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Abstract
A molecular dynamics (MD)-finite element (FE) modeling scheme is proposed to study the effective Young’s modulus of 
polymer nanocomposites reinforced by functionalized silicon carbide nanotubes (fSiCNTs). By evaluating the tensile and 
shear properties of the polymer matrix strengthened by hydroxyl (O–H)-, fluorine (F)-, and hydrogen (H)-fSiCNTs (O-, F-, 
and H-fSiCNT/polymer) through MD simulations, FE modeling with the consideration of equivalent solid fibers (ESFs) is 
conducted and the ratio of effective Young’s modulus of the unit cell ( E

UC
 ) to Young’s modulus of the polymer matrix ( E

P
 ) 

is reported. The influence of the chirality, and chemical functionalization of nanotubes along with the effects of the volume 
fraction of the ESFs, and polymer materials on the E

UC
 are discovered. The results show that the random dispersion of ESFs 

containing armchair fSiCNTs (ESFs-armchair fSiCNTs) within the polymers (ESFs-armchair fSiCNTs/polymer) instead of 
the ESFs-pure armchair fSiCNTs leads to reducing the E

UC
 . In every ESFs volume fraction ( ν

f
 ), the reinforcement impact of 

the ESFs-armchair and zigzag fSiCNTs on the polyethylene (PE) is more significant in comparison with the polypropylene 
(PP). Using the ESFs-zigzag H- and F-fSiCNTs/PP instead of the ESFs-pure zigzag SiCNTs/PP decreases EUC

/

E
P
 , while at 

the ESFs’ ν
f
 over 10%, the EUC

/

E
P
 of the ESFs-zigzag O-fSiCNTs/PP is higher than that of the ESFs-pure zigzag SiCNTs/PP. 

The ESFs-zigzag H- and F-fSiCNTs/PE as compared to the ESFs-pure zigzag SiCNTs/PE are experienced larger effective 
elastic moduli, however, only at the ESFs’ ν

f
 of 50%, the reinforcing impact of the ESFs-zigzag O-fSiCNTs within the PE 

is more considerable than that of the ESFs-pure zigzag SiCNTs.

Keywords  Silicon carbide nanotube · Effective Young’s modulus · Covalent functionalization · Molecular dynamics 
simulation · Finite element method

1  Introduction

The most widely used advanced composites, polymer matrix 
composites (PMCs), are characterized based on three com-
ponents called matrix phase, reinforcement, and the interfa-
cial region between matrix and reinforcement. A matrix is a 

continuous phase of composites and it can have macro- or 
micro-dimensions [1–5]. Unlike metals and ceramics matri-
ces, easy processing conditions, low cost, and mechanical 
flexibility of polymers offer substantial benefits to meet 
engineering requirements [6–9]. Due to the more desirable 
characteristics of PMCs compared to conventional metals or 
unreinforced polymers, general demand for PMCs has been 
increasing worldwide. The PMCs are considerably excel-
lent in both fatigue and corrosion resistance in comparison 
with metals [10]. Furthermore, the PMCs weigh less than 
conventional polymers and possess high strength and stiff-
ness along the direction of the reinforcement. To fulfill the 
need of a specific application, the PMCs’ form and features 
can be tailored which makes them more attractive. That is 
why the PMCs have found a vast variety of applications in 
automobiles, aircraft, electronics, biomedical instruments, 
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consumer products, and construction products, to mention 
a few [2, 11]. The PMCs are categorized into two groups 
namely thermoplastic or thermoset matrix resins reinforced 
by organic or inorganic fibers. Amongst thermoplastics pol-
ymers (e.g., polypropylene (PP), polyethylene (PE), poly-
methyl methacrylate (PMMA), polyvinyl chloride (PVC), 
Nylon), ethylene- and propylene-based polyolefins have 
been gaining in popularity [12]. Polyolefins composites are 
stronger than thermosets polymeric (e.g., epoxy, polyimide, 
polyester resins) systems with the contribution of their sem-
icrystalline and amorphous configurations [2]. Regarding 
the discontinuous phase of composites, i.e., reinforcements, 
they commonly exist in the micro- or nano-scale.The fun-
damental aim of intercalating the reinforcement into the 
matrix is to enlarge energy absorption and take advantage 
of their great stiffness and strength. [1]. Silicon carbide 
(SiC)-based materials have been highly recommended to 
be used as reinforcement phases of composites because of 
their remarkable ability to work in harsh environments and 
their usage in high-voltage, high-temperature, and high-
power electronic switches and rectifiers [13, 14]. The SiC 
exhibits semiconducting properties in the bulk form and 
it is recognized as a wide-bandgap semiconductor with 
ultra-high strength, high thermal conductivity, low thermal 
expansion, and good thermal stability [15, 16]. In addition 
to these charming properties of bulk SiC in macroscale, 
the quantum-size effects of SiC nanostructures prompt out-
standing physicochemical features [17, 18]. Accordingly, 
nanostructures made of SiC have been extensively utilized 
in nanosensors for hazardous gases detection, optoelec-
tronic devices, gas seal rings in compressor pumps, capsule 
materials for nuclear equipment, and biomedical engineer-
ing [19–21]. As the technology of crystal growth advances, 
the structures based on the SiC have been serving as build-
ing blocks for nanoscale electronics. As well as that the 
SiC nanostructures are reported to have enormous poten-
tial to use in nanocomposites because of their extremely 
high fracture strength [22–24]. Of 1D SiC nanosystems, 
the advantages of silicon carbide nanotubes (SiCNTs) out-
weigh their nanowires counterparts owing to having hollow 
configurations. Also, the SiCNTs are durable under elevated 
temperatures and reveal high melting temperatures. These 
nanotubes can retain their stability under 1000 ◦C (in air) 
[25, 26]. Compared to the carbon nanotubes (CNTs), the 
SiCNTs have drawn attention due to the capability of stor-
ing more hydrogen, less toxic impact while interacting with 
living cells, higher solubility, and comfier sidewall func-
tionalization [20, 27, 28]. All the aforementioned charac-
teristics make the SiCNTs absolutely ideal for working in 
extreme environments and conditions that cannot be guaran-
teed by employing CNTs. What is more, from both theoreti-
cal (e.g., density functional theory (DFT)) and experimental 

perspectives, the existence of tubular and graphitic forms of 
SiC has been anticipated [29–32]. Besides, multiple strate-
gies have been reported to perform the prosperous synthesis 
of the SiCNTs such as the method of extreme hole injec-
tion, and high-temperature reactions between Si powders 
and CNTs at 1200 ◦C for 100 h [29, 31]. Despite conducted 
experimental studies to measure properties of SiC-based 
nanocomposites, extensive theoretical research has been 
performed by computer simulation techniques to elucidate 
the experimental measurements and to circumvent tech-
nical challenges of the real experiments at the nanoscale. 
Molecular dynamics (MD) simulations and finite element 
(FE) based multiscale modeling are quite popular for theo-
retically studying the elastic properties of nanocomposites 
[33–38]. However, MD simulations of nanocomposites tend 
to be very time-consuming and be inappropriate for struc-
tures with the complexity of dimensions because of which 
these models have often contained merely a single nano-
filler in the matrix that is tuned in a defined direction. This 
is in contrast to real nanocomposite materials that include 
several reinforcements with a wide diversity of arbitrary 
distributions and orientations [39, 40]. Consequently, the 
FE analysis can be perfectly effective in having more realis-
tic modeling of randomly dispersed reinforcement/polymer 
nanocomposites with a longer time. In this regard, the FE 
techniques have been widely used to investigate the ran-
dom dispersion of CNTs within polymer matrices [41–47]. 
Hence, this paper aims at finding effective Young’s modulus 
of the equivalent solid fibers (ESFs) containing functional-
ized silicon carbide nanotubes (fSiCNTs) within the poly-
mers (ESFs-fSiCNTs/polymer) and ESFs containing pure 
silicon carbide nanotubes (SiCNTs) within the polymers 
(ESFs-pure SiCNTs/polymer) nanocomposites through a 
two-step modeling scheme. To achieve this perpose, MD 
simulations in conjunction with FE approach are employed. 
In the first step, with the consideration of the impact of the 
interfacial region, an MD-based cubic representative vol-
ume element (RVE) containing the fSiCNT and polymer 
matrix is simulated to calculate the longitudinal and trans-
verse tensile features and shear properties of the system as 
well. Next, the FE modeling is performed and MD results 
are fed to FE models to account for Young’s modulus of the 
unit cell ( E

UC
 ) of the ESFs-fSiCNTs/polymer. The effects 

of different volume fractions of ESFs, nanotubes’ chirality 
(zigzag and armchair), various functional atoms (O, F, H), 
and polymer materials (PE and PP) on the E

UC
 are explored. 

Moreover, it is important to recall that the prediction of 
the mechanical properties is considered to be absolutely 
indispensable for the design and application of polymeric 
nanocomposite materials strengthened by SiCNTs. The 
underlying reasons stem from the fact that lattice or thermal 
mismatch between nanoscale materials may lead to acute 
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stresses especially when SiC-based nanoelectromechanical 
systems (NEMS) are subjected to external loadings, being 
operated in harsh environments [13].

2 � Methodology

2.1 � Molecular Dynamics Method

To begin with, the MD simulations are performed to compute 
five independent elastic properties of the transversely isotropic 
RVEs of the fSiCNTs/ and pure SiCNTs/polymer. These five 
independent characteristics (longitudinal Young’s modulus 
( (E

L
)E

x
 ), transverse Young’s modulus ( (E

T
)E

y
 ), shear modulus 

in XY plane ( G
xy

 ), shear modulus in YZ plane ( G
yz

 ), Poisson’s 
ratio ( ϑ

xy
 )) are utilized to create the stiffness matrix ( C

ij
 ) which 

is supposed to be used as input to the FE modeling. The C
ij
 for 

transversely isotropic nanocomposites can be expressed by [48]:

In which ( C11 , C12 , C22 , C23 , C66 ) represent five independent 
elastic constants. In this work, Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS) code is employed to 
conduct tensile tests (longitudinal and perpendicular tensions) 
and shear tests (shearing in XY and YZ planes) for each pre-
pared model. To define inter-and intra-molecular interactions 
and determine the potential energy between atoms, generic 
Dreiding force field [49] and Tersoff potential function are con-
sidered [50]. Tersoff potential function calculates the energy 
terms among C and Si atoms in the SiCNT whereas interactions 
in the polymers, the place of functionalization, and between the 
nanotubes and polymer chains are modeled by generic Dreiding 
force field and Lennard–Jones (L-J) potential. Periodic bound-
ary conditions are imposed on all x, y, z directions of the cubic 
RVE structure. Choosing a time step of 0.5 fs, Newton equa-
tions are integrated according to Velocity-Verlet algorithm to 
describe the time-dependent behavior of a classical molecular 
system [51, 52]. After initial energy minimization by using the 
conjugate gradients technique, a canonical ensemble (NVT) 
simulation is implemented for 500 ps at 300 K. Following this 
stage, two further ensemble simulations are accomplished to 
achieve an equilibrated, geometry-optimized configuration. 
During these three equilibration processes, the thermodynamic 
properties (temperature and pressure) of the system are con-
trolled by Nosé-Hoover method [53]. The first step is followed 
by 0.5 ns of isothermal-isobaric (NPT) ensemble simulation 
at 300 K and 1 bar. Subsequently, the RVE is put into another 
NVT ensemble for 300 ps to relax at room temperature. Then, 

(1)C
ij
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0
C22−C23

2
0 0

0 0 0 0 C66 0

0 0 0 0 0 C66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, C
ij
= C

ji

the uniaxial tension tests are simulated by applying a displace-
ment of 0.000025 Å to each boundary of the equilibrated RVE 
along three loading directions (the X, Y, Z axes) separately. 
Periodic boundary conditions are selected for directions per-
pendicular to the applied strain whereas a shrink-wrapped, and 
non-periodic boundary condition is employed along the load-
ing direction. The system is stretched till the external strain is 
elevated up to 5% and bond-breaking happens. Also, the out-
comes are stored at every 1000 times steps. Finally, the slope of 
the stress–strain profiles is calculated to measure longitudinal 
and transverse Young’s moduli ( E

x
 and E

y
 ). To perform the 

shear tests in the XY, and YZ planes, the equilibrated RVE 
is distorted at each time step, and the component of stress in 
the loading direction is determined within the elastic limit. By 
using the shear stress-shear strain relation known as Hooke’s 
law in shear, shear moduli in the XY, and XZ planes ( G

xy
=G

yx

=G
xz

=G
zx

 ) and shear modulus in the YZ plane ( G
yz

=G
zy

 ) are 
estimated. Then, the fifth independent elastic constant of the 
stiffness matrix ( ϑ

xy
 ) is obtained by computing the ratio of the 

mean of transverse strain to the imposed normal strain. To this 
end, the pressure in the loading direction is not controlled to 
keep the external strain whereas the pressure tensor normal 
to the loading direction is allowed to be held at 1 atm. The 
generated results showed good agreement with the existing 
work in the open literature [39, 54]. Eventually, with the cal-
culation of all independent and dependent elastic features, the 
C
ij
 of transversely isotropic fSiCNT/polymer nanocomposite 

is determined. It is worth noting that due to simple relations 
of the inverse of stiffness matrix (compliance matrix) with the 
elastic moduli and Poisson’s ratios, the compliance matrix ( S

ij
 ) 

tends to be computed. The relationship between S
ij
 and C

ij
 is 

given by the following equation [55, 56]:

Where ϑ
yz

 is defined as:

2.2 � Molecular Dynamics Models

First off, the (11,0) zigzag and (6,6) armchair-types SiCNT 
and fSiCNTs as reinforcements are modeled by using 
MATLAB software. The length of the armchair and zigzag 

(2)C
ij
= S

−1

ij
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

E
x

−ϑ
xy

E
x

−ϑ
xy

E
x

0 0 0

−ϑ
xy

E
x

1

E
y

−ϑ
yz

E
y

0 0 0

−ϑ
xy

E
x

−ϑ
yz

E
y

1

E
y

0 0 0

0 0 0
2(1+ϑ

yz
)

E
y

0 0

0 0 0 0
1

G
xy

0

0 0 0 0 0
1

G
xy

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1

(3)
1

G
yz

=

2(1 + ϑ
yz
)

E
y

→ ϑ
yz

=

E
y

2 G
yz

− 1
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SiCNTs is considered ~ 68.1 Å and ~ 73.2 Å, respectively. 
The choice of these geometrical and structural characteris-
tics makes it possible for us to compare the results. As to 
the functionalized reinforcements (fSiCNTs), three func-
tional agents namely H, F, and O atoms are covalently con-
nected to the SiCNTs’ wall to investigate the functionaliza-
tion effect. It should be noted that rather than atomic O, the 
hydroxyl group (O–H) is attached to the host structure and 
the O-fSiCNT refers to the configuration that is chemically 
functionalized by O–H. The linkage of foreign atoms to the 
host structure is performed based on the random distribution 
pattern. To diminish the impact of functionalized spots on 
the results, three varied states of the random pattern are con-
sidered. Accordingly, each nanotube is modeled three times 
in every functionalization degree, and the ultimate quantity 
of tensile properties is obtained from averaging three cases. 
Furthermore, the weight percentage of randomly distributed 
atoms is selected 10%. Regarding polymer matrices, Accelrys 
Materials Studio software is employed to simulate the initial 
structure of PE and PP chains each of which comprises 15 
monomers. Figure 1 is provided to display the initial struc-
ture of the reinforcements, i.e., SiCNT and fSiCNTs. Sim-
ilarly, a sample of the primary molecular structure of the 
PP matrix along with repeating units of PE and PP chains 
can be observed in Fig. 2. It is worth noting further details 
about these chosen functional groups, reinforcements, and 

polymer matrices can be found in our newly published work 
[13, 16, 21]. Having been simulated nanofillers and poly-
mers, Packmol software package is utilized to model the RVE 
configuration of SiCNTs/polymer and fSiCNT/polymer [57]. 
The primary density of the RVE is considered 1.05 gr

/

cm3 , 
and the volume fraction of nanofiller is accounted for ~ 10%. 
This way, the dimensions of RVE periodic boxes for (6,6) 
fSiCNT/polymer, and (11,0) fSiCNT/polymer are estimated 
33.61 × 33.61 × 68.06 Å3, 35.29 × 35.29 × 73.23 Å3, corre-
spondingly. Some examples of molecular structures of the 
fSiCNTs/polymer RVEs are depicted in Fig. 3.

2.3 � Details of Finite Element Modeling

To compute effective Young’s modulus of polymer nano-
composites strengthened by ESFs-fSiCNTs (ESFs-fSiCNTs/
polymer) via the FE analysis, the ABAQUS software is 
chosen. First of all, the initial geometrical structure of each 
part, i.e., ESFs and polymer, is simulated separately and the 
cross-sectional area of each part is regarded as a homoge-
neous solid. Next, two different parts of the unit cell (ESFs 
and polymeric solid cube) are merged to form the unit cell 
comprising randomly distributed ESFs. To achieve this, the 
MD-based cubic RVE is turned into a homogenized cubic 
ESF (C-ESF) which demonstrates the transversely isotropic 

Fig. 1   Schematic representation 
of a SiCNTs, b O-fSiCNT, c 
F-fSiCNT, d H-fSiCNT
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behavior. As the properties of the C-ESF are independent 
of the RVE dimensions and shape, these characteristics can 
be used in new geometrical structures whose dimensions 
are the same as the C-ESF. To this end, the current C-ESF 
is transformed into a cylindrical structure whose length 
and cross-sectional area are almost equal to the length and 
cross-section of the C-ESF. This cylindrical configuration 
is so-called the ESF. Not only does this equivalence assist 
in not getting involved in the FE modeling of the interface 
region, but also it allows us to make easier comparisons with 

FE-based previous studies which were directly dealt with 
the random dispersion of nanotubes in the polymer matrix. 
This equivalence is shown in Fig. 4. In the FE modeling, the 
basic point is that the volume fraction ( ν

f
 ) of ESFs inside 

the polymer matrices needs to be accurately determined. In 
the earlier section, the ν

f
 of nanotubes within the RVE is 

evaluated to be 10% ( ν
f
NT

= 10% ) which implies that the 
nanotubes include 10% of each ESF’s volume. Therefore, 
the total volume fraction of nanotubes in the FE-based unit 
cell ( ν

f
T
 ) can be obtained as

Fig. 2   a Molecular structure of 
the PP matrix, b repeating unit 
for the PE, c repeating unit for 
the PP

Fig. 3   MD-based RVE model of 
a SiCNT/PP, b O-fSiCNT/PP, c 
F-fSiCNT/PP, d H-fSiCNT/PP
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Where ν
f
NT

 , and ν
f
ESF

 denote the volume fraction of nano-
tubes in the MD-based cubic RVE, and volume fraction of 
ESFs inside the polymers in the FE-based unit cell, respec-
tively. In this paper, the ν

f
T
 is assumed to be 1%, 3%, and 5% 

which means that the ESFs constitute 10%, 30%, and 50% of 
the volume of the FE-based unit cell, correspondingly. Accord-
ingly, the 15, 45, and 75 ESFs are randomly distributed in 
the PE and PP matrices (see Fig. 5). In addition to the mod-
eled ESFs, a sample of the ESFs-nanotubes/polymer unit cell 
is revealed in Fig. 5. To compare the outcomes, the volume 
of ESFs including armchair and zigzag nanotubes is selected 
nearly equal. Thus, the unit cell with the same dimensions in 
both cases is generated. Each side length of the cubic unit cell 
is considered ~ 500 Å. The size of unit cells and geometrical 
characteristics of fillers (ESFs and nanotubes) are summarized 
in Table 1. In this paper, the ESFs are modeled as transversely 
isotropic materials while the polymers are considered as iso-
tropic materials whose mechanical properties, i.e., Young’s 
modulus and a Poisson’s ratio, are obtained from MD simula-
tions. Also, the C

ij
 is introduced to the software (see Eq. 1) as 

the mechanical feature of the ESFs. It should be noted that 
the unit of all fed Young’s moduli to ABAQUS software is 
defined as N/Å2 to have a precise dimensional simulation at 
the nanolevel. Eventually, the simulated parts are combined 
and the interactions between the polymers and the ESFs are 

(4)ν
f
T
= ν

f
NT
× ν

f
ESF

assumed to be a perfect bonding. The fact is that despite sev-
eral approximate methods reported on FE modeling of the 
interfacial region, the use of these approaches is restricted due 
to the facing challenges in the simulation of the complicated 
nature of the interface. Therefore, the utilization of ESFs can 
overcome those obstacles because the ESFs are representa-
tive of MD-based RVE and the interfacial effect has already 
been considered. Moreover, to calculate the effective elastic 
modulus, it is necessary to apply displacement over different 
sides in the unit cell. Having been fixed a reference point on a 
plane, this displacement (~ 25 Å) is imposed on the reference 
point at the intersection of the diameters of each side. Then 
it is coupled with various parts of that plane. This causes a 
uniform displacement of each side of the unit cell. Each load-
ing to the reference point is individually conducted along x, 
y, and z directions and the average of three cases is reported 
as the final outcome. The clamped-free boundary condition 
is assumed based on which the unit cell side in front of the 
plane on which the strain is imposed, needs to be fixed while 
other sides are completely free. Another point that should be 
mentioned is that quadratic tetrahedral elements (C3D10) are 
chosen to measure the effective Young’s modulus of the unit 
cell. These elements are capable of analyzing three-dimen-
sional stress and the specimens are meshed by using tetragonal 
shape elements. The optimal value of ~ 20 Å is obtained for 
the mesh-seed length. To discover this optimal value, the unit 
cell meshes in three different seed sizes and Young’s modulus 

Fig. 4   Schematic view of con-
verting the MD-based RVE into 
the FE model of the ESF
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of the meshed unit cells is computed. The findings are experi-
enced the lowest dependence on the size of elements at mesh 
seed size of ~ 20 Å. A sample of the meshed unit cell and its 
components is illustrated in Fig. 6. This unit cell can represent 
a bulk composite material. Additionally, according to Hooke’s 
law, the effective Young’s modulus of the ESFs-SiCNTs/poly-
mer nanocomposite within the linear elastic limit of stress/
strain is obtained as

Where σ
UC

 , F
RP

 , and A denote the stress on the unit cell, 
the reaction force of the reference point in the displacement 
of one side of the unit cell, and cross-sectional area of one 
side of the unit cell, respectively. Furthermore, E

UC
 and ε

UC
 

indicate Young’s modulus and strain of the unit cell in the 
elastic limit, correspondingly. This way, the E

UC
 along x-, y-, 

(5)σ
UC

=
F
RP

A

(6)E
UC

=
σ
UC

ε
UC

, at ε
UC

= 0.03 ⇒ E
UC

=
F
RP

0.03A

and z-axes is calculated and the average value of these three 
results is reported as the final elastic modulus.

To perform the above-mentioned FE modeling, a basic pro-
gramming language with greater algorithmic ability, such as the 
C +  + program, is first used. In this programming language, the 
position of the reference point and the angle of the centerline of 
the ESFs relative to the origin of the absolute coordinates are 
precisely determined. Then, the volume fraction is accurately 
calculated by considering the imperfect fillers on the sides to 
establish the periodic boundary conditions. For this purpose, an 
algorithm is developed and results are inserted into a script file 
written by the Python programming language. The flowchart of 
the aforementioned algorithm can be seen in [39]. In the next 
step, the written Python code is responsible for constructing and 
dispersing ESFs within the polymers according to the numbers 
introduced by the C +  + code. Hence, an ESF with the speci-
fied dimensions is formed by Python code and then the ESF 
is located in the desired space based on the defined positions. 
Herein, some incomplete or truncated ESFs may place at the 
corners of the unit cell and the rest of the incomplete ESFs are 

Fig. 5   FE model of a 15 ESFs, 
b 45 ESFs, c 75 ESFs, d ESFs-
SiCNTs/polymer unit cell

Table 1   Dimensions of 
FE-based unit cells and 
nanofillers characteristics (ESFs 
and nanotubes)

SiCNTs

Chirality (6,6) armchair (11,0) zigzag

Length of nanotubes, ESF, and RVEs (L) [Å] 68.06 73.23
MD-based RVEs cross-sectional area [Å2] 33.61×33.61 35.29×35.29
ESFs diameter [Å] 37.93 39.82
Length of each side of the FE-based unit cell [Å] 451.78 478.21
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utilized in the opposite boundary so that the unit cell possesses 
a certain number of fillers with the desired volume percentage 
and the periodicity criterion is satisfied as well. As to the sur-
rounding polymers of the ESFs, a solid cube with the desired 
dimensions is created and subsequently, the spaces where the 
ESFs are available in this volume are removed.

3 � Results and Discussion

3.1 � Elastic Properties of MD‑based Nanofillers 
(SiCNTs and fSiCNTs)

In this section, Young’s moduli in longitudinal and trans-
verse directions, as well as shear moduli, are explored in the 
armchair and zigzag fSiCNTs/polymer RVEs. The findings 
are compared to the outcomes of the pure SiCNT/polymer. 
Tables 2–5 are provided to show the list of the results. It has 
to be pointed out that the actual code has been already vali-
dated in our recently published papers [13, 16]. As revealed 
in Tables 2–5, the longitudinal Young’s modulus of the RVEs 
( (E

L
)E

x
 ) is extremely larger than transverse Young’s modulus 

( (E
T
)E

y
 ), and shear moduli ( G

xy
 and G

yz
 ). This means that 

the longitudinal Young’s modulus affects mechanical prop-
erties more significantly compared to the rest of the moduli. 
Considering the influence of polymer materials, the pure 
SiCNT/PP RVEs possess a higher stiffness in comparison 
with the pure SiCNT/PE structures in general. This can be 
attributed to stronger interactions between the pure SiCNT and 
the surrounding PP matrix within the interfacial region and 
larger Young’s modulus of the PP compared to the PE [58, 
59]. Furthermore, lower values of shear moduli for the pure 
SiCNT/PE compared to the pure SiCNT/PP imply that their 
flexibility is smaller than that of the pure SiCNT/PP and thus 

the required force to laterally deform the pure SiCNT/PE is 
less than the pure SiCNT/PP. Comparing the pure armchair 
and zigzag SiCNT/polymer RVEs, the pure zigzag SiCNT/
polymer tends to experience higher Young’s and shear moduli 
which means that the pure zigzag SiCNT has a more consider-
able reinforcing impact. Form Tables 2 and 4, the longitudi-
nal Young’s moduli of pure zigzag SiCNT/PE and PP are 8% 
and 4% greater than those of pure armchair SiCNT/PE and 
PP, respectively. Moving on to the fSiCNTs/polymer RVEs, 
the functionalization of the armchair SiCNT causes the lon-
gitudinal Young’s modulus of the RVE to decrease whereas it 
often has a beneficial effect on transverse Young’s modulus 
and shear moduli. The reduction of the longitudinal Young’s 
modulus is due to the fundamental alteration of the nanotubes 
cross-section and hybridization state of atoms, which causes 
the armchair fSiCNT to show lower resistance to deformation 
and the RVE strength diminishes in response to the applied 
tensile load [59, 60]. Regarding the zigzag fSiCNTs/polymer, 

Fig. 6   Meshed structure of the a ESFs, b polymer matrix, c ESFs-SiCNTs/polymer unit cell

Table 2   Young’s and shear moduli of the armchair nanotubes/poly-
mers RVEs

Armchair nanotubes/polymers

Polymers Nanotubes Elastic properties (GPa)

E
x
(E

L
) E

y
(E

T
) G

xy
G

yz

(PE) Pure SiCNT 36.35 0.996 0.375 0.409
F-fSiCNT 32.78 1.003 0.385 0.412
H-fSiCNT 34.59 0.999 0.379 0.406
O-fSiCNT 32.23 1.013 0.389 0.423

(PP) Pure SiCNT 37.44 1.546 0.549 0.562
F-fSiCNT 33.61 1.552 0.555 0.566
H-fSiCNT 34.07 1.549 0.551 0.564
O-fSiCNT 32.27 1.561 0.562 0.568
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the functionalization of the zigzag SiCNT leads the fSiCNTs/
PP RVEs to be less stiff compared to the pure zigzag SiCNTs/
PP. However, the stiffness of zigzag H- and F-fSiCNTs/PE 
RVEs is calculated more than that of the pure zigzag SiC-
NTs/PE. Also, a positive impact can be observed in transverse 
Young’s modulus and shear moduli of the RVEs containing PE 
when they include the zigzag fSiCNTs (see Table 4). Based 
on the simulation outcomes, it can be observed that the larger 
transverse Young’s modulus and shear moduli in various direc-
tions for the armchair and zigzag O-fSiCNTs/PP compared to 
the F-fSiCNTs/PP and H-fSiCNTs/PP illustrate that the rein-
forcement effect of the O-fSiCNTs leads to stiffer configura-
tions and further increased the RVE resistance to transverse 
deformations. The same results are achieved in the armchair 
and zigzag O-fSiCNTs/PE in comparison with F-fSiCNTs/PE 
and H-fSiCNTs/PE peers. In this context, the least strengthen-
ing effect on the transverse Young’s modulus and shear moduli 
pertains to the H-fSiCNTs (see Tables 2–5). However, the arm-
chair H-fSiCNTs/polymer show a higher longitudinal Young’s 
modulus as they compare with the outcomes of the armchair 
O- and F-fSiCNTs/polymer. Similarly, the zigzag H-fSiCNTs/
PE is stiffer than that of the zigzag O- and F-fSiCNTs/PE. 
In the zigzag fSiCNTs/PP, the maximum and minimum stiff-
ness is associated with O- and F-fSiCNTs/PP, and the result 
of H-fSiCNTs/PP comes in between (see Tables 4 and 5). This 
can be ascribed to the fact that the highest and lowest effective 
interfacial areas for interactions in the zigzag O- and F-fSiC-
NTs/PP are provided, correspondingly. From Tables 2 and 3, 
the armchair H-fSiCNT has a more profound influence on the 
longitudinal Young’s modulus of RVEs containing the PE 
compared to the identical system including the PP. However, 
the armchair F- and O-fSiCNTs exert a more powerful effect 
on improving the longitudinal Young’s modulus of armchair 
F- and O-fSiCNTs/PP RVEs in comparison with armchair 
F- and O-fSiCNTs/PE systems. As well as that the transverse 
Young’s modulus and shear moduli of the armchair fSiCNTs/
PP RVEs are greater than those of the identical systems includ-
ing PE. In other words, the ability of the armchair fSiCNTs/
PP RVEs to withstand transverse-normal deformations, and 

shear deformations is more than that of armchair fSiCNTs/PE 
RVEs. Furthermore, it can be concluded that firstly, the poly-
mer phase compared to the reinforcement has a more key role 
to play in the determination of transverse Young’s modulus 
and shear moduli of nanocomposite systems. As a result, the 
values of transverse Young’s modulus and shear moduli of the 
RVEs are close to the quantities of polymers in the absence of 
nanofillers (pure polymer). Likewise, the zigzag fSiCNTs/PP 
RVEs can endure higher transverse-normal deformations, and 
shear deformations compared to the zigzag fSiCNTs/PE sys-
tem. Moreover, larger effective interplays between two phases 
in the zigzag F-, O- and H-fSiCNTs/PE RVEs give rise to 
higher longitudinal Young’s moduli than the zigzag F-, O- and 
H-fSiCNTs/PP, correspondingly (see Table 4 and 5).

3.2 � Elastic Properties of MD‑based Polymer 
Matrices (PE and PP)

Elastic properties of pure polymers are required to be deter-
mined and fed to ABAQUS software as input data. As men-
tioned before, the polymers are assumed to be isotropic materi-
als whose properties stay equal in different directions. To prove 

Table 3   Coefficients of the 
stiffness matrix ( C

ij
 ) for the 

armchair nanotubes/polymers 
RVEs

Armchair nanotubes/polymers

Polymers Nanotubes Coefficients of the stiffness matrix (GPa)

C11 C12 C22 C23 C66

(PE) Pure SiCNT 36.89 0.674 1.198 0.486 0.375
F-fSiCNT 33.32 0.680 1.208 0.491 0.385
H-fSiCNT 35.13 0.677 1.203 0.489 0.379
O-fSiCNT 32.78 0.678 1.221 0.497 0.389

(PP) Pure SiCNT 38.17 0.967 1.832 0.711 0.549
F-fSiCNT 34.35 0.972 1.842 0.717 0.555
H-fSiCNT 34.81 0.970 1.837 0.715 0.551
O-fSiCNT 33.01 0.979 1.854 0.722 0.562

Table 4   Young’s and shear moduli of the zigzag nanotubes/polymers 
RVEs

Zigzag nanotubes/polymers

Polymers Nanotubes Elastic properties (GPa)

E
x
(E

L
) E

y
(E

T
) G

xy
G

yz

(PE) Pure SiCNT 39.35 1.007 0.373 0.412
F-fSiCNT 40.25 1.025 0.386 0.417
H-fSiCNT 40.77 1.020 0.379 0.411
O-fSiCNT 39.21 1.042 0.394 0.425

(PP) Pure SiCNT 39.01 1.557 0.557 0.563
F-fSiCNT 34.97 1.569 0.558 0.566
H-fSiCNT 35.31 1.563 0.554 0.560
O-fSiCNT 38.97 1.572 0.561 0.567
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this, the PE and PP with the RVE dimensions are modeled 
and subjected to tensile and shear loadings. The Young’s and 
shear moduli are measured along x, y, and z directions whose 
outcomes are approximately equal. The findings demonstrate 
good agreement with the existing literature and the average of 
these results is used as the final value (see Table 6). It is found 
that the PE matrix is less stiff and flexible than the PP matrix.

3.3 � Effective Young’s Modulus of the ESFs‑SiCNTs/
polymer Nanocomposite

To validate the code, an RVE containing randomly dispersed 
pure carbon nanotubes (CNTs) within the PE is simulated. 
The findings are compared with the Mori–Tanaka approach- 
and FE-based results in the open literature and also the out-
comes based on the proposed method in this paper. For this 
objective, the armchair CNTs are selected and the volume 
fraction of the CNTs is accounted for 3% which is equivalent 
to the ESFs with a volume fraction of 30%. The choice of the 
CNTs goes back to the fact that first and foremost, the random 
distribution of the fSiCNTs inside the polymers has not been 
carried out yet. Secondly, herein, the random dispersion of 
the fSiCNTs within the polymers is substituted by randomly 
distributed ESFs comprising the fSiCNTs (ESFs-fSiCNTs). 
This is considered as one of the innovations of this article and 
cannot be found in formerly published studies. The results 
are presented in Table 7 and they agree well with those in the 

literature. Herein, the EUC

/

EP
 stands for the ratio of effective 

Young’s modulus of the unit cell to Young’s modulus of the 
polymer matrix. Having performed the code verification, the 
ESFs-armchair fSiCNTs and ESFs-zigzag fSiCNTs at three 
various volume fractions of 10%, 30%, and 50% are incorpo-
rated in the polymers (PE and PP) whose results are given in 
Figs. 7 and 8. Besides, the findings are compared with those 
of ESFs-pure SiCNTs/polymer nanocomposite. The simula-
tions illustrated that the functionalization of armchair SiCNTs 
leads to the reduction of the E

UC
 of the polymer nanocompos-

ite. To put it another way, the use of ESFs-armchair fSiCNTs 
results in the weakening of the effective elastic modulus of 
the system. This is due to the reduced longitudinal Young’s 
modulus of the MD-based RVE and this point is elaborated 
in Section 3.1. In this respect, the least and highest function-
alization effect on the decline of effective Young’s modulus 
is related to the ESFs-armchair H-fSiCNTs and ESFs-arm-
chair O-fSiCNTs, respectively. Also, the influence of the 
ESFs-armchair F-fSiCNTs on diminishing effective Young’s 
modulus lays between them. As can be observed in Fig. 7, the 
increase of the volume fraction of ESFs-armchair nanotubes 
has a positive effect on the EUC

/

EP
 . As the ESFs’ ν

f
 elevates, 

the value of the EUC

/

EP
 for the ESFs-pure armchair SiCNTs/

PE and ESFs-pure armchair SiCNTs/PP changes from 1.1547 
to 1.5017, and 1.1505 to 1.4877, respectively (see Fig. 7). 
In a defined ESFs’ ν

f
 , the ESFs-pure armchair SiCNTs/PE 

possesses greater EUC

/

EP
 than that of the ESFs-pure armchair 

Table 5   Coefficients of the 
stiffness matrix ( C

ij
 ) for the 

zigzag nanotubes/polymers 
RVEs

Zigzag nanotubes/polymers

Polymers Nanotubes Coefficients of the stiffness matrix (GPa)

C11 C12 C22 C23 C66

(PE) Pure SiCNT 39.89 0.681 1.211 0.491 0.373
F-fSiCNT 40.80 0.693 1.232 0.500 0.386
H-fSiCNT 41.32 0.689 1.226 0.497 0.379
O-fSiCNT 39.77 0.705 1.253 0.509 0.394

(PP) Pure SiCNT 39.75 0.973 1.844 0.716 0.557
F-fSiCNT 35.72 0.982 1.866 0.724 0.558
H-fSiCNT 36.05 0.978 1.854 0.721 0.554
O-fSiCNT 39.72 0.982 1.861 0.722 0.561

Table 6   Elastic properties of the pure polymers

Polymers Elastic properties (GPa)

Current research Previous studies

E G E G Reference

(PE) 1.1104 0.4325 1.05 0.38 [61]
(PP) 1.6257 0.5721 1.67 0.6 [62]

Table 7   Results of present research for the ESFs/PE and CNT/PE in 
comparison with the literature findings

E
UC

/

E
P

Current research Previous studies [33]

ESF/PE CNT/PE Mori–Tanaka FEM
1.3013 1.2776 1.23 1.22
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Fig.7   Value of 
E
UC

/

E
P
 for the ESFs-

armchair nanotubes/
polymer at ESFs’ ν

f
 

of, a 10%, b 30%, 
c 50%
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Fig. 8   Value of EUC

/

E
P
 

for the ESFs-zigzag 
nanotubes/polymer at 
ESFs’ ν

f
 of, a 10%, b 

30%, c 50%
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SiCNTs/PP. This implies that the reinforcing influence of the 
ESFs-pure armchair SiCNTs on the less stiff polymer (PE) is 
more notable than that of the PP with higher stiffness. Like-
wise, the dispersion of ESFs-armchair fSiCNTs within the PE 
gives rise to a higher effective elastic modulus compared to 
the ESFs-armchair fSiCNTs intercalated in the PP, and hence 
the ESFs-armchair fSiCNTs managed to further strengthen 
the PE. Moving on to Fig. 8, the results demonstrated that the 
ESFs-pure zigzag SiCNTs/PE are experienced a larger EUC

/

EP
 

compared to the ESFs-pure zigzag SiCNTs/PP and the value 
of EUC

/

EP
 increases by changing ESFs’ ν

f
 from 10 to 50%. 

These outcomes mean that the higher ESFs’ ν
f
 becomes, the 

stiffer the polymeric nanocomposite will be. In addition, using 
the ESFs-pure zigzag SiCNTs could bring further benefits for 
the PE in comparison with the PP. The EUC

/

EP
 of the ESFs-

pure zigzag SiCNTs/PE varies from 1.1584 to 1.5193 whereas 
the variation range of  EUC

/

EP
 for the ESFs-pure zigzag SiC-

NTs/PP is obtained from 1.1537 to 1.4813 (see Fig. 8). Con-
sidering the impact of functional groups (F, H, and O atoms), 
the higher reactivity of O atom with the PP phase causes the 
effective elastic modulus of the ESFs-zigzag O-fSiCNTs/PP 
at 10% ESFs’ ν

f
 is estimated roughly equal to the quantity 

of the ESFs-pure zigzag SiCNTs/PP. Also, at the ESFs’ ν
f
 

over 10%, the effective elastic modulus of the ESFs-zigzag 
O-fSiCNTs/PP exceeds the ESFs-pure zigzag SiCNTs/PP 
value which can be attributed to larger interactions energy and 
more interlocking between the ESFs-zigzag O-fSiCNTs and 
the PP phase compared to what happens to the ESFs-zigzag 
F- and H-fSiCNTs and the PP. It can be concluded that the uti-
lization of the randomly dispersed ESFs-zigzag O-fSiCNTs at 
the volume fractions of 30% or more is in favor of the system 
stiffness in comparison with the ESFs-pure zigzag SiCNTs/
PP. A comparison between the effective elastic modulus of the 
ESFs-zigzag H- and F-fSiCNTs/PE with the ESFs-pure zig-
zag SiCNTs/PE reveals that the ESFs-zigzag H- and F-fSiC-
NTs at all ESFs’ ν

f
 contribute to the stiffness of PE nano-

composites (see Fig. 8). In this regard, the larger longitudinal 
Young’s modulus of the zigzag H- and F-fSiCNTs/PE RVEs 
than that of their pure counterpart is the most determining fac-
tor. It is found that the reinforcing impact of the ESFs-zigzag 
O-fSiCNTs within the PE is of great importance at the ESFs’ 
ν
f
 of 50% because of producing a bigger EUC

/

EP
 compared to 

the ESFs-pure zigzag SiCNTs/PE. However, at the ESFs’ ν
f
 

of 10% and 30%, the effect of lower longitudinal Young’s 
modulus of the zigzag O-fSiCNTs/PE RVEs than that of the 
pure zigzag SiCNTs/PE RVEs dominates the effective elastic 
modulus of the nanocomposite. From Fig. 8, one can conclude 
that amongst the ESFs-zigzag fSiCNTs for every ESFs’ ν

f
 , 

the ESFs-zigzag H-fSiCNTs inserted into the PE are led to 
higher effective Young’s moduli while the maximum effective 
Young’s modulus of PP nanocomposites is achieved in the 

ESFs-zigzag O-fSiCNTs/PP unit cell.Fig.7   Value of EUC

/

E
P
 for 

the ESFs-armchair nanotubes/polymer at ESFs’ ν
f
 of, a 10%, b 30%, c 

50%Fig. 8   Value of EUC

/

E
P
 for the ESFs-zigzag nanotubes/polymer at 

ESFs’ ν
f
 of, a 10%, b 30%, c 50%

4 � Conclusion

In this paper, a multiscale model was simulated by combining 
MD and FE approaches. The fundamental objective was to 
find the effective Young’s modulus of polymeric nanocom-
posites through a two-step simulation. At first, to form the 
stiffness matrix of the transversely isotropic RVEs, the inde-
pendent elastic constants were calculated by using MD simu-
lations. Thereupon, the equivalence of the MD-based RVE 
was modeled via the FE method and the random dispersion of 
the FE model inside the polymers was conducted. From the 
simulations, the outcomes could be summarized as follows:

	 I.	 Amongst independent elastic characteristics required 
for the stiffness matrix, the longitudinal Young’s 
modulus was found to be the most efficacious 
mechanical feature.

	 II.	 The longitudinal Young’s modulus of pure armchair 
SiCNTs/polymer and pure zigzag SiCNTs/PP was 
accounted for larger than that of the armchair fSiC-
NTs/polymer and zigzag fSiCNTs/PP, respectively.

	 III.	 As to the reinforcing effect of armchair fSiCNTs on 
the longitudinal Young’s modulus of the RVEs, the 
highest and lowest stiffness belonged to the armchair 
H- and O-fSiCNTs/polymer RVEs, correspondingly. 
Considering the zigzag fSiCNTs/PE RVEs, similar 
results were achieved.

	 IV.	 The zigzag O- and F-fSiCNTs were affected the 
maximum and minimum impact on the stiffness of 
the zigzag fSiCNTs/PP RVEs, respectively.

	 V.	 Generally, using the pure zigzag SiCNT and zigzag 
fSiCNTs instead of their armchair counterparts as 
reinforcements was led to further enhanced elastic 
properties of the RVEs.

	 VI.	 In every ESFs’ ν
f
 , the use of ESFs-armchair fSiCNTs 

nanofillers rather than ESFs-pure armchair fSiCNTs 
resulted in a decline in the EUC

/

EP
 . The highest and 

lowest reduction of the EUC

/

EP
 was associated with 

the ESFs-armchair O- and H-fSiCNTs/polymer, cor-
respondingly.

	VII.	 In each ESFs’ ν
f
 , the value of EUC

/

EP
 for the ESFs-

armchair and zigzag fSiCNTs/PE was computed 
more than that of the ESFs-armchair and zigzag fSiC-
NTs/PP which demonstrated that the reinforcement 
effect of the ESFs-armchair and zigzag fSiCNTs on 
the PE was more remarkable.
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	VIII.	 The random dispersion of the ESFs-zigzag H- and 
F-fSiCNTs within the PP instead of the ESFs-pure zig-
zag SiCNTs diminished the EUC

/

EP
 while at the ESFs’ 

ν
f
 over 10%, the randomly distributed ESFs-zigzag 

O-fSiCNTs inside the PP enhanced the EUC

/

EP
.

	 IX.	 Incorporation of the ESFs-zigzag H- and F-fSiCNTs 
into the PE rather than using the ESFs-pure zigzag SiC-
NTs was led to the elevated effective elastic modulus. 
However, just at the ESFs’ ν

f
 of 50%, the ESFs-zigzag 

O-fSiCNTs/PE was experienced a larger EUC

/

EP
 com-

pared to that of the ESFs-pure zigzag SiCNTs/PE.
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