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Abstract
This investigation will focus on a particular molybdenum borosilicate glass with the form 61B2O3 – 19SiO2- (20-x) MoO3—x 
CeO2, x = (0 ≤ x ≤ 12 mol. %). DTA examination was conducted using a Shimadzu -DTA equipment. The powder glass 
samples (10 mg) were placed in a platinum pan and heated to 800 °C in nitrogen medium at various rates. The temperatures 
of the glass transition, Tg , the crystallization extrapolated onset, Tc , the crystallization peak, TP , and melting Tm , were deter-
mined. The quantity of CeO2 in the checked glass had a significant impact on its crystallization behavior, with an increase 
in CeO2 content increasing ΔT and thus making the glasses more stable. With increasing CeO2 concentrations, both EG 
& Ec values decrease, as expected given the rise in Tg & TP values. XRD and SEM were used to identify the crystallizing 
phases and microstructural morphology for each composition. Based on XRD observations, Molybdenum Silicide (Mo3Si2), 
Molybdenum Boride (B2Mo1), Cerium Borate (B1Ce1O3), Cerium Molybdenum Oxide (Ce16Mo21O56) and Cerium Silicide 
Oxide (Ce10O3Si8) phases were detected. The presence of particles with different shapes in both compositions was revealed 
by SEM micrographs. As CeO2 concentrations increased, the ultrasonic velocities & elastic moduli increased.
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1  Introduction

Uniformity, good stability, greater chemical resistance, and 
optical transparency are all advantages of borosilicate glass 
[1–10]. Borosilicate glasses can be employed as a laser host 
by doping them with rare earth ions (REis) because of their 

fascinating features [11–22]. An extensive study has been 
conducted on (REis) -containing glasses. As a result, numer-
ous glasses containing various (REis) have been developed. 
Specific implementations have been shown to support from 
CeO2 glasses [23–25]. The structure of CeO2-B2O3- SiO2- 
MoO3 glass system has yet to be determined, according to 
the researchers' knowledge. FT-IR Spectra was used to inves-
tigate the structure of silicate, borosilicate and aluminosili-
cate glasses containing CeO2. With increasing CeO2 concen-
tration, CeO4, also increases [23–25].

Qingshun Shi et.al [26]. investigated the structure and 
chemical stability of La2O3 and CeO2 doped calcium iron 
phosphate glasses. Impacts of Ce+3 on La2O3: Ce+3 phos-
phors were investigated by M. Ajmal et al. [27] Ce+3 is 
observed to be more uniformly distributed in borosilicate 
glass, with no clustering. This study investigated the charac-
terization of CeO2 was replaced by MoO3 at various doping 
ratios. There two valance states of MoO3 in glasses: Mo+5 
and Mo+6.In the thermal and optics industries, glasses con-
taining MoO3 have become important materials. Crystalliza-
tion is a crucial topic in both glass science and technology. 
Although crystallization is usually undesirable when making 
glass, it is a significant procedure for preparing glass ceram-
ics under controlled conditions [28–34].
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We decided to use a new vitreous matrix, B2O3-SiO2-MoO3 
containing CeO2, to learn more about the structure and ther-
mal and crystallization kinetics characteristics of fabricate 
glass systems. This experiment manufactured CeO2 co-doped 
B2O3-SiO2-MoO3 glasses. The objective of this article is to 
examine the thermal, mechanical, and crystallization kinet-
ics of the B2O3–MoO3–SiO2 glass containing CeO2 using 
DTA, XRD and SEM.

2 � Materials and Methodology

These glasses in Table 1 are taken from [1]. The status of the 
glasses determined using a Rigaku-Top XRD. DTA exami-
nation was conducted using a Shimadzu -DTA equipment. 
The powder glass samples (10 mg) were placed in a platinum 
pan and heated to 800 °C in nitrogen medium at various 
rates. The glass–ceramics were fabricated at Tc for 4 h. Using 
a scanning electron microscope model A Jeol, the surface 
morphology of several chosen bulk glass samples is exam-
ined (JSM-T20, Tokyo, Japan). The ultrasonic measurements 
were carried out using a system that included the Echo—
graph (Krautkramer model USM3 pulsar/receiver instru-
ment). Archimedes' principle determines the density (ρ) of 
prepared glass–ceramics. The longitudinal and shear VL&VT 
velocities were determined using this method. Besides the 
density, the VL&VT were used to calculate elastic moduli, 
longitudinal waves L = �v2

l
 , transverse waves G = �v2

t
 , 

young's modulus Y = (1 + �)2G , and bulk modulus 
= L −

(

4

3

)

G . Conductivity of fractal bonds d = (G
/

K
) ∗ 4 . 

Hardness; H =
(1−2�)Y

6(1+�)
.

3 � Results and Discussion

3.1 � Physical Investigations

To ensure that the fabricated samples are in the amor-
phous phase, XRD were measured. Figure 1 depicts the 
XRD spectrum of the MBSCe4 sample. While all manu-
factured glasses have similar XRDs, only this sample's 

XRD is displayed herein. In their X-ray diffraction patterns, 
MBSCe4 has broad and diffused humps, indicating that it is 
amorphous [35–39].

3.2 � DTA Examination

Tg , Tc, TP , and Tm , were determined from DTA [40–50]. For 
61B2O3 – 19SiO2- (20 − x) MoO3—x CeO2, glasses, typical 
DTA are revealed in Fig. 2. The values of Tg, Tc, TPandTm 
for examined samples are presented in Figs. 3(a, b, c and 
d). These Figs. shows an increasing trend of Tg, Tc, TPandTm 
as CeO2 content increment. Thermal stability (ΔT) was 
calculated using the ( Tc − Tx ) value where Tx is the onset 
glass transition temperature. For 61B2O3 – 19SiO2- (20 − x) 
MoO3—x CeO2, glasses, ΔT are revealed in Fig. 4. It was 
found that ΔT often increases along with an increase in 

Table 1   Fabricated glasses with mol.%

Code B2O3 SiO2 MoO3 CeO2

MBSCe0 61 19 20 0
MBSCe2 61 19 18 2
MBSCe4 61 19 14 6
MBSCe8 61 19 12 8
MBSCe10 61 19 10 10
MBSCe12 61 19 8 12

Fig.1   XRD of glass samples

Fig. 2   DTA typical of glass samples



5235Silicon (2023) 15:5233–5243	

1 3

CeO2 concentration. With increasing CeO2  concentra-
tion, CeO4, also increases and the establishment of (BO) 
increases, therefore ΔT increases (from 88 to 107 °C) as 
CeO2 increases. The quantity of CeO2 in the checked glass 
had a significant impact on its crystallization behavior, with 
an increase in CeO2 content increasing ΔT and thus making 
the glasses more stable.

Figures 5 and 6 show an increasing trend of weighted 
thermal stability Hg and S criterion as CeO2 content incre-
ment. Hg =

ΔT

Tg
 , S = (Tp − Tc)

ΔT

Tg
. This observation due to 

increase ΔT of the samples. Hruby parameters can be con-
sidered as:Hu =

(Tc − Tg)
/

(Tm − Tc)
 . Hu values for various 

compositions are shown in Fig. 7. The glass with the highest 
CeO2 content is the one that is the most thermally stable.

Lasocka [51] proposed the following expression to describe 
changes in glass ( Tg ) and heating rate (β):Tg = Ag + Bgln(β) , 

Fig. 3   a Tg of the glasses. b Tc of the glasses. c Tp of the glasses. d Tm of glass samples

Fig. 4   ΔT of glass samples
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Fig.5   Hg of glass samples

Fig.6   S of glass samples

Fig.7   Hu of glass samples

Fig.8   Tg vs.ln(β) for glass samples

Fig.9   Tp vs.ln(β) for glass samples

Fig.10   ln(T2

g
∕β) versus 103∕Tg for glass samples



5237Silicon (2023) 15:5233–5243	

1 3

which could be used for ( Tp ) as:  Tp = Ap + Bpln(β),   where 
Ag and Ap are the values of Tg &Tp , respectively. Bg&Bp are 
constants that depend on the composition of the glass. As 
shown in Figs. 8 and 9, Tg & Tp values were plotted against ln 
( β ). Tg & Tp values increase with increasing heating rate and 
CeO2 concentrations, as shown in these Figs. The observed 
increase in Tg & Tp values is consistent with previously pub-
lished data, which can be explained in this way.

Glass transition activation energy Eg , crystallization 
energy Ec , and the frequency factor ko , on the other hand, 
can be easily assigned based on changes in the values of Tg 
& Tp with (β), as well as the previously described method. 
Figures 10 and 11 show plots of ln(T2

g
∕β)  versus 103∕Tg 

and of ln(T2

p
∕β)  versus 103∕Tp for investigated samples. 

The linear relationship of the formula used is represented.

Fig.11   ln(T2

p
∕�) versus 103∕Tp for glass samples

Fig.12   EG & Ec for glass samples

Fig.13   XRD for glass–ceramic samples

Table 2   XRD results glass–ceramic samples

Sample Code Compound Name
Chemical Formula

MBSCe0 98–064-4412 Molybdenum Silicide (Mo3 Si2)
98–007-6410 Molybdenum Boride (B2 Mo1)
98–009-9689 Cerium Borate (B1Ce1O3)

MBSCe12 98–007-2525 Cerium Molybdenum Oxide (Ce16 Mo21 
O56)

98–017-3576 Cerium Silicide Oxide (Ce10O3Si8)

Table 3   XRD investigation of glass–ceramic samples

Sample Pos
2θ°

Height
[cts]

FWHM
2θ°

d-spacing
[Å]

Size
nm

MBSCe0 27.546 1175.54 0.2362 3.238 121.96
29.4852 184.18 0.3542 3.03 81.68
33.0553 265.58 0.2362 2.7 123.55
44.8794 327.65 0.2362 2.012 128.15
51.1464 179.35 0.2362 1.786 131.31
55.7307 290.07 0.2362 1.65 133.98
56.851 116.45 0.3542 1.62 89.82

MBSCe12 17.8347 205.75 0.3542 4.97348 79.95
27.4621 2563.83 0.2362 3.24790 121.93
29.4133 470.04 0.1771 3.03674 163.33
32.9618 671.30 0.2362 2.71748 123.52
37.7457 198.32 0.2362 2.38334 125.18
44.7722 774.55 0.1771 2.02427 170.85
47.3235 337.96 0.2362 1.92093 129.32
51 452.13 0.2952 1.79075 105.00
55.5936 743.33 0.2362 1.65318 133.90
56.7145 312.61 0.2362 1.62314 134.60
72.0912 289.78 0.3542 1.31016 97.69
75.95 96.83 0.7085 1.25291 50.09
76.9359 84.06 0.4723 1.23930 75.66
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Figure 12 shows the values obtained for the glass transi-
tion activation energy EG & Ec . With increasing of CeO2 
concentrations, EG & Ec values decrease, as expected given 
the rise in Tg & Tp values. It is predicted that CeO2 will be 
transformed into CeO4 because of the addition of CeO2. The 
CeO4 structural unit has a shorter bond-length than CeO2, 
resulting in enhanced bond strength, which could explain 
why EG & Ec decrease as CeO2 content rises.

3.3 � Crystallization

The nucleation and growth of crystallites in an amorphous 
solid is a complicated process that occurs at the same time. 
MBSCe ceramics samples are chemically resistant and have a 
variety of applications. Figure 13 shows the XRD of selected 

ceramic glasses with varying CeO2 content. In order to identify 
a structure that appears in X-ray patterns, samples were annealed 
at temperatures below and above the characteristic points shown 
in DTA curves. XRD results reveal the formation of crystalline 
phases as well as an amorphous phase. XRD describe the gener-
ated crystalline phases, which were then compared to diffraction 
patterns of known crystalline compounds containing B, Si, Mo, 
Ce, and O in the PDF2 database. The XRD for selected samples 
show a semi-profile. All the expected phases were observed to 
be present [52–55]. Tables 2 and 3 show the phases and param-
eters of a variety of glass ceramics.

SEM backscattered of chosen glass–ceramic photographs 
are shown in Figs. 14a and b. The crystalline surface has a 
lot of bulky interstitial gaps, revealing the exceptional glass 
matrix. XRD results support this observation. Microcrystal-
line extended paths or fibrils, anhedral microcrystals, and a 

Fig. 14    a SEM of MBSCe0 
glass -ceramics at magnifica-
tions 100, 200, 500, 1000, and 
2000. b: SEM of MBSCe12 
glass–ceramics at magnifica-
tions 100, 200, 500, 1000, and 
2000
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fine-grained texture are among the morphological charac-
teristics discovered among the formed crystalline phases. 
Various precipitated cerium and boron phases are attributed 
with these different microcrystalline phases throughout heat 
treatment. The presence of particles with different shapes in 
both compositions was revealed by SEM micrographs.

3.4 � Mechanical Characterization

Non-destructive examinations as ultrasonic can be used to 
characterize glass–ceramics, investigate their structure, and 
calculate their elastic constants [56–66]. Figures 15 and 16 
show plots of VL&VT , as well as elastic moduli ( L,G,K, &Y ) 
of the investigated ceramic samples as a function of CeO2 
concentration. As the CeO2 increases, VL&VT , increased. 
The network's coordination number increased as the mol 

present of CeO2 increased, increasing the cross-link density. 
VL&VT were increases due to increase in the packing and 
connectivity of the glass—ceramic configurations.

Figure 16 shows that as CeO2 concentrations increased, 
the elastic moduli L,G,K, &Y  increased. As a result, the 
observed increase in L,G,K, &Y  with increasing CeO2 
content can be explained by former role of cerium in the 
ceramic samples. This behavior indicates that the addition of 
CeO2 enhanced the packing density and rigidity. Figure 17 
depicted (ρ,H&d ) of the ceramics sample. Heat treatment 
increases the (ρ,H&d ) of the ceramics investigated. Heat 
treatment, in my opinion, resulting in some order and com-
pactness. As a result, new properties should originate, and 
ρ,H should increase. In all ceramic samples, (d) was close 
to 2 i.e. 2-dimensional layer structure network is present in 
all the ceramic samples.

Fig. 14   (continued)
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4 � Conclusions

The combined techniques of DTA, XRD, SEM, and mechani-
cal were used to characterize the thermal behavior and crys-
tallization of CeO2 co-doped B2O3-SiO2-MoO3 glasses. The 
thermal stability of glasses was demonstrated in DTA studies. 
The quantity of CeO2 in the checked glass had a significant 
impact on its crystallization behavior, with an increase in CeO2 
content increasing ΔT and thus making the glasses more sta-
ble. With increasing CeO2 concentrations both EG & Ec values 
decreases, as expected rise in Tg & Tp values. The most impor-
tant aspect of crystalline result characterization is, of course, 
XRD. XRD measurements were confirmed by mechanical 
and SEM analysis of crystalline samples. The establishment 
of glass-crystalline phases in the analysed glass series and the 
thermal stability of glasses were also revealed by this analysis. 
This behavior indicates that the addition of CeO2 enhanced the 
packing density and rigidity. Therefore, the ultrasonic veloci-
ties & elastic moduli increased. Heat treatment, in my opinion, 
resulting in some order and compactness.
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