iron 
as cylinder liner on the surface of the cylinder [3]. However, 
the application of grey cast iron leads to the problem of 
increase in weight and dimensions and thereby decreasing 

the fuel efficiency [9]. This resulted in considering hypere-
utectic Al–Si alloy containing hard silicon particles which 
improves the wear resistance with reduced weight and better 
fuel efficiency. Previous studies [3–9] show that the wear 
performance of these alloys is significantly impacted by 
the Si particle content as well as the morphology, size, and 
distribution. The fractures which lead to the failure of the 
material, nucleate at the brittle Si particles [10]. It further 
initiates the crack at the interface between Si particles and 
Al matrix and propagates throughout the matrix. The study 
by Prasad et al. [11] revealed that the coarse Si particles have 
a greater probability of cracking when subjected to dry slid-
ing conditions. By reducing the size of the coarse primary 
silicon, mechanical properties, and wear resistance can be 
enhanced [12]. Eutectic modification, primary Si particle 
refinement, and α-Al grain refinement are only a few of the 
chemical techniques utilized to lessen structural flaws and 
enhance the microstructural features of such alloys [13, 14]. 
Since wear depends on the surface layer, not the bulk alloy, 
the surface modification could extend the life of Al–Si alloys 
[15]. Friction stir processing is performed on the surface to 
change the microstructure of Si particles to improve the wear 
resistance of hypereutectic Al–Si alloys [16].

Artificial Intelligence (AI) and data-driven machine learn-
ing algorithms are relatively new additions to the field of 
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material science [17, 18], despite the fact that other scientific 
disciplines, such as chemistry, medical science, and biol-
ogy, have already incorporated these types of algorithms as 
reliable tools. The recent successes that have been achieved 
in integrating ML algorithms in material and tribological 
properties prediction [19] have paved the way for new pos-
sibilities in the fields of material science and tribology [20, 
21]. Wein et al. used machine learning algorithms to design 
and fabricate Al-Co-Cr-Cu-Fe-Ni system (high entropy 
alloys) to improve the hardness [22]. Similarly, Chang et al. 
designed the composition of Al-Co-Cr-Fe-Mn-Ni based high 
entropy alloy to obtain optimum hardness [23]. Recent study 
by Hasan et al. gives a comparison of the predicted wear 
behaviour of graphene reinforced aluminium metal matrix 
with experimental results applying different machine learn-
ing models [17, 24]. The traditional analysis frequently falls 
short of showing a universal understanding of tribological 
behaviour due to the complexity involved with the numer-
ous parameters that characterize friction and wear. This is 
because traditional analysis focuses on isolated experimental 
observations. Machine learning algorithms can be trained 
with experimental tribological data in order to predict the 
tribological behaviour for various material and tribological 
variable combinations. Different machine learning algo-
rithms, such as, Random Forest (RF), Gradient Boosting 
Machine (GBM), Support Vector Regression (SVR), and 
K-nearest neighbour (KNN) algorithms are capable of recog-
nizing the variability in the data and adjusting their learning 
process to accurately predict the outcome. This can lead to a 
deeper comprehension of tribological behaviour.

Although, there are several studies available on the effect of 
FSP on hypo eutectic Al–Si alloy, only a few works have been 
carried out on hyper eutectic Al–Si alloy. Therefore, a detailed 
analysis needs to be conducted to find the effect of FSP on the 
microstructure and tribological properties of Al–20Si alloy. 
In the present study, friction stir processing is carried out on 
the cast Al–20Si alloy to find the microstructural changes and 
investigate the dry sliding wear behaviour by implementing 
different machine learning algorithms. The wear tests are 
conducted by changing different parameters such as, sliding 
velocity, sliding distance, and normal load applied. Machine 
learning algorithms are used to build models from the previ-
ously available data from the literature. The model developed 
showing the best accuracy is used to predict the wear rate of 
Al–20Si alloy by applying it to the experimental data and then 
compared with the predicted values.

2  Materials and Methods

2.1  Friction Stir Process

In the present investigation, commercially pure aluminium 
and Al–50Si alloy were added in appropriate proportion in 
conventional stir casting process for the synthesis of Al–20Si 
alloy. The composition of the alloys are given in Table 1.

Plates of Al–20Si alloys having a dimension of 
100 mm × 100 mm × 8 mm were first prepared by conven-
tional stir casting process. The plates were then friction stir 
processed (FSP) with an H13 steel tool as shown in Fig. 1.

The tool has a shoulder diameter of 18 mm, a probe 
length of 4.75 mm, a diameter of 7 mm at the root, and a 
diameter of 3.5 mm at the pin tip. During the processing, a 
tool rotation speed of 660 rpm was used, and the traverse 
speed was kept at 40 mm/min. Optical and field emission 
scanning electron microscopy (FESEM) were used to carry 
out the microstructural analysis of the as-cast material as 
well as the various FSP zones of the alloy. The schematic 
diagram of the friction stir process is shown in Fig. 2.

2.2  Wear Test

For wear analysis, the samples were taken from the FSP 
region of the plate. Dry sliding wear tests of the samples 
were carried out using a pin-on-disc type wear testing 
machine. The samples were prepared in the form of pins 

Table 1  Composition of 
different elements for the 
synthesis of Al–20Si alloy

Al Si Fe Cu Mg Mn

CPAL 99.61 0.24 0.12 0.020 0.006 0.004
Al–50Si 50.51 49.22 0.24 0.016 0.008 0.003

Fig. 1  A typical friction stir processed Al–20Si alloy plate
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according to ASTM G99-05 standard. The faces of the sam-
ple pins were polished using SiC grit papers followed by 
cleaning using acetone solution in an ultrasonic bath. Dif-
ferent wear parameters i.e., normal load, sliding distance, 
and sliding velocity were varied for the experimental data 
to be compared with the predicted wear by ML model. The 
influence of different variables on the wear rate has been 
discussed in the Section 2.2.1.

2.2.1  Variables Affecting Friction and Wear 
of Hypereutectic Al‑Si Alloys

Effect of Normal Load Previous studies show normal load, 
sliding velocity and sliding distance have impact on the 
wear rate [1]. The normal load is considered to be one of 
the most significant factors in analysing the wear rate of 
Al–20Si alloy. At lower loading conditions, mild abrasive 
wear governs the wear behaviour of the alloy. When the load 
is increased, the contact surfaces are more exposed to the 
microscale asperities resulting in larger plastic deformation. 
As a result, the frictional force is enhanced between the dry 
sliding surfaces and oxides will be formed due to higher heat 
generation during the process.
Thus, a mechanically mixed layer (MML) will be formed 
which will decrease the wear rate of the alloy. However, a 
further increase in load leads to the fracture of this MML 
and the two sliding surfaces will come into direct contact 
with each other. Thus, it resulted in severe which is reflected 
in (Fig. 3).

Effect of Sliding Velocity Sliding velocity also affects 
the wear rate of Al–20Si alloy. As the sliding velocity is 
increased, high heat is generated in the sliding surfaces 
which may lead to the formation of oxides. This layer pre-
vents further loss of material. This leads to a decrease in 

wear rate by the hard Si particles as the velocity is increased 
which can be observed in (Fig. 4).

Effect of Sliding Distance Sliding distance also plays impor-
tant role in the wear behaviour of the alloy. The wear rate 
is expressed as a function of sliding distance as shown in 
Fig. 5. The wear rate increases with sliding distance for Al–
20Si as can be observed. The increase in wear rate can be 
attributed to the longer interaction between sample surface 
and wear track surface [26].

Fig. 2  Schematic Diagram Friction stir process of Al–20Si alloy 10 20 30 40 50 60
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2.3  Machine Learning Models

2.3.1  Data Collection

The present study focuses on the prediction of wear rate and 
primary silicon size of hypereutectic Al–20Si alloy. The data-
set for different hypereutectic Al–Si were collected from vari-
ous sources [1, 13, 25–42]. It included 305 data points from 
various literatures for building ML models. The variables 
considered to predict the wear rate are silicon content, tribo-
testing method, manufacturing process, primary silicon size, 
Nd, Ce, P, Fe, Ni, Cr, Mg, Cu, hardness, sliding distance, nor-
mal load, and speed. Data cleaning, managing missing values, 
standardisation of data have been applied in the preprocessing 
steps beore applying different machine learning algorithms.

2.3.2  Description of Different Machine Learning Models 
Used

The technological advances led to more investigation into 
the modeling, designing, and enhancing the prediction of 
different properties and characteristics of alloys over recent 
years. Different machine learning algorithms have been 
brought forward to improve the accuracy of predictions in 
different fields. It is possible to experience a divergence in 
prediction accuracy due to the fact that every machine learn-
ing algorithm has its own individual working principle and 
applicability. To put it simply, machine learning makes use 
of pre-programmed algorithms that can acquire and evaluate 
input data in order to make predictions about output val-
ues within a specific domain. When new data is introduced 
into the algorithms, the algorithms make an attempt to learn 
and improve their performance by optimizing the functions 

[33]. This is how intelligence is gradually developed. The 
following is a description of a selection of well-known ML 
algorithms that can be applied to the present study.

Random Forest (RF) Random forests are a type of ensemble 
learning that makes use of a combination of multiple algo-
rithms in order to produce results that are superior for classi-
fication and regression. An input is provided at the very top of 
the “decision tree” that the algorithm uses as its starting point. 
During the process of learning, the tree develops in proportion 
to the level of complexity of the data that is being fed into it 
[26]. Every decision tree has its own unique combination of 
decision nodes and leaf nodes. Each sample that is provided to 
the decision nodes is subjected to a test function, which then 
distributes the sample to the appropriate branch based on the 
characteristics of the sample. The final output of the model is 
the average of the outputs of all decision trees.

K‑Nearest Neighbour (KNN) K-Nearest Neighbour (KNN) 
functions through supervised machine learning. It combines 
historical data patterns with fresh data and seeks to discover 
novel patterns [43, 44]. The KNN algorithm's goal is to cat-
egorise new objects based on their properties and training 
data. Based on the k training data that are closest to the item, 
KNN is used to categorize an object. The requirement for 
the value of k is that it must be odd and greater than one, and 
that it cannot exceed the quantity of training data.

Gradient Boosting Machine (GBM) Gradient Boosting 
Machine algorithm uses an ensemble learning approach to 
create robust forecasting models by integrating several indi-
vidual regression trees (decision trees) that are considered 
weak learners. The error rate of models that have been poorly 
learned can be lowered by using such an algorithm. Weakly 
learned models show a high bias regarding the training data-
set, and have low variance and regularisation [45]. The out-
puts of these models are considered to be only somewhat 
improved when compared with arbitrary guesses. These are 
the characteristics of models that are considered to have been 
weakly learned. In most cases, boosting algorithms consist 
of three components: an additive model, weak learners, and a 
loss function. The operation involves using gradients to deter-
mine the limitations of inadequate models. This is accom-
plished with the aid of an iterative methodology, in which the 
objective is to finally combine base learners in order to lessen 
the number of erroneous forecasts, in which decision trees are 
combined with the assistance of an additive model, all the 
while using gradient descent to cut down on the loss function.

Support Vector Regression (SVR) A modified version of the 
support vector machine called the Support Vector Regressor 
(SVR) is used in regression analysis [17]. To correlate input 
with desired output measurement and boundaries in SVR, 
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high-order hyperplanes are developed. These hyperplanes 
are built using kernel functions like radial basis and lin-
ear functions to minimise the generalised error bound. The 
regularisation parameter and gamma are the two key vari-
ables that influence the accuracy of the model when building 
the hyperplanes. Studies in machine learning and tribology 
show that SVR models can improve accuracy levels when 
given high-dimensional data, even when they are capable of 
working with a limited dataset [24].

ANN (Artificial Neural Network) Model Neural networks, an 
iterative method, is one of the popular algorithms for examin-
ing a variety of data-intensive characteristics, as the founda-
tion for many significant developments in the field of artificial 
intelligence. ANN regression models are advanced models 
which consider multi layer perceptrons (MLP) for prediction 
[46]. In this method, complex nonlinear relationships can be 
identified and applied similar to the functioning of neurons in 
the human brain. It consists of three layers: input player, output 
layer, and hidden layers in between them. These combinedly 
form a complex network that creates some meaningful out-
put. The network has estimate algorithms that weigh the input 
parameters according to synaptic activity before calculating 
the output. This method is able to handle vast amounts of data 
with enormous covariate spaces by utilising nonlinear mapping 
functions, which contributes to its robustness and efficiency.

3  Results and Discussion

3.1  Microstructural Analysis

The microstructures of friction stir processed Al–20Si 
alloy are shown in Fig. 6. The as-cast part portion of the 
plate which has not undergone the FSP process is shown in 
Fig. 6a. It contains coarse primary Si particles distributed 
along with eutectic Si and the α-Al throughout the Al matrix. 
Figure 6b shows the separating boundary between the micro-
structure of the as-cast portion and the FSP zone of Al–20Si 
alloy comprising two regions: as-cast portion and FSP zone 

Significant refinement of primary Si and modification of 
eutectic Si in the FSP zone similar to the effect by addition 
of Sr can be observed in the microstructure.

From the quantitative analysis, the average size of pri-
mary Si is reduced from 52.23 μm to 4.69 μm whereas eutec-
tic Si size decreased from 8.12 μm to 0.74 μm. Moreover, 
both primary and eutectic Si show more uniform distribution 
in the stir zone of friction stir processed the Al–20Si alloy.

3.2  Mechanism of Refinement of Si Particles in FSP 
Zone

Friction stir processing results in a significant refinement of 
coarse primary Si and acicular eutectic Si particles as can be 
seen in Fig. 7a. Also, the shape factor has been improved which 
indicates the transformation of Si particles to near spherical 
shape. The reason for this significant change in the size and 
morphology of Si particles can be may be due to the exposure to 
high temperatures and the intense plastic deformation during the 
process [47]. The fine and near-spherical Si particles are formed 
because of dynamic recrystallization (DRX) which is influenced 
by the nucleation and growth during the process [47, 48].

In the case of Al–20Si alloy, the Si particles are non-
deformable. During the process of plastic deformation, it 
is necessary to generate dislocations to accommodate the 
Si particles that do not deform. When particles are larger 
than about 0.1 μm in size, zones all around the particles 
begin to produce highly misoriented cells or subgrains 
[17, 18]. The size of the particle is directly related to both 
the size and the misorientation of the deformed zone. 
Particles having diameter greater than 1 μm are preferred 
nucleation sites with increased local stored energy [47, 
48]. The second-phase particles which are responsible 
for particle stimulated nucleation thus lead to dynamic 
recrystallization [18]. According to a report from [49], 
widely spaced, coarse, and non-deformable Si particles 
in Al–20Si alloy have the ability to improve DRX through 
PSN. The size of the Si particles in the alloy satisfies the 
required condition for PSN mechanism to occur during 
FSP [50]. It would appear that the Si particles perform 

Fig. 6  Optical micrographs of 
Al–20Si alloy (a) as-cast (b) 
containing FSP zone and as-cast 
region

a b
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the function of nucleation sites for recrystallized grains, 
which, in conjunction with their high density and uniform 
distribution, leads to fine grain size. It shows that more 
in depth-analysis is required in order to determine the 
mechanism behind the recrystallization in FSP.

3.3  Effect of FSP on Wear Rate

The volumtric wear rate for Al–20Si alloy was 4.7 
 (mm3/m) ×  10–5 at at sliding distance of 1000 m and slid-
ing velocity of 1.5 m/s. It shows a reduced wear rate of 1.34 
 (mm3/m) ×  10–5 in the friction stir processed Al–20Si alloy at 
similar conditions. This can be attributed to the refinement of 
Si particles during friction stir processing. From Fig. 7, it can 
be observed that both primary and eutectic Si have a uniform 
distribution in the matrix with significant refinement. The Si 
particles are dispersed and oriented in a homogeneous manner 
throughout the aluminium matrix. This results in improved 
bonding between the matrix and the Si particles. In addition, 
the uniform dispersion of Si particles in an aluminium matrix 
resulted in effective load transmission and thereby reducing 
the wear rate in the case of friction stir processed Al–20Si 
alloy as compared to as-cast alloy. Further analysis of the 
effect of the parameters on the wear rate, different machine 
learning algorithms were used for the evaluation of wear rate 
and discussed in detail in subsequent sections.

3.4  Effect of Input Variables on Prediction of Wear 
Rate

3.4.1  Data Preprocessing

The input variables used here are primary silicon content, 
tribo-testing method, manufacturing process, primary silicon 

size, Nd, Ce, P, Fe, Ni, Cr, Mg, Cu, hardness, sliding distance, 
normal load, and speed. The target variable here is wear rate 
which has to be predicted using different models. Among 
these variables, manufacturing process and tribo-testing 
method are considered categorical variables whereas the rest 
of the variables are numerical variables. Data preprocessing 
is the most important step before applying machine learn-
ing algorithms to the dataset. The missing values were first 
checked and replaced with the median fill method in order to 
get the continuous form of the dataset. The categorical vari-
ables were converted to corresponding numerical values. The 
dataset was then standardized to avoid the effect of the vari-
able having very high values as compared to other variables.

3.4.2  Feature Correlation

After data cleaning and preprocessing, it is to be ensured that 
data has been properly processed and the correlation among 
the variables was determined to find the existence of highly 
correlated variables. Figure 8 shows the correlation among 
different input variables for the prediction of the wear rate.

From the correlation matrix, it can be observed that Fe, 
Ni, Cr, Mg, Cu, and Tribo-testing method are highly cor-
related. Therefore, these variables were removed from the 
dataset. The new correlations among the remaining variables 
can be found in the matrix as shown in Fig. 9.

3.5  Prediction of Wear Rate Using Different ML 
Algorithms

3.5.1  Statistical Evaluation of the Performance of Different 
ML Models

The performance metrics provide a numerical assessment of 
how well the machine learning models fit with the actual data. 

a b

Fig. 7  FESEM micrographs in the FSP zone of Al–20Si alloy (FSP). a distribution of primary Si b distribution of eutectic Si
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The coefficient of determination, also known as the R2 score, 
is the most crucial performance metric to focus on when solv-
ing a supervised learning regression problem. The R2 score 
can vary between 0 to 1. When R2 is equal to zero, it implies 
that there is no correlation, and therefore the model is unable to 
explain the variation in the given dataset. If R2 is less than 0.5, 
it indicates that a weak correlation exists between the variables, 
and the ML model is regarded as being unable to accurately 
predict the output. The R2 value that falls anywhere between 
0.70 and 0.9 suggests satisfactory performance, whereas a 
number that is more than 0.9 indicates extremely satisfactory 
execution of the model. When the R2 score is equal to 1, it 
denotes that the model fits the data perfectly, and it is able to 
accurately describe the variation in the data without making 
any errors. In addition to the R2 score, statistical measures are 
important metrics in deciding the model’s accuracy. Thus, the 
performance of different models was evaluated by compar-
ing wear rates obtained from experiments with predicted wear 

rates using three measures: the Mean Absolute Error (MAE), 
the Mean Squared Error (MSE), the Root Mean Squared Error 
(RMSE), and the Coefficient of Determination (R2). These 
metrics for regression analysis are defined as follows:

where, m = number of experimental data, yi = actual value, 
ŷi = predicted value

MAE =

1

m

m∑

i=1

|
(
yi − ŷi

)
|

MSE =

1

m
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(
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m
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(
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Fig. 8  Correlation coefficient matrix of input variables
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The parameters of the models were optimized using 
grid search and cross-validation (cv) technique to improve 
prediction (Table 2). SVR with hyperparameters, c = 10, 
gamma = 0.01 and kernel = rbf, shows the lowest R2 score. 
KNN which is based on the distance calculation method 
also underperformed as compared to other models. In KNN, 
n_neighbors was kept 4 where weights maintained as dis-
tance. For RF model, the best predictions are observed for 
max_features = 5, max_depth = 10 with n_estimators as 20. 
The random forest algorithm’s better performance is due to 
the ensemble method consisting randomized decision trees. 
The R2 score achieved in the RF is 0.8846 with MAE = 0.168 
MSE = 0.049, and RMSE = 0.222 respectively (Table 3).

It is interesting to note that tree-based machine learning 
models (RF, XGB, and DT) provided better outcomes as com-
pared to high-order counterparts (SVR, ML). As the dataset is 
small and has relatively lower dimensions which is one of the 
many potential causes resulting in overfitting and inability for 
generalisation The most significant limitation of the tree-based 

approaches is the requirement of rebuilding and recalculation 
during updating the existing model with new data because this 
modification impacts all of the model's iterations.

3.5.2  RF Model Performance

The performance of different models has been evaluated 
by determining the R squared value (R2 score) for the 

Fig. 9  Correlation coefficient matrix after removing highly correlated variables

Table 2  Parametric optimization of different ML models

Model Name Optimized parameters

RF max_features = 5, max_depth = 10, n_estimators = 20
GB learning_rate = 0.4, n_estimators = 50
SVR c = 10, gamma = 0.01 and kernel = rbf
KNN n_neighbors = 4, weights = distance
ANN activation = relu, alpha = 0.001, hidden_layer_

sizes = (50, 100, 50)
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prediction of wear rate. The dataset has been split into two 
parts: 80% contains the training data and 20% contains the 
test data. Among the models, the R2 score is found to be 
maximum for the RF model.

The fitted model can predict the wear rate with a score of 
88.46%. The comparison between the predicted wear rate 
and the actual wear rate obtained from experiments was 
then evaluated. It shows a good correlation exists between 
the predicted value and the actual values from Fig. 10. In 
addition, this model is able to determine the most impor-
tant characteristics that influence the friction and wear of 
Al–20Si alloys by analyzing data obtained in different exper-
iments. This knowledge can be put to good use in enhancing 
the synthesis process for Al–20Si alloys and locating the 
conditions under which production is at its most efficient.

3.5.3  Feature Importance of the Model

The feature importance analysis helps in determining the 
influence of different variables on the prediction. It has 
fractional values that vary between 0 to 1. A score near 1 
indicates more influence in predicting the wear rate. The 
benefit of employing the gradient boost approach is that each 
attribute's relevance score can be determined rather quickly 
after the promotion tree is built. In general, the significance 

score assesses the importance of a feature in the model's 
raised decision tree construction. By repeatedly ranking 
each characteristic in the dataset, attribute importance is 
determined. The significance is calculated by increasing the 
number of performance metrics divided by each attribute, 
point in a single decision tree, and the node is in charge of 
the amount of records and weighting. Figure 11 shows the 
order of importance of the different input variables used in 
the model. It can be observed that normal load is the most 
important parameter followed by sliding distance and pri-
mary Si content.

In order to accurately estimate the wear rate, each of the 
independent factors had to have a score that is not zero. Fig-
ure 11 shows, the normal load, which is one of the tribological 
variables, received the highest score and made the most contri-
bution to the overall equation representing wear rate prediction.

3.5.4  Worn Surface Analysis

The variation of normal load applied, which has been found as 
the most important feature from the model, plays an important 
role in the transformation from a mild form of wear into a 
severe form of wear. Figure 12 shows FESEM analysis of the 
worn surfaces to study the change in wear behaviour under 10 
N and 25 N load at a sliding distance of 1000 m and sliding 
velocity of 1.5 m/s. The presence of grooves parallel to sliding 
directions indicates abrasive wear. However, the strong bond-
ing of fine silicon particles resists the plastic deformation and 
delamination in case of friction stir processed alloy as shown 
in (Fig. 12d). This may be due to ploughing action by the 
hard silicon particles leading to abrasive wear. For friction stir 
processed samples, finer silicon particles have a better bond-
ing with the matrix and thereby reducing the probability of 
microcracking underneath the surface. The abrasive grooves 
are narrower and less plastic deformation has occurred in the 
friction stir processed alloy than in the as-cast alloy. Under 
low and intermediate loading conditions, the wear mechanism 
is primarily governed by abrasive wear by hard silicon parti-
cles and possibly oxidative wear by the formation of mechani-
cally mixed layer (MML).

Figure 13 shows the EDS analysis of the worn surace 
of the sample. It shows the presence iron (Fe), (O), sili-
con (Si), aluminium (Al) and carbon (C).It indicates iron 
oxieds coming from counterface material. The presence of 
Fe peak indicates the counterface material has been worn 
and the material is transferred. The wear of the counterface 
can be attributed to the hard silicon particles portruded 
from the sample surface. The friction between the two 
sliding surfaces results in increase in the temperature and 
reacts with O leading to the formation of oxides. Thus, 
oxides formed bythe iron from counter surace and matrix 
material together constitute MML to protects the tribosur-
face from further wear.

Table 3  Performance analysis of different models

Model Name MAE MSE RMSE R2

RF 0.168 0.049 0.222 0.8846
GB 0.200 0.072 0.265 0.8329
SVR 0.317 0.192 0.439 0.5507
KNN 0.239 0.113 0.336 0.7362
ANN 0.221 0.099 0.315 0.7402

Fig. 10  Predicted wear rate vs actual wear rate in RF model
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On the other hand, at higher loading conditions, adhe-
sive wear has the dominant role in the wear behaviour. 
Figure 12b shows severe delamination is observed in 
the as-cast Al–20Si alloy. The oxide layer is detached at 
higher load and considerable material removal occurs at 
a rapid rate during sliding contact of the tribo surfaces 
leading to delamination at higher loading conditions.

4  Conclusions

In the present study, Al–20Si alloy is fabricated through the 
liquid metallurgy route, and Friction stir processing is then 
applied to it. The microstructure of friction stir processed 
Al–20Si alloy was then investigated. In addition, the wear 
rates for those alloys were then determined and compared 

Fig. 11  Feature importance in 
RF model

a b

c d

Fig. 12  Worn surface morphology of Al–20Si alloy at a as-cast at 10N b as-cast at 25N c FSP at 10N d FSP at 25N



3549Silicon (2024) 16:3539–3551 

with the values predicted in five different models of machine 
learning to find the best fit machine learning model. Further 
investigation can be carried out in this area by focusing on 
adding different refiners and varying tribological process 
variables in FSP or other related processes. The significant 
findings obtained are as follows:

• Microstructural analysis shows the significant refine-
ment of primary Si and modification of eutectic silicon 
on the surface of friction stir processed Al–20Si alloy. 
The average size of primary Si reduced from 52.23 μm 
to 4.69 μm. Similarly, eutectic Si size decreased from 
8.12 μm to 0.74 μm.

• The wear mechanism is based on the combination of 
abrasive, delamination, and oxidative wear. As Nor-
mal load is the most important factor, the mechanism 
changes with different loading conditions. When 
load is increased, the MML formed because of fric-
tional heating. On further increase in load, the MML 
breaks and delamination wear occurs. Improved wear 
resistance is observed because of the microstructural 
refinement of primary Si and eutectic Si through the 
FSP route.

• The different models used for the prediction of wear rate 
performed well. However, Random Forest regression 
model performed the best on the dataset with an R2 value 
of 0.8846. Similarly, the MAE, MSE, and RMSE values 
are 0.168, 0.049, and 0.265 respectively.

• From the feature importance analysis, the normal load 
has the most significant contribution in predicting the 
wear rate using the RF model.
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