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Abstract
Comparative investigations were carried out for open and closed microchannel heat sinks for water and SiO2/water nanofluid, 
varying the Reynolds number from 200 to 800 and modifying the fin height from 0.5 mm to 2.0 mm. As part of its microchan-
nel heat sink performance analysis, the study looked at several variables, including the Nusselt number, pressure drop, and 
cross-sectional fluid flow pattern and evaluated the optimum fin height. Nano  SiO2/water coolant enhances the Nusselt no. 
indicated that MCHS with 1.5 mm fin height has the most significant heat transfer value of 53.02. In contrast, MCHS with 
a 2.0 mm fin height has 38.68 using water as coolant. Water and nano  SiO2/water coolants had a maximum pressure drop 
of 187.90 and 286.96 Pa at 2.0 mm in height. The MCHS with 1.0 mm fin height has the maximum TPF of 2.17 and 1.75 
for nano  Sio2/water and water as a coolant, respectively. TPF was increased by 24.19% and 46.24%, respectively, compared 
to water as a coolant and a closed microchannel heat sink in the triangular-shaped open MCHS with  SiO2/water nanofluid 
and 1.0 mm of fin height.

Keywords Sustainable energy · Renewable practices · Reliable energy · Clean energy · Energy efficiency

Nomenclature
�   Density (kg/m3)
u, v  Velocity component (m/s)
k  Thermal conductivity (W/m oC)
Dh   Hydraulic diameter (m)

T  Temperature (oC)
t  Time (s)
A  Area  (m2)
Cp  Specific heat (kJ/kg K)
h  Heat transfer coefficient (W/m2 K)
P  Pressure (Pa)
q  Heat flux (W/m2)
Re  Reynolds number
Nu  Nusselt number

1 Introduction

Over the past few decades, integrated circuit capabilities 
have improved so that billions of circuits may be manufac-
tured on a single tiny chip. However, a more effective cool-
ing system is required to keep the chip functioning since 
the heat flux is much greater. The microchannel heat sink 
(MCHS) heat transfer rate is higher than conventional heat 
exchangers, making the system more compact and less cum-
bersome. These benefits have led to the widespread use of 
MCHS in various industrial sectors. Traditional electronic 
devices often use fins and air as coolants for their microchips 
and microtubes. The quantity of heat produced by modern 
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technology has increased over the years, but the poor ther-
mal conductivity of air has made it harder for heat to dis-
sipate. Therefore, liquid cooling is more efficient than air 
cooling in enhancing the thermal performance factor [1]. 
Geometrical elements such as the microchannel pattern, the 
number of inlets and outlets, the cross-section shape, nano-
fluids, and phase change materials influence the efficiency 
of the cooling process.

Tuckerman and Pease [2] initially used the term “micro-
channel cooling system” in 1981. Microchannel cooling 
is a passive way to eliminate heat from electronic devices 
that don’t take up as much space as other methods. An 
MCHS with a uniform geometrical layout is often used to 
efficiently remove heat from electronic components. As 
the capacity and use of microelectronic equipment have 
dramatically expanded, more heat is generated inside these 
devices. Smooth MCHS simply isn’t going to make it 
when dealing with such a high-temperature spike. Because 
of this, smooth MCHS needs enhancements to its thermal 
performance factor (TPF). Adding additional surfaces or 
cavities to the smooth channel may increase the TPF of 
the MCHS. TPF parameters such as Nusselt number and 
pressure drop will be compared between the modified and 
smooth channels. Several scientists are working toward 
increasing the heat dissipation rate with minimum pres-
sure loss [3–6]. In the research, two significant strategies 
for heat transfer via single-phase coolant have mainly been 
used by adjusting channel design, which allows high heat 
disposal and increases coolant properties to transport more 
heat, such as dielectric, nanofluid, and refrigerant. Cool-
ants, including oil, nanofluid, water, refrigerant, etc., have 
all been investigated. Although water is the most common 
coolant, nanofluids have recently gained popularity due 
to their ability to transport heat efficiently [7]. Nanofluids 
are filled with nanoparticles, which are small enough to 
pass through most materials. But nanofluid has several 
restrictions, such as sedimentation, higher pressure loss, 
and pipe wall abrasion from particle suspensions [8, 9]. 
Much work is being put in to address these concerns and 
ensure the safe usage of nanofluid in MCHS. Considerable 
expansion potential remains in this industry, especially for 
the coolant with outstanding heat transfer capacity, which 
is constantly preferred.

According to the research of Sui et al. [10], wavy rec-
tangular microchannels have better thermal performance 
than straight baseline microchannels. The MCHS with rec-
tangular, trapezoidal, and triangular cross sections were 
studied statistically by Wang et al. [11]. They found that 
trapezoidal microchannels had the highest thermal resist-
ance, followed by triangular microchannels, out of the three 
possible MCHS geometries (rhombus, circular, and hexago-
nal). Hexagonal shapes, as shown by Alfaryjat et al. [12], 
are optimal for heat transfer. The most significant friction 

factor and heat resistance values were found in the rhombus 
cross-section. Deng et al. [13] investigated the properties of 
a copper microchannel with a form. Compared to traditional 
MCHS with a rectangular cross-section, the study indicated 
that the Nusselt number increased by 39% and heat resist-
ance decreased by 22%. Other forms, such as those with 
cavities [14, 15], ribs [16, 17], and segmented fins [18, 19], 
have also been discussed in the literature. A microchannel’s 
surface roughness and shape affect heat transmission and 
fluid flow [20, 21]. Research has shown that surface rough-
ness increases the pressure drop but has less effect on heat 
transmission.

Converging microchannels with very hydrophobic walls 
were studied by Ermagan and Rafee [22]. They noted that 
the highly hydrophobic walls enhanced TPF for pumping 
power. Pin fins with a staggered configuration in an MCHS 
were studied by Yang et al. [23] in five distinct shapes such 
as hexagon, square, pentagon, triangle, and circle. They con-
ducted both numerical and experimental experiments with 
water and discovered that triangular pin fins had the most 
blocking effects, whereas circular pin fins had the least. The 
fin’s hexagonal cross-section provides the best heat conduc-
tion. Studies on oblique or segmented layouts of the fins 
demonstrate that additional flow paths improve fluid mixing, 
distort the thermal barrier layer, and redevelop it, leading to 
a higher heat transfer rate [24]. Sajedi et al. [25] conducted 
a numerical investigation of microchannels with both cir-
cular splitter plates. To minimize pressure, drop over the 
heat sink; splitter plates help drop the flow separation. Chein 
and Huang [26] studied electronic components’ functional 
behavior and reported that nanofluids have a more significant 
cooling impact.

The effects of Al2O3/water and SiO2/water nanofluids on 
TPF in a square cross-section cupric conduit were experi-
mentally studied by Nassan et al. [27] under constant heat 
flux conditions. SiO2/water nanofluid was given a higher 
TPF than Al2O3/water nanofluid. The turbulent flow condi-
tion of Al2O3, TiO2, and SiO2 nanofluids at different ratios 
was studied by Rostamani et al. [28] in a 2D conduit. The 
particle ratio in volume was discovered to influence the TPF 
in nanofluids. Convective heat transfer through a circular 
tube with laminar flow and a constant wall temperature 
boundary condition was experimentally explored by Heris 
et al. [29]. The results showed that the heat transfer coef-
ficient of SiO2 and Al2O3 nanofluids increases with both 
increasing the nanoparticle concentration and the Peclet 
number. Heris et al. [30] investigated the effects of SiO2, 
TiO2, and Al2O3 nanofluids in turbine oil on heat trans-
mission using a circular tube. The performance index for 
every nanofluid under investigation was determined to be 
greater than one. They concluded that the nanofluid-based 
coolants were the most effective at transmitting heat. Pin 
fins and surface roughness were assessed for their respective 
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importance by Sadaghiani and Kosar [31]. The heat transfer 
coefficient surrounding a fin in an MCHS was expected to 
be maximal near the wake’s trailing edge downstream of 
the pin fin, which was confirmed by Wang et al. [32]. As 
the fin height varied, he discovered a heat sink configured 
openly with a fin height of 75% to 80% was more efficient 
at transferring heat than a heat sink configured closed. The 
author has outlined the advantages of an open MCHS [33].

Similarly, Yin et al. [34] reported that flow boiling insta-
bilities might be significantly suppressed in the hollow 
microchannel, in addition to heat transmission improve-
ments. In addition, Kadam et al. [35] demonstrated the 
advantages of an open MCHS over a closed MCHS. In addi-
tion, a summary of research done on the MCHS is provided 
in Table 1.

A significant research gap exists regarding exploring 
optimal fin height in MCHS, with limited studies con-
ducted in this area. Additionally, there is a notable scar-
city of research comparing the performance of open and 
closed MCHS configurations. In Open MCHS, the fin 
height is lower than the channel height allowing the fluid 
to flow between the fin top surface and the MCHS cover. 
As the fin height varies, the open space available above 
the fin height varies and vice versa. In Closed MCHS, the 
fin height equals the MCHS channel height, resulting in a 
fin top surface touching the MCHS cover. There has been 
little known work on fin design compared with open and 
closed MCHS.

Consequently, the proposed study aims to identify the 
heat transfer potential and overall performance of an open 
and closed MCHS consisting of a triangular fin. A compara-
tive finding is performed by varying the open MCHS fin 
height from 0.5 mm, 1.0 mm, and 1.5 mm and the closed 
MCHS fin height of 2.0 mm. In addition, the optimal value 
of fin height that provides superior heat transfer and fluid 
flow characteristics has been determined by a thorough 
comparison of various heat sinks. An extensive compara-
tive investigation is conducted by interchanging the fluid 
between water and nano SiO2/water as the fluid and varying 
the laminar flow Re from 200 to 800. Several factors, includ-
ing fluid flow pattern, Nusselt number, and pressure drop, 
are considered while assessing the MCHS’s performance. 
For this reason, the index for performance assessment crite-
ria is developed and evaluated across all forms at different 
Reynolds numbers, such as the thermal performance factor.

2  Geometric Configuration

Figure 1 depicts the schematic representation of an MCHS. 
The reduced fine height demonstrates the open MCHS 
appearance that has formed in proportion to the channel 

height. The upper surface of the fin is thus separated from 
the heat sink surface by fluid. It’s common knowledge that 
the shorter the fin, the more space below it, and likewise, 
in the other direction. The arrangement’s coolant flows via 
the channel and the empty area. With this setup, the fins 
are submerged completely in the coolant, which frequently 
transfers heat to the fins’ outer surface. Its circulation is 
distinct from that in a closed microchannel, which con-
fines fluid to those specific routes. In this investigation, 
we use computational methods to examine the heat sinks’ 
three-dimensional shape. As shown in Fig. 1, the physical 
dimensions of the computing domain are 27 mm in length, 
10 mm in width, and 3 mm in height. The structure com-
prises a group of triangular pin fins of varied heights. The 
layout of the fins consists of four rows of 12 individual fins. 
Hence, there are 48 identical fins spaced out 1 mm from 
one another in a rectangular formation. As was previously 
indicated, the ideal configuration for the microchannel heat 
sink was discovered by varying the pin fin height. Almost 
every conceivable MCHS cross-section is considered, and 
the flow patterns on each cross-section and their impact 
on pressure drop and heat transfer at different Reynolds 
numbers are investigated.

3  Numerical Simulation

3.1  Governing Equations

The pressure loss and heat transfer in 3D geometry were 
simulated using ANSYS 2022 R1. The momentum equa-
tions regarding velocity and pressure have been solved 
using the SIMPLE Method Equation. To streamline our 
simulation models, we make a few assumptions. There 
was a laminar and incompressible steady-state f low 
condition, the influence of viscosity on heat dissipa-
tion and gravity was disregarded, and natural convec-
tion and radiation heat transfer were also disregarded. 
The governing equations are as follows, based on the 
assumptions above:

The energy equation for the liquid [31]

The energy equation for the solid [31]

Mass conservation equation [31]

Momentum equation [31]

(1)𝜌f Cpf

𝜕T

𝜕t
+ 𝜌f Cpf

(

��⃗U ∙ ∇T
)

= kf∇
2T

(2)�sCps

�T

�t
= ks∇

2T

(3)𝜌∇ ∙
(

��⃗U
)

= 0
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4  Boundary Conditions

The heat sink material was considered copper, while the 
coolant was a water and nanofluid SiO2/water mixture 
of 0.15% of volume fraction. Table 2 depicts the material 
properties. The combined heat transfer solution is then 
employed to address the issue. The following are some 
of the steady-state assumptions made throughout this 
study: The fluid is incompressible and follows a Newto-
nian distribution; the flow is laminar and steady; and the 
adiabatic conditions and nonslip properties of the MCHS 
walls are preserved.

A SIMPLE method equation is incorporated into the 
simulation. For more precise simulation results, a second-
order upwind method and set the convergence criterion to 
 10–6. Figure 2 depicts the applied boundary condition in 
the domain of the numerical setup. All heat sinks and exte-
rior walls are assumed adiabatic, and uniform heat flux was 
provided to their bottom surfaces. The no-slip boundary 

(4)𝜌f
𝜕��⃗U

𝜕t
+ 𝜌f

(

��⃗U ∙ ∇
)

��⃗U = −∇p + 𝜇∇2 ��⃗U
condition on the inside walls was considered, and the outlet 
boundary condition was adjusted to the atmospheric pres-
sure outlet. The inlet velocity varies from 200, 400, 600 and 
800 Re, and the heat flux input varies from 75,000, 100,000, 
125,000, and 150,000 W/m2. The following equations show 
boundary conditions from Table 3.

5  Data Reduction

In an MCHS, several parameters are important for numeri-
cal calculations and evaluating its thermal performance. 
Here are some of the equations that have been used, such 
as the bulk temperature of the fluid, the average tempera-
ture of the MCHS wall, heat transfer coefficient, average 
Nusselt number, pressure drop, and thermal performance 
factor.

The f luid’s bulk temperature refers to its average 
temperature as it enters or exits the microchannels. It 
represents the overall thermal behavior of the f luid 
in the heat sink. The bulk temperature is denoted by 
Tf and can be calculated using the following equation 
[36]:

Fig. 1  Schematic representation of MCHS (a) Top view (b) Side view (c) Isometric view



282 Silicon (2024) 16:277–293

1 3

The MCHS wall’s average temperature represents the heat 
sink’s thermal behavior. Tw denotes it and can be calculated 
using the following equation [36]:

The heat transfer coefficient (hx) characterizes the heat 
transfer rate between the fluid and the MCHS wall. It is a 
measure of the effectiveness of heat transfer in the system. 
The heat transfer coefficient can be calculated using the fol-
lowing equation [23]:

The average Nusselt number (Nu) is a dimensionless 
parameter that describes the convective heat transfer char-
acteristics of the fluid in the microchannels. It is defined 
as the ratio of convective heat transfer to conductive heat 
transfer. The average Nusselt number can be calculated using 
the following equation [23]:

(5)Tf x =
∫
Ac
�uCpT dAC

∫
Ac
�uCp dAC

(6)Twx =
1

w∫ w

Twdw

(7)hx =
q

��

Ab
(

Tw x − Tf x
)

NAi

(8)Nux =
hxDh

kf

(9)Nu =
1

L∫ L

Nuxdx

The pressure drop (ΔP) in the microchannels represents 
the resistance to fluid flow and is an important consideration 
in the design of microchannel heat sinks. It can be calculated 
using the following equation [23]:

The thermal performance factor (TPF) measures heat 
transfer efficiency in the microchannel heat sink. It can be 
defined as the ratio of the heat transfer rate to the pressure 
drop. The TPF can be calculated using the following equa-
tion [23]:

6  Mesh Independency

The grid independence is performed to determine the 
optimal mesh configuration. Six grids of hexahedral mesh 
were developed for the MCHS in this study to examine 
grid independence and verify the accuracy of numerical 
solutions. Independent meshes with element sizes of 0.3, 
0.2, 0.15, 0.1, 0.09, and 0.0.8 mm were tested using a hex-
ahedral mesh. The grid size detail concerning the number 
of mesh elements is depicted in Table 4. Pressure drop for 
the MCHS fin height of 1.5 mm was measured using water 
as a coolant to model the heat sinks’ performance at a 
Reynolds number of 400. Figure 3 shows that the last three 

(10)∇P = Pout − Pin

(11)TPF =

Nu

Nuplain

(

ΔP

ΔPplain

)1∕3

Table 2  Thermophysical 
properties

Material Viscosity 
(kg  m−1  s−1)

Specific heat 
(kJ  kg−1  K−1)

Density 
(kg  m−3)

Thermal conductivity 
(W  m−1  K−1)

SiO2/water [44] 0.0015 4200 1030 0.78
SiO2 – 381 8978 387.6
Water 0.001003 4182 998.2 0.6

Fig. 2  Representing the numeri-
cal setup’s domain’s border 
conditions
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grids exhibit little difference in pressure drop results, such 
as 66.642, 66.844 and 66.957 Pa. The pressure drop devia-
tion was determined to be between 2.91 to 0.1% by com-
paring data including 105,0674, 143,295, and 203,646, 
respectively, demonstrating that increasing the number of 
elements results in more reliable results. Hence, element 
1050674 was chosen to represent this work because of its 
precision and low computational cost. Figure 4 depicts the 
meshing of the MCHS with a 1.5 mm fin height at a grid 
size of 0.1 mm.

7  Model Validation

Figure 5 depicts the Nusselt numbers for a plain micro-
channel heat sink at various Reynolds numbers, as 
reported by different references and the present work. 
The work shows relatively close agreement with Bhandari 
et al. [45]. At Reynolds numbers of 200 and 400, the pre-
sent work and Bhandari et al. [45] have similar Nusselt 
number values, with a difference of only about 0.3–0.8, 
respectively. At Reynolds numbers of 600 and 800, the 
Nusselt number values from the present work are slightly 
higher than those from Bhandari et al. [45] but are still 
within a reasonable range.

On the other hand, the Nusselt number values reported 
by Yu et al. [46] and Shah and London [47] are higher 
than those from the present work. At Reynolds numbers 
of 200 and 400, the present work shows a difference of 
0.5–2.5 and 1–2.1 from Yu et al. [46] and Shah and Lon-
don [47], respectively. At Reynolds numbers of 600 and 

800, the difference between the present work and the other 
two studies is even larger, with a difference of 2–3.5 and 
1.3–2.6, respectively. The difference may be due to varia-
tions in the experimental setup, boundary conditions and 
measurement techniques used in the various studies. The 
outcomes of this investigation are in reasonable accord 
with those of other sources reporting outcomes for com-
parable Reynolds numbers. Comparing the current work’s 
findings to those found in the literature helps to prove the 
validity and trustworthiness of the simulation setup used 
here.

8  Results

8.1  Heat Transfer Performance

In an MCHS, heat flux is an important parameter as it 
determines the rate of wasted heat from heat generating 
component. Several factors, including materials’ thermal 
conductivity, rate of fluid flow, and geometry MCHS influ-
ence the heat flux. As the cooling fluid flows through the 
microchannels, it absorbs heat from the heat-generating 
component and carries it away from the heat sink. The 
effective heat flux from the bottom of MCHS to the con-
tact wall area is depicted in Fig. 6. It can be observed that 
the effective heat flux values are lower than the heat flux 
values for all fin heights and heat flux levels. The reduc-
tion in effective heat flux is more significant for smaller 
fin heights than larger ones. The effective heat flux val-
ues decrease as the heat flux level increases, indicating a 

Table 3  Boundary condition of MCHS

Surface Boundary condition values Boundary condition equations Eq. No Ref No

Bottom surface (Heat Flux in W/m2) 75,000, 100,000, 125,000, 150,000 −ka
�T

�y
= q (12) [36]

Inlet (Velocity inlet in Re) 200, 400, 600, and 800 ux = uin
uy = uz  = 0
T  = Tin  = const.

(13) [36]

Outlet (Pressure outlet) - �ux

�x
=

�uy

�x
=

�uz

�x
= 0

�T

�x
= 0

(14) [36]

Interface - ux = uy = uz = 0

Tw = Ta
−kw

�Tw

�n
= −ka

�Ta

�n

(15) [36]

Outer walls (Adiabatic condition) - q = −ka
�Ta

�n
= 0 (16) [36]

Table 4  Details of mesh 
elements concerning grid size Mesh Element size in mm 0.3 0.2 0.15 0.1 0.09 0.08

Number of mesh elements 55,680 166,705 360,408 1,050,674 1,432,995 2,036,446
Pressure Drop 56.901 61.457 64.745 66.642 66.844 66.957
Deviation (%) – 8.00 5.35 2.91 0.303 0.169
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reduced heat dissipation rate. The highest effective heat 
flux values are obtained for the largest fin height of 2 mm 
and the lowest heat flux rate of 75000W/m2. Overall, Fig. 7 
highlights the importance of effective heat flux in deter-
mining the thermal performance of MCHS.

Nusselt number is a quantitative measure of the convec-
tive heat transfer coefficient, which is a critical parameter in 
determining the overall performance of an MCHS. A higher 
Nusselt number leads to better heat transfer efficiency. This 
means an MCHS with a higher Nusselt number can dissipate 
more heat per unit area and achieve higher cooling perfor-
mance. Higher Nusselt numbers may require higher pump-
ing power or pressure drop, increasing energy consumption 
and decreasing overall system efficiency. Therefore, there is 
a trade-off between achieving higher Nusselt numbers and 
minimizing the energy consumption of the MCHS system.

Figure 7 shows that, as height increases, thermal resist-
ance decreases, indicating better thermal performance of 
the MCHS. This is because higher fin heights provide more 
surface area for heat dissipation. Adding SiO2 nanoparticles 
to the water significantly improves the thermal performance 
of the MCHS at all fin heights and mass flow rates. Because 
of their excellent thermal conductivity, SiO2 nanoparticles 

speed up heat flow from the fluid to the fins. At low mass 
flow rates (200 and 400), the difference in thermal resistance 
between water and SiO2/water is relatively small. However, 
at higher mass flow rates (600 and 800), the benefits of using 
SiO2/water become more significant. The highest thermal 
resistance values are observed at the lowest fin height of 
0.5 mm. This is because lower fin heights provide less sur-
face area for heat dissipation, resulting in poorer thermal 
performance. The thermal resistance values decrease as the 
mass flow rate increases, indicating that higher flow rates 
result in better thermal performance. However, at very high 
flow rates, the benefits of increased flow rate may be offset 
by increased pressure drop and pumping power.

8.2  Fluid Flow Characteristics

Using SiO2/water as a coolant and a heat flux of 125,000, 
Figs. 8 and 9 show the velocity contour in the middle of 
the plain in the X & Y direction of the MCHS. The cross-
sectional velocities increase as the fluid passes through 
the passage available between the MCHS fins. There is a 
decrease in velocity at the backside of steep angles of the 
fin cross-section, where the dead zones or areas of zero 

Fig. 3  Effect of mesh element 
size on pressure drop

Fig. 4  Hexahedral meshing of 
MCHS for 1.5 mm of fin height



285Silicon (2024) 16:277–293 

1 3

velocity often occur. It can be observed for the cases or 
scenarios in the study. The heat transmission properties 
of MCHS are very sensitive to fluid flow patterns. Under-
standing the coolant flow stream, circulation, and interac-
tion pattern across triangular pin fins requires understand-
ing the coolant flow properties. A shear layer is generated 
when fluid flows over the fin of a pin because of the veloc-
ity difference between the fluid and the pin’s fixed surface. 
Downstream of the fin, this shear layer generates vortices 
or eddies, which eventually merge into a wake, as shown 
in Fig. 10 at 600 Re and heat flux of 125000W/m2. The 
rear of the fins creates a wake or revolving vortices. Low 
velocities and high pressures in the wake zone cause to 
decrease in the heat transfer coefficient and an increase in 
thermal resistance.

8.3  Temperature Distributions

The temperature distribution in the working fluid is an 
important measure of thermal performance since it reveals 
where the heat is concentrated. The efficacy of MCHS is 
diminished by thermal maldistribution caused by high tem-
peratures in localized areas. The heat transfer coefficient is 
enhanced due to the triangular pin fins’ ability to expand 
the available heat transfer surface area and increase coolant 
turbulence. Employing triangular pin fins may influence the 
thermal boundary layer and heat transport properties. Induc-
ing vortices in the coolant flow, like the triangle fins, may 
help with mixing and heat transmission. On the other hand, 
these vortices may lead to flow separation and decreased 
heat transmission in certain areas.

At a heat flow of 150000W/m2, Fig. 11 depicts the 
contact wall temperature distribution across the MCHS 
at various fin heights at different Re. It can be observed 
that, with an increase in Re from 200 to 800, the contact 
wall temperature decreases. It is noticed that the high-
est decrease in contact wall temperature is at the fin 
height of 1.5 mm of open MCHS with nano SiO2/water 
as a coolant for the different Re. In the case of water 
as a coolant, it is observed that 2.0 mm of fin height 
of closed MCHS has the lowest contact wall tempera-
ture. The difference in temperature of open and closed 
MCHS, i.e., 1.5 mm fin height and 2.0 mm fin height 
using nano SiO2/water as a coolant for 200, 400, 600 
and 800 Re, is 1.96, 1.82, 1.85 and 2.04, respectively. 
The reason for the drop in contact wall temperature 
of the open MCHS compared to closed MCHS is that 
increased available open space makes this feasible by 
increasing the net convective surface area responsible 

Fig. 5  Validation of the present work concerning Nu. and Re
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for heat transfer, and it also allows for a more pro-
nounced flow behavior of the coolant. Therefore, the 
thermal performance of a heat sink is determined by its 
convective surface area but also by the flow properties 
of the fluid within the heat sink.

At a Reynolds number of 800, Fig. 12 displays the tem-
perature distribution of the various fin heights at the micro-
channel outlet. It can be observed that the contact wall tem-
perature increases with an increase in heat flux input. Also, 
increased MCHS fin height leads to decreased contact wall 

Fig. 8  Contour of velocity at the mid plain of fin height in X-direction at 125,000 heat flux and 600 Re. No. Using SiO2/water as a coolant

Fig. 9  Contour of velocity at the mid plain of the heat sink in Y-direction at 125,000 heat flux and 600 Re using SiO2/water as a coolant



287Silicon (2024) 16:277–293 

1 3

temperature in the case of water as a coolant. Whereas 
in the case of nano SiO2/water, as a coolant contact wall 
temperature decreases with a rise in MCHS fin height from 
0.5 mm to 1.0 mm and 1.0 mm to 1.5 mm, for the change in 
MCHS fin height from 1.5 mm to 2.0 mm, the contact wall 
temperature increases for all the heat flux input.

Figures 13 and 14 depicts the temperature contour at the 
bottom of the heat sink at 125,000 heat flux and 600 Re. 
No. They are using SiO2/water as a coolant. Typically, the 
temperature is higher near the inlet region of the microchan-
nel heat sink due to the incoming hot fluid, which gradually 
decreases towards the outlet. The pin fins can cause local-
ized temperature gradients, leading to hot and cold spots 
in the channel. The sharp edges of the triangular fins can 
induce vortices in the coolant flow, improving the mixing 
and heat transfer and decreasing temperature. Increasing the 
MCHS fin height results in a dramatic drop in temperature. 
It can be observed that the entrance fins towards the inlet 
are substantially cooler than the fins towards the outlet. The 
observed temperature in the wake zone, where the vertices 
are produced, is maintained at a somewhat lower tempera-
ture for 1.5 mm of MCHS fin height compared to 2.0 mm of 
MCHS fin height.

8.4  Pressure Drop

Since the coolant flow rate is affected by pressure drop, the 
heat transfer rate and thermal performance of MCHS are 
also impacted. In MCHS, heat transfers efficiently because 
the channels are tiny yet have a high surface area to volume 

Fig. 10  Contour of velocity streamline and vortex generation of the heat sink at 125,000 heat flux and 600 Re, using SiO2/water as a coolant
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ratio. However, compared to standard MCHS, this causes a 
greater pressure drop. Pressure drop, caused by frictional 
losses, often rises with flow rate. At high flow rates, the 
pressure drop may reach a critical value, beyond which 
flow instabilities can occur, resulting in reduced heat trans-
fer efficiency and even flow reversal. The effects of pres-
sure drop in MCHS can be significant. High-pressure drops 
can lead to increased pumping power and energy consump-
tion, which can affect the overall efficiency of the cooling 
system. Also, high-pressure drops can result in uneven flow 

distribution among the channels, leading to hot spots and 
reduced cooling performance in certain heat sink regions. 
Therefore, it is important to carefully consider the pressure 
drop behavior and its effects in MCHS for optimal thermal 
management.

According to Fig. 15, the resistance to flow rises with 
a higher Reynolds number as the pressure drop increases 
for both water and SiO2/water fluid as the Reynolds num-
ber increases. It is seen that the SiO2/water fluid has a 
higher pressure drop than water at all Reynolds numbers, 
indicating that it is more viscous and, thus, harder to flow 
through the channel. For both fluids, increasing pressure 
drop increases with increasing fin height, suggesting that 
fin height is important in determining pressure drop. This 
might be because the fins provide greater resistance to air 
passage. The greatest pressure reductions are seen for water 
and SiO2/water fluids at a fin height of 2 and a Reynolds 
number of 800.

At Reynolds number 200, the pressure drop for water is 
between 8.86 to 31.66, while the pressure drop for SiO2/
water is between 12.62 to 42.48. Similarly, at Reynolds 
number 800, the pressure drop for water is between 58.48 
to 237.85, while for SiO2/water, it is between 77.03 to 
286.96. However, it’s worth noting that the pressure drop 
for SiO2/water increases slower than for water as the Reyn-
olds number increases. This could be due to nanoparticles 
in the SiO2/water mixture, which may alter the fluid flow 
and reduce turbulence. Overall, SiO2 nanoparticles in water 
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increase the flow resistance, leading to a higher pressure 
drop. Still, the effect is not significant enough to completely 
outweigh the potential benefits of using SiO2/water, such as 
improved thermal conductivity. Figure 16 depicts the pres-
sure drop contour at the mid plain of fin height at 125,000 
heat flux and 600 Re. No. Using SiO2/water as a coolant. It 
is easily observed that as the height of the fins increases, the 
pressure drop likewise increases and that the pressure con-
tinues to fall as the fluid moves along the channel between 
the fins and toward the outlet.

8.5  Performance Evaluation Criteria Index

The heat transfer rate and pressure drop are metrics used 
to assess MCHS’s overall efficiency. The TPF evaluation 
criterion index provides a means of calculating their rela-
tive importance. Plain MCHS is the standard in commercial 
samples. All other forms were normalized. If the TPF for a 
given example is more than 1, then its performance is better 
than that of the baseline MCHS. The importance of TPF in 
MCHS design is that it provides a quantitative measure of 
the thermal efficiency of the heat sink. Higher TPF values 
indicate better heat transfer performance, which is desirable 
in applications where efficient heat dissipation is critical. 
By optimizing the TPF, MCHS can achieve better thermal 
performance while minimizing the pressure drop and fluid 
flow rate.

Figure 17 depicts the TPF at different Reynolds numbers 
for different fin heights and coolants. It is seen that SiO2/
water as a working fluid generally provides higher TPF val-
ues than water at all fin heights, indicating better heat trans-
fer performance. At each fin height, the TPF values for SiO2/
water are generally higher than those for water, indicating 
the superior thermal performance of SiO2/water. For a fin 
height of 1.0 mm with water coolant, the TPF values are 

Fig. 14  Contour of temperature at the mid plain of the fin height at 125,000 heat flux and 600 Re. No. Using SiO2/water as a coolant
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consistently higher than for other fin heights, indicating that 
this is the most effective fin height for water as a coolant. 
Similarly, for a fin height of 1.0 mm with SiO2/water cool-
ant, the TPF values are consistently higher than for other fin 
heights, indicating that this is the most effective fin height 
for SiO2/water coolant. It is observed that the difference in 
TPF of using water and nano SiO2/water as a coolant at a fin 
height of 1.0 mm is 0.198, 0.323, 0.4065, and 0.423 at 200. 
400, 600 and 800 Re, respectively.

9  Conclusions

The present research provided a comprehensive analysis 
and comparison of open MCHS and closed MCHS with 
water and SiO2/water nanofluid as cooling fluids. The study 
focuses on the impact of varying fin height and Reynolds 
number on the heat transfer potential and overall thermal 
performance of the MCHS. The results highlight the effec-
tiveness of SiO2 nanoparticles in improving thermal con-
ductivity and heat transfer performance while also noting 
the potential drawbacks of increased pressure drop at higher 
flow rates.

• Optimal fin height was found to be crucial in maximizing 
both heat transmission and the characteristics of fluid 
flow.

• SiO2/water nanofluid showed better thermal performance 
than water at all fin heights and mass flow rates.

• SiO2/water increases the flow resistance, leading to a 
higher pressure drop. Still, the effect is not significant 
enough to completely outweigh the potential benefits of 
using SiO2/water, such as improved thermal conductivity 
and thermal performance factor.

• Heat transfer parameter Nusselt no. significantly 
increases by using nano SiO2/water as coolant. Results 
indicate that the MCHS with 1.5 mm of fin height pro-
vides the highest heat transfer with a maximum value of 
Nu is 53.02 nano SiO2/water as a coolant. In contrast, 

Fig. 16  Contour of pressure drop at the mid plain of fin height at 125,000 heat flux and 600 Re. No. Using SiO2/water as a coolant
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water as a coolant in MCHS with 2.0 mm fin height pro-
vides the highest heat transfer value of Nu is 38.68.

• Pressure drop increased with increasing fin height for 
water and SiO2/water fluids. Results indicate maximum 
pressure drops of 187.90 and 286.96 Pa at the fin height 
of 2.0 mm for water and nano SiO2/water as a coolant, 
respectively.

• The MCHS with 1.0 mm fin height provides the high-
est TPF of about 2.17 and 1.75 for nano Sio2/water and 
water as a coolant. The results suggest that SiO2/water 
nanofluid is a promising coolant for MCHS, providing 
improved TPF by 0.42 compared to water at 1.0 mm of 
fin height.

The findings of this study can be used as a basis for 
designing and optimizing microchannel heat sinks for vari-
ous applications, including electronic cooling and renewable 
energy systems.

10  Future Scope

The present study provides valuable insights into the thermal 
and flow characteristics of open MCHS and closed MCHS. 
However, several areas for future research could expand on 
this work, such as:

1. Investigating the effect of different nanoparticles and 
their concentrations on the thermal and flow character-
istics of the MCHS.

2. Examining the impact of other parameters, such as 
fin thickness and spacing, on the performance of the 
MCSH.

3. Analysing the long-term reliability and durability of the 
heat sink under different operating conditions.

4. Exploring the application of the MCHS in other fields, 
such as electronics, renewable energy, and aerospace.

5. Developing optimisation techniques to determine the 
optimal combination of parameters for the MCHS 
design.

By addressing these future research directions, we 
can improve our understanding of the MCHS technology 
and enhance its performance and reliability in various 
applications.
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