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Abstract
In climate change scenarios, biotic and abiotic stresses are among the serious environmental strains that limit agricultural 
productivity worldwide. Silicon (Si) compounds are now getting much attention in agriculture as a result of explorations 
into their beneficial effects on plant growth, and development under adverse environments. This review seeks to understand 
the roles of transport pathways, the up- and down-regulation of biochemical responses, and transporter genes in Si’s effects. 
Exogenous application of Si enhances plant antioxidant defenses and decreases oxidative stress by limiting production of 
reactive oxygen species (ROS). Biofortification is one of the best techniques to reduce biotic and abiotic stresses by enhanc-
ing a plant’s capacity to accumulate Si. Identifying the novel genes involved in Si transport and modulating their expression 
level through genetic engineering is one option being considered to prevent biotic and abiotic damage to crop, and to reduce 
the applications of toxic pesticides, herbicides, and fungicides.

Keywords Abiotic stress · Biotic stress · Biofortification · Reactive oxygen species · Biochemical responses · Antioxidant 
defence

1 Introduction

Silicon (Si) was first used in agriculture in China more 
than 2000 years ago. The emperor of that time ordered that 
manure and rice straw must be incorporated and used as 
fertilizer to increase crop yield. Today, several studies have 
reported that rice tissues contain Si ranging from 1 to 10 
dag/kg. This could be considered as the first evidence of 
indirect Si application in agriculture as fertilizer to enhance 
the yield. Later in 1971, a Japanese plant chemist evalu-
ated the potential of Si in reducing the effect of blast dis-
ease in rice and his results got the attention of scientists 
worldwide to discover more about this element. In 1939, 

for the first time, the role of Si in stimulating plant growth 
and development under biotic stresses in dicot plant species 
was reported. As a result of research from the 1980s until 
today, silicon’s potential to decrease the intensity of many 
biotic and abiotic stresses is now known for a large number 
of plant species [1].

Climate change in recent years has become a serious 
threat to agricultural productivity by bringing biotic 
and abiotic stresses with greater force [2–4]. Biotic and 
abiotic stresses are widespread throughout the world 
and adversely affect crop productivity by reducing 70% 
average yield in all major staple crops. Plants come up 
with strategies to escape from stresses and induce such 
mechanisms at molecular and physiological levels that fit 
well in the changing environment [5–7]. Plants are capa-
ble of sensing external stimuli and inducing metabolic 
instability to activate an array of defense mechanisms to 
alleviate biotic and abiotic stress [8–11]. Several external 
stimuli can activate the plant defense mechanism under 
stressful conditions but the current focus is on Si in miti-
gating biotic and abiotic stresses and its interaction with 
other stimulus factors.
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Si is the  8th most common naturally occurring element. 
It is the second most abundant element after oxygen in 
rocks and soil [12]. Si is a non-essential element involves 
in the growth and development of plants [13]. Crops like 
rice, barley, wheat or silicifiers (plants that can accumulate 
Si at high concentration to benefit themselves by build-
ing silicified architectures under certain conditions like 
drought stress or fungal infection), such as horsetail per-
form better during Si supplementation and suffer under 
adverse climatic conditions if Si deficiency occurs.[14, 
15]. Si is available to the plants in the form of silicic acid, 
Si(OH)4, through aquaporin channels, NIPs (Nod26-like 
intrinsic proteins) [16]. The permeability of wheat to 
silicic acid is determined by a specific amino acid arrange-
ment in the conserved asparagine–proline–alanine (NPA) 
domains of aquaporins [17]. Plants are categorized into 
excluders, intermediate, and accumulator types depending 
upon the ability of Si accumulation [18]. Accumulators 
(plant species that have capability of accumulating Si at 
concentration ≥ 1 g-kg−1 in their tissues) include wheat, 
Equisetales, cyperales and rice. They can accumulate Si up 
to 10% of dry shoot weight, which is why these crops are 
known as high silicifiers [19]. Tomato is considered as Si 
excluder (plant species that can accumulate Si < 1 g-kg−1 
in their tissues), whereas common nettle (Urtica dioica) 
is an example of an intermediate (plant species that can 
accumulate moderate level of Si in their tissues) [20]. A 
list of plant species classified into the three Si accumula-
tion categories is shown in Table 1.

Addition of silicic acid to growth media results in 
greater resistance to biotic stresses and increased plant 
vigour [18, 47]. Plant tissue culture is a vital method for 
culturing plant cells, tissues, and even complete plants 
under controlled environmental and nutritional conditions 
[48]. Plant growth media is composed of both organic 
and inorganic nutrients essential for plant growth and 
development. The type and concentration of nutrient is 
determined according to the particular species of plants 
[49, 50]. Care must be taken to include only desirable 
nutrients in the culture media because some compounds 
may have adverse effects on plant growth. For example, 
application of an unsuitable nutrient composition might 
result in physiological disorders in plants like shoot tip 
necrosis and hyperhydricity. Upward curling of leaves 
is caused by inappropriate concentrations of inorganic 
nutrients in the culture medium [51]. Several reports are 
found that exogenous Si application in media improved 
the growth and yield of plants under biotic as well as 
abiotic stress [52–55]. Exogenous application of suit-
able amounts of Si in culture media, showed significant 
improvements on plant growth such as healthy roots and 
shoots and greater plant vigour [48]. It has also been 
reported that application of Si to plants under salinity 

stress resulted in better development of promising traits. 
Silicon added up to 3.6 mM in culture media resulted in 
an increase in both fresh and dry weight of shoots and 
roots and also in the number of leaves per shoot. Raising 
the Si concentration up to 7.2 mM increased root length 
[48, 56]. Adding Si at a concentration of 3.6 mM also 
resulted in maximum production of chlorophyll; however, 
concentrations greater than this might adversely affect the 
chlorophyll level [48, 57].

To optimize food production in terms of quality and 
quantity, different plants need to be exposed to specific 
nutrient blends to enhance resistance to various adverse 
environmental effects. Through genome editing technolo-
gies like CRISPR/Cas9 and TALEN, modification in plant 
genome can be done to develop tolerance against adverse 
environmental effects; but these technologies are expen-
sive and labour-intensive [58, 59]. Toxic elements sup-
press plant growth and development whereas contrarily 
essential elements have been proven vital for plant growth 
and development even under adverse conditions [60]. 
Scientists have conducted many experiments to measure 
the effects of Si on plant growth and concluded that Si 
improves plant performance throughout the lifecycle [61]. 
For example, an investigation showed that Si controlled 
the fungal disease (cucumber powdery mildew) by accu-
mulating in leaf and root tissues to make a silica layer over 
epidermal cells. It was concluded that macro-elements 
have the ability to produce inactive glycosylates or phy-
toalexins, which are activated by Si to cause fungal cell 
death [62]. It was also reported that Si reduced membrane 
damage and enhanced tolerance to stress in tomato (Sola-
num lycopersicum) and spinach (Spinacia oleracea) [44, 
63]. In wheat (Triticum aestivum), Si promoted resistance 
to powdery mildew and oxidative damage under drought 
stress [64, 65]. In this review we will present and discuss 
in detail, the current knowledge about Si’s role in plant 
defence against abiotic and biotic stress.

Table 1  Classification of plants according to their silicon accumula-
tion capacity

Excluders
 < 0.5% Si

Intermediates
0.5–1.5% Si

Accumulators
 > 1.5% Si

References

Grape Squash Wheat [21–23]
Sunflower Soybean Lentil [24–27]
Petunia Marigold Rice [27–29]
Begonia Pumpkin Horsetail [30–32]
Snapdragon Rose Moss [33–35]
Tomato Chrysanthemum Fern [36–38]
Geranium Cucumber Conifers [39–41]
Pansy Zinnia Sugarcane [42, 43]
Gerbera daisy New Guinea impatiens Spinach [44–46]
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2  Silicon Concentration and Biofortification

Sorghum (Sorghum bicolor L.) is an important cereal crop 
that is considered as an intermediate Si accumulator with 
Si at 2–3% dry weight (DW) in the tissues [66]. Plants, 
with < 0.1% Si by dry weight are excluders, those with 1% 
are intermediate and plants that can accumulate up to 5% Si 
are accumulators. Monocot species such as wheat, rice, and 
maize are accumulators [22], while most of the dicots are 
unable to accumulate much Si in their tissues and therefore, 
considered as excluders. Notable exceptions exist in mem-
bers of the Cucurbitaceae, Urticaceae, and Asteraceae as 
they were found to improve with Si feeding [67–69].

Seven hundred and thirty-five plant species were sub-
jected to analyse the concentration of Si in their shoots 
under 125 different studies. Silicon absorbance by these 
plant species has been controversial due to the comparison 
of comprehensive databases and accessibility of the species 
to Si. Their classification was completely based on pheno-
typic data that was obtained under diverse conditions. For 
example, some of the data were collected from field obser-
vations, where concentrations of Si in soil varied greatly. 
Typical Si concentrations in soil range from 0.1 to 0.6 mM, 
which is why it is difficult to assess the exact exposure of 
a plant to Si [22]. An experiment was conducted to deter-
mine plant responses to Si under various conditions such 
as hydroponic, tissue culture, liquid medium, and in the 
field. Plants were exposed to different Si concentrations in 
different medias (open field, growth media and water) and 
it was concluded that high Si concentration was observed 
under natural field conditions [70, 71]. Si concentration in 
shoots is highly variable among species, ranging from 0.1% 
to 10.0% DW [72, 73]. This variation in Si accumulation 
resulted due to differences in the ability of roots to uptake 
Si, but the molecular mechanism behind Si accumulation 
in plant tissues still remains unknown [74, 75].

Among plant species, there is a genotypic variation in 
Si levels in shoots, but this variation is not as large as that 
among the species overall. For example, when 400 cultivars 
of Hordeum vulgare (barley) were tested for Si concentra-
tion, the results showed variations in Si concentration from 
1.24 to 3.80 mg  g−1 [76]. Oryza sativa L. ssp. Japonica (rice 
variety) can accumulate higher Si levels than Oryza sativa 
L. ssp. Indica [77]. An experiment was conducted, where 
different varieties of rice were grown in solutions containing 
100 mg  L−1  SiO2 and results revealed that the Si concen-
tration among the rice varieties was highly variable, rang-
ing from 117 to 171 mg  g−1. When the same varieties were 
grown in the field, Si levels ranged from 41 to 60 mg  g−1 
[78]. In Saccharum officinarum (sugarcane) shoots, Si 
ranged from 6.4 to 10.2 mg  g−1 [54]. Another study on two 
rice varieties Nipponbare and Kasalath revealed that Si 
uptake increase with the increase in external application of 

Si. The maximum concentration of Si in root DW was about 
3.0 and 2.1 mg  g−1, in both varieties respectively [79].

Si concentration in plants needs to be increased to moder-
ate levels to enable plants to survive easily under stressful 
conditions easily. Different techniques have already been 
introduced for enhancing macro and micronutrients concen-
tration in plant tissues. These techniques include meganucle-
ases or homing endonucleases, ZFNz, TALENs, CRISPR-
Cas9 and biofortification. The above-mentioned genome 
editing techniques (except biofortification) are known for 
regulating gene expressions, gene knock-in and knock-out 
but the problem lies with their off-target efficiencies, high 
application cost and most importantly the ethical concerns. 
Therefore, biofortification remains the only suitable option 
for improving crops in terms of nutrients. Biofortification is 
a process of delivering micro or essential nutrients to plants 
that are important for plant growth and development in a 
cost effective and feasible means. Two basic approaches are 
being adopted for biofortification: first, increase macro or 
micro-nutrients and second, reduce anti-nutritional factors 
like oxalates and phytates (compounds capable of reducing 
the bioavailability of nutrients) [80]. Both approaches can 
be accomplished via various mechanisms such as agronomic 
practices, genetic engineering and traditional plant breeding 
[81] carried out an experiment to enhance Si concentration 
in chicory and land cress plants to improve quality and pro-
duction of leafy vegetables through biofortification. They 
used two different sources of Si (sodium silicate and potas-
sium silicate) with four different concentrations: 0, 0.84, 
1.68 and 2.52 g  L−1. Foliar application of Si enhanced Si 
accumulation in leaves and reduced leaves water loss during 
storage. They recommended 2.52 g  L−1 as the most suitable 
dose from both sources. Si biofortification also stimulates 
concentration of some beneficial hormones such as Ascor-
bate (strong antioxidant and act as stress coping hormone in 
plants) [82]. Several studies have reported that Si supple-
mentation increases the concentration of ascorbate within 
plants but the mechanism linking the increase in Si sup-
plementation with the increase in ascorbate concentration 
is still unknown. Besides, the Si biofortification strategies 
in strawberries not only enhances the Si accumulation in 
leaves, roots and fruit but also increases the total flavonols 
content to enhace the nutritious profile of strwa berry with-
out affecting the taste [83]. Moreover, Si biofortification 
also induces resistance to several biological pathogens by 
interacting with various plant stress-signaling compounds. 
Direct application of Si as fertilizer (especially in rice) pro-
motes Si biofortification through accumulation in edible 
grains and other vegetative parts and increases contents of 
essential amino acids such as Leu, Ile, Thr, Pro, Arg, Tyr, 
Ala, Ser, Glu and Asp [84]. Development of Si biofortified 
crop varieties through plant breeding or other practies can 
help in avoiding the use of toxic incesticides, fungicides and 
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other chemicals to portect plant from diseases. Moreover, Si 
biofortification can also reduce post-harvest losses, improve 
crop quality and extend storage duration.

3  Influx and Efflux Silicon Transporters 
in Monocot and Dicot Species

Si transporters are identified in nearly every form of life. 
Diatoms were the first organisms in which Si transporters 
were reported [85]. Before 2006, researchers had failed to 
identify Si transporters in plants via sequence homology. 
In 2006, Si influx transporter was identified in rice that 
had a rear property of being permeable to silicic acid [86]. 
The transporter identified (Lsi1) and other Si transporters 
belong to the NIP protein subfamily (nodulin-26-like intrin-
sic protein) of aquaporin. Aquaporins are membrane proteins 
involve in transportation of water and small solutes, includ-
ing silicic acid, ammonia, boric acid and glycerol through 
cell membranes. They are part of the major intrinsic protein 
(MIP) family, which is present in all organisms [87]. Aqua-
porins comprised of six transmembrane domains arranged in 
tetramers within the cell membrane [88–91]. The selectivity 
of NIPs (Nod26-like intrinsic proteins) for a particular solute 
is linked to two regions that create the pores in the central 
channel: two highly conserved NPA motifs and four-amino 
acid residues forming aromatic/arginine (Ar/R) selectivity 
filter [22]. This selectivity of NIPs (Nod26-like intrinsic 
proteins) is for all Si influx transporters such as Lsi1, Lsi6 
but not for Si efflux transporter as they belong to putative 
anions transportation. Scientists used the sequence of rice 
Si transporter to search for homologues in other plants and 
today many Si influx transporters have been found in Hor-
deum vulgare (barley) [92, 93], Cucurbita (pumpkin) [94], 
Zea mays (maize) [95], Triticum aestivum (wheat) [96] and 
Equisetum arvense (horsetail) [31].

Efflux Si transporters have also been reported in the roots 
of rice, wheat, barley and finger millet [97–100]. Existing Si 
efflux transporters are involved in transport of Si into xylem 
[22]. Lsi2 is a Si efflux transporter and is structurally different 
from the Si influx transporter Lsi1.. Lsi2 is a transmembrane 
protein comprised of 9–12 domains similar to the anion trans-
porter family, which has not been well characterized. Unlike 
the passive aquaporins, Lsi2 is considered an active transporter 
because the Si efflux is driven by a proton gradient [101, 102]. 
In higher plants, only a small number of Si efflux transport-
ers are reported from pumpkin, wheat, rice, maize, Eleusine 
coracana and Arabidopsis thaliana [103]. In the case of rice, 
the Lsi1 influx transporter is situated on the plasma membrane 
towards distal side of the endodermis and exodermis cells. The 
Lsi2 efflux transporter is situated on the proximal side of those 
cells that are involved in transport of silicic acid out of the cell 
[28]. The transport of silicic acid through Lsi1 is a passive 

process, while the efflux of silicic acid through Lsi2 is carried 
out by ATP utilization and H + pump [22].

The total number of Si transporters currently identified 
are sequence homologues of rice Lsi1 which were isolated 
and characterized in rice (Lsi6) [104], maize (Zea Mays; 
ZmLsi1, ZmLsi6) [105], wheat (Triticum aestivum;TaLsi1) 
[106], barley (Hordeum vulagre;HvLsi1, HvLsi6) [107], 
soybean (Glycine max; GmLsi) [108], cucumber (CSiT-1, 
CSiT-2) [109], and pumpkin (Cucurbita moschata; CmLsi1) 
[94]. All these transporters belong to the subfamily of NIP 
(Nod26-like intrinsic proteins) aquaporin-like proteins. All 
of the Lsi1 silicon transporters from different plant species 
have been associated with the NIP III group (Nod26-like 
intrinsic proteins), and are characterized by having a specific 
selective filter region composed of glycine (G), serine (S) 
and glycine-arginine (R) [34]. The small residues of NIPs 
III (Nod26-like intrinsic proteins) assemble to form a larger 
constriction compared to other NIPs (Nod26-like intrinsic 
proteins) groups. The Lsi1 passive channel is bidirectional, 
but functions as an influx transporter through cooperation 
with Lsi2. A new additional Si transport protein has been 
discovered in Equisetum arvense (horsetail), which belongs 
to another NIPs (Nod26-like intrinsic proteins) aquaporin 
subfamily [110]. Horsetail is a major Si reservoir in the plant 
kingdom [111]. Silicic acid can also be transported through 
EaNIP3s, which have a different selectivity filter composed 
of threonine (T), alanine (A) and arginine (R) [112].

The function of Lsi2 (efflux transporter) is to transport 
Si out of plant cells. Lsi2 was first reported in Oryza sativa 
(rice) [78] and later homologous sequences were found 
in pumpkin (CmLsi2) [113], maize (ZmLsi2) and barley 
(HvLsi2) [105, 114]. Efflux transporters have no similarity 
with influx transporters in the Si channel, but do show some 
similarities with the arsenite efflux transporter, arylsulfatase 
B (ArsB). ArsB was first reported in archaea and bacteria. 
Lsi2 transports Si by consumption of ATP to create a proton 
gradient through the plasma membrane [115]. Both influx 
and efflux transporters have different patterns of expres-
sion depending on plant species. Influx transporters are 
mostly expressed within roots of wheat, maize, barley and 
rice, whereas the other homologs, including CSiT1, CSiT2, 
CmLsi1, GmNIP2-1, GmNIP2-2, ZmLsi6, OsLsi6, and 
HvLsi6 are expressed in both roots and shoots [116, 117]. 
The expression of Lsi1 genes by Si is regulated in various 
ways. The levels of GmNIP2-1 and GmNIP2-2 in soybean 
and OsLsi1 and OsLsi6 in rice are down-regulated by silicic 
acid. CSiT1 and CSiT2 in Cucumis sativus (cucumber) show 
circadian rhythm [118], but in Oryza sativa, Lsi1 expression 
does not have a strong circadian influence [119]. In roots, 
the expression level of Lsi1 genes among plant species var-
ies greatly. Lsi1 is highly expressed in mature roots of bar-
ley and rice, [120, 121], whereas its homolog, Lsi6, is only 
found in the root tips of rice and barley [122].
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4  Silicon Uptake, Distribution 
and Accumulation Channel in Plants

Si influx or efflux transporters are localized to specific 
areas in different tissues of wheat. These transporters are 
involved in a series of steps leading to Si accumulation 
in wheat from uptake via roots, distribution throughout 
the plant, and xylem loading. Lsi1 expressed at a higher 
rate in roots while Lsi2 expressed at a low level in roots 
[123–125]. Lsi1 and Lsi2 are present in the same cells, and 
their distinct polarities suggest that Lsi1 and Lsi2 coopera-
tion is needed for uptake of Si. The plant roots composed 
of two Casparian strips at the endodermis and exodermis, 
which stop apoplastic.

Movement of Si, solutes and water across the cell layers 
[127]. As the roots mature, many of the cortical cells in the 
exodermis and endodermis are remodelled and aerenchyma 
formation takes place, while the leftover cell wall pieces 
and remaining cells together make thin, spoke-like connec-
tion in the apoplast. Thus, Lsi1 imports Si first to the exo-
dermal symplast on the distal side, which is then exported 
to apoplastic connections by Lsi2. Si is further introduced 
into the endodermal symplast through Lsi1 present on the 
distal side of the endodermis and then transferred through 
Lsi2 on the proximal side of the endodermis to steles [128]. 

Lsi1 and Lsi2 have similar expression profiles; therefore, 
knockout of either gene can lead to a reduction in Si con-
centration in roots (Fig. 1).

Lsi1 and Lsi2 are present on separate layers in maize 
and barley. Si taken from soil through ZmLsi1 and Hvlsi1 
transporters is deposited in different cells including cortical, 
hypodermal, and epidermal types. The symplastic pathway 
is involved in transportation of Si to the endodermis, and 
release it in stele through Zmlsi2 and HvLsi2 located on 
endodermis in maize and barley, respectively [129]. All 
these variations in the Si transport pathways from soil to 
xylem among wheat, rice, maize and barley are due to dif-
ferences in root structure. To accumulate Si at high concen-
tration in aerenchyma cells through roots in wheat and rice 
both set of transporters are necessary [130]. Roots of maize 
do not have functional aerenchyma. Under non-stressed con-
ditions, only a single casparian strip develops in the root 
endodermis of barley and maize. According to a study using 
a mathematical model, the presence of both efflux and influx 
transporters at both the epidermis and endodermis consti-
tuted the best combination for significant uptake of Si via 
roots in rice [127].

After root absorption, Si is transferred to shoots by xylem 
through transpiration volume flow. In rice, 90% of the Si 
accumulated in roots, was transported to the shoots [79]. 

Fig. 1  A channel of silicon 
transport in plants. Arrows in 
different colors indicating the 
transportation processes concili-
ate by Si transporters, symplas-
tic and apoplastic flow. The 
contribution of each process is 
indicated by the thickness of the 
arrows. Low Si 1 and 2 (Lsi1 
and Lsi 2), which are located at 
the proximal and distal sides of 
both endodermis and exoder-
mis, cooperate to mediate Si 
uptake in rice roots. Lsi1 and 
Lsi2 are also responsible for 
Si uptake in maize and barley 
roots but they are located at dif-
ferent cell layers. Lsi6 in leaves 
releases Si from the xylem sap, 
but it is unknown which trans-
porters allow Si to be deposited 
at particular cells. Lsi6, which 
is located at the xylem transfer 
cells, also releases Si from the 
xylem enlarged vascular bun-
dles in nodes [126]
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The Si has been found in many forms such as silicic acid, 
Si (OH)4in xylem. Many studies have claimed that Lsi6 is 
located in parenchymatous cells of the xylem at the adaxial 
sides of leaf blades and sheaths. It involves in unloading the 
xylem and transports Si out of the xylem in wheat, barley, 
maize and rice [131, 132]. It has been found that loss of Lsi6 
in rice resulted in augmentation of Si in guttation drops, 
and involves in alteration of Si distribution in leaves [133]. 
Then Si finally accumulates in the husk during the repro-
ductive stage. The Si accumulation at high concentration in 
the husk is vital to improve grain fertility since it reduces 
water loss and averts pathogenic infections [134]. Si con-
centration in the grains of wheat and rice is low compared 
to other parts of the plant, because Si distribution through 
transpiration to grains is limited. Apparently, there is no 
stomata on the outer surface of the husk, and secondly the 
grain surface area is less than the expanded leaves [135]. 
Recently, a study has shown that minerals taken up through 
roots are not transported to grains directly but are redirected 
to nodes, especially in graminaceous plants [135]. Diffuse 
and enlarged vascular bundles are the two main types found 
at nodes. Lsi6 is located on xylem transfer cells with polarity 
facing toward the xylem vessel [65, 136, 137]. Thus, Lsi6 
transports Si from enlarged vascular bundles of roots to the 
diffuse vascular bundles of panicles. Lsi6 knockout results in 
the reduction of Si concentration in panicles and improves Si 
concentration in flag leaves. HvLsi2 is also reported in bar-
ley nodes located in the parenchymatous cell layer, next to 
transfer cells where it has a different polarity from HvLsi6. 
Si reloading in xylem of diffuse vascular bundles might be 
performed by Hvlsi2 for greater Si accumulation in the husk 
[138]. Thus, a collaborated system of transport in nodes is 
needed for distribution of Si.

5  Silicon Regulates Candidate Genes 
to Combat Stresses

Among various Si-mediated stress mechanisms, the primary 
strategy used by Si to combat stress is the enrichment of 
photosynthetic compounds in stressed plants. Although, 
several studies have reported the adventitious effects of Si 
on photosynthesis, only few have examined the molecular 
mechanisms behind the regulation of gene expression by Si, 
especially in rice. [139] demonstrated the transcriptional reg-
ulation of genes associated with photosynthesis under Si sup-
plementation and zinc stress. Si supplementation enhanced 
the transcriptional level of PsbY gene (PsbY gene proteins 
are associated with photosystem II) and on the other hand 
high concentration of zinc down-regulated the expression 
of PsbY. PsbY is a low molecular mass subunit of oxygen 
evolving complex of photosystem-II with manganese bind-
ing polypeptide consisting L-arginine metabolizing enzyme 

activity. Moreover, an increase in the PsbY expression due 
to Si supplementation could increase the electron transfer 
rate, and water oxidation might improve photosystem-II 
efficiency and also activate the manganese binding capacity 
[139]. Similarly, Si supplementation increases the abundance 
of PsaH that encodes essential polypeptide subunits in the 
photosystem-I dimer. It is reported that knockout of PsaH 
resulted in damage to LCH-II complex which further delayed 
the energy transition between Photosystem-II and Phototsys-
tem-I [140]. A high concentration of zinc down-regulates 
the expression PetC gene that codes for cytochrome bf com-
plex Rieske Fe-S center binding polypeptides. This complex 
has the responsibility of ensuring the proper functioning 
of cytochrome. Si supplementation up-regulated the PetC 
expression under zinc stress which maintained the structural 
integrity of chloroplast [139]. Additionally, Si mediation also 
up-regulated the expression of another gene named as PetH 
in the same way as PetC. PetH encodes ferredoxin  NADP+ 
oxido-reductase enzyme which is responsible for NADPH 
synthesis through electron transport chain of photosynthesis. 
PetH also maintained the concentration of glutathione when 
reduce under stresses. Thus, the up-regulation of these genes 
by Si under stress conditions indicates the importance of Si 
in maintaining the electron transport chain [141]. Besides, 
Si supplementation also up-regulate the expression of light 
harvesting complex genes (Os09g26810 and Os03g57120).

Generally, housekeeping genes are expressed constitu-
tively all the time in each cell. They are acquired for cellular 
maintenance to regulate ubiquitous and basic cellular func-
tions. [142] reported that Si supplementation up-regulated 
the expression of housekeeping genes (Os03g0226400, 
Os12g0227400, Os01g0898500) in rice under blast dis-
ease. Si in excluders such as tomato can also up-regulate 
housekeeping genes like phosphoglycerate kinase (PGK), 
alpha-tubulin (TUB) and actin (ACT ) to induce resistance 
against Ralstonia solanacearum [143]. Transcription fac-
tors (TFs) are considered the first line of defense against 
stress-inducing genes by down-regulation the expression 
of these genes. Generally, TFs facilitated by specific cis-
elements called regulons that are located in the promoter 
region of target genes, A plant’s genome is composed of a 
large number of regulons that are responsible for respond-
ing to stresses. For instance, dehydration responsive element 
binding proteins (DREB2) activated by drought and tempera-
ture stress [144]. Si supplementation in rice up-regulates 
TFs responsible for OS-RING, NAC5 and DREB2A domain 
containing dehydrin OsRAB16b, OsCMO and OsRDCP1 
proteins [145]. OsDREB in rice triggers stress responsive 
genes expression that confers tolerance to osmotic stress 
in an abscisic acid (ABA)-independent manner. Moreover, 
OsDREB2A elevated levels in rice confirm resistance to 
drought. OsNAC5 up-regulation in rice stimulates tolerance 
to stresses trough enhancing expression of stress induces 
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genes such as LEA3. Furthermore, OsRAB16b with LEA 
genes that are expressed in response to abiotic stresses in 
both reproductive and somatic tissues. Si supplementation 
in sorghum increased the water uptake by enhancing the 
activities of aquaporin proteins by up-regulating SbPIP2:6, 
SbPIP2:2 and SbPIP1:6 genes in roots [146]. Furthermore, 
up-regulation of genes associated with aquaporins chan-
nel proteins in roots can enhance the speed of water uptake 
under drought stress and dilutes excessive  Na+ ions under 
salinity stress. The extensive study by [147] elucidated the 
positive regulation of genes by Si under Magnaporthe gri-
sea infection related to the defense mechanism such as β-1, 
3-glucanases, chitinases, peroxidase (POX), pathogenesis-
related protein (PR1), phenylalanine-ammonia lyase (PAL) 

and chalcone synthase (CHS). In the above mentioned genes, 
PAL contributes to the synthesis of secondary metabolites 
with potential chemical defense properties through the phe-
nyl-propanoid pathway and CHS is the rate-limiting enzyme 
in the flavonoid biosynthesis pathway. Some of the reported 
genes up and down regulated by Si to combat stresses are 
listed in Table 2 below.

6  The Significance of Silicon in Plants

Si deposition in plant tissues is often associated with stress 
resistance mechanisms and improve resilience under stress 
conditions. A number of scientific reports have indicated the 

Table 2  List of genes up and down regulated by Silicon in defense to biotic and abiotic stresses

Biotic and Abiotic stress Studied plant Gene identifier Si-impact on gene Functional annotation References

Heat Wheat PsbD Up-regulated Photosystem-II D2 protein [148]
Heat Wheat PsbB Up-regulated Photosystem-II CP47 reaction center protein [148]
Heat Wheat PsbH Up-regulated Photosystem-II reaction center protein H [148]
Drought Tomato Psb28 Up-regulated Photosystem-II reaction center Psb28 protein [149]
Drought Tomato PsbW Up-regulated Photosystem-II oxygen evolving enhancer protein 3 [149]
Drought Tomato PsbQ Up-regulated Photosystem-II reaction center PsbW protein [149]
Drought Tomato PsbP Up-regulated Photosystem-II oxygen evolving complex protein [149]
Drought Tomato PetF Up-regulated Ferredoxin  NADH+ [149]
Drought Tomato PetE Up-regulated Plastocyanin [149]
Low light stress Soybean PAL Up-regulated Control phenylpropanoid product biosynthesis [108]
Low light stress Soybean CAD Up-regulated Reduction of cinnamaldehydes into cinnamayl 

alcohols
[108]

Low light stress Soybean POD Up-regulated Oxidative stress reductant antioxidant [108]
Salinity stress Sorghum Sb04g021790 Up-regulated N-Carbamoyl putrescine amidohydrolase [66]
Salinity stress Sorghum Sb10g002070 Up-regulated Arginine decarboxylase [66]
Salinity stress Sorghum Sb06g021540 Up-regulated S-Adenosyl-Metdecarboxylase [66]
Salinity stress Sorghum Sb04g025720 Up-regulated S-Adenosyl-Met-decarboxylase [66]
Salinity stress Sorghum Sb02g025110 Up-regulated S-Adenosyl-L-methionine decarboxylase [66]
Bacterial Wit Tomato X99147 Up-regulated Arabinogalactan protein [150]
Bacterial Wit Tomato M83314 Up-regulated Phenylalanine ammonia lyase [150]
Bacterial Wit Tomato X94943 Up-regulated Peroxidase [150]
Bacterial Wit Tomato AF494201 Up-regulated Tomato stress responsive factor [150]
Blast disease Rice Os03g0405500 Up-regulated PDI-like protein [151]
Blast disease Rice Os05g0495600 Up-regulated P-type ATPase [151]
Blast disease Rice Os02g0584800 Up-regulated Detoxification protein [151]
Blast disease Rice Os01g0713200 Up-regulated β-1,3-Glucanase precursor [151]
Blast disease Rice Os03g0803500 Up-regulated 2OG-Fe(II) oxygenase-domain contains gene [151]
Salinity stress Sorghum Sb01g009450 Down-regulated 1-Aminocyclopropane-1-carboxylic acid synthase [66]
Blast disease Rice Os01g0627800 Down-regulated Cytochrome P450 mono-oxygenase [151]
Blast disease Rice Os01g0770200 Down-regulated Tyrosine decarboxylase-1 [151]
Blast disease Rice Os10g0154700 Down-regulated Cyclophilin Dicy-2 [151]
Blast disease Rice Os09g0110300 Down-regulated Putative cyclase family protein [151]
Blast disease Rice Os10g0191300 Down-regulated Type 1 pathogenesis-related proteins [151]
Blast disease Rice Os03g0266300 Down-regulated Heat shock protein Hsp20 [151]
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beneficial effects of Si in higher plant, yet Si has not been 
considered as an significantl element for plants. Since these 
scientific reports have become strong evidence of Si's sig-
nificance for plants, Si-based fertilizers are being worldwide 
today. Besides, some of the research institutes, centers, and 
agencies such as the International Plant Nutrition Institute 
(www. ipni. net/ topic/ silic on- si) are promoting Si applications 
in agriculture sectors. Anyhow, the optimum requirement of 
Si by any particular specie is not yet well defined and simi-
larly, the effect of different doses or amounts in different tis-
sues on plant physiology is poorly understood. Additionally, 
excess application of any beneficial element or nutrient can 
become toxic for plants and result in physiological disorders 
such as necrosis of the shoot tip and hyperhydricity [152]. 
The amount of Si accumulation in plant tissues and it’s sig-
nificance on plant physiology depends on the concentration 
of Si or silicic acid in the soil [153]. The concentration of 
Si greatly varies within plant species. For example, Plants 
like wheat (Triticum spp.), rice (Oryza sativa) and sugarcane 
(Saccharum officinarum) absorb Si in large amounts: 50–150, 
150–300, and 300–700 kg  ha−1 respectively [154–156]. Nor-
mally, graminaceous plants take up Si in more abundant 
concentrations than other plant species. For instance, wheat 
and rice are very good Si accumulators that absorb silicon 
in active progression [157, 158]. Moreover, several studies 
have reported the significance of Si even in excluders like 
Arabidopsis, canola and tomato when applied exogenously. 
However, yet researchers have not paid as much attention to 
the significance of Si in excluder species as they should due 
to the Si-derived benefits associated with accumulators. Once 
the significance of any element on plant physiology is evalu-
ated through phenotypic data, the next step should be to locate 
the site of accumulation of that particular element in plants. Si 
deposition and accumulation have been extensively studied in 
various plant species. The site of silicification includes intra-
cellular shoots and roots, partially or wholly filled cell lumens, 
the cell wall and specialized silica cells. Silicification mostly 
occurs in vascular tissues, epidermis, storage tissue, fiber 
and sclerenchyma. Moreover, the pattren of Si deposition, 
the amount and it’s role drastically vary among tissue types 
[128]. Below we have discussed in detail the significance of 
Si in different aspects of plants with examples.

6.1  Silicon for Plant Growth and Development

Si plays a vital role in plant growth and development and helps 
plants cope with both biotic and abiotic stress conditions. [128, 
159, 160]. For example, salinity stress known to reduce the 
germination percentage of Lathyrus odoratus upto 70% but 
seed priming with Si before sowing significantly reduces the 
negative effect of salinity in shoots. Moreover, Si nano-parti-
cals application at seedling stage enhance water uptake, pro-
mote seedling and root growth [161]. [162] evaluated the effect 

of Si in upland rice along with plant growth-promoting micro-
organisms (PGPMs) Trichoderma asperellum, Burkholderia 
pyrrocinia, Pseudomonas fluorensces. The main theme of their 
study was to figure out the most PGPM type and most appro-
priate Si dose for rice to gain maximum vegetative growth. 
They concluded that Si combined application with Tricho-
derma asperellum promoted a 35% and 65% increase in shoot 
and root lengths, enhanced root dry matter biomass by 54% 
and suppressed the severity of rice blast by 99% as comapre to 
control conditions. Roots play an important role in plant per-
formance throughout the life cycle including biotic and abiotic 
stresses. For instance, under drought stress plants need to meet 
their water requirements for survival and therefore, plants with 
greater root length can easily escape from stress when com-
pared to shallow-rooted crops. However, plants (both shallow 
and deep-rooted) have evolved their root lengths according to 
the changing environment after taking several decades. [153]
gave a detailed review of Si effects on different root traits such 
as root length in different crops including wheat, rice, bar-
ley, soybean, etc. using a high throughput imaging technique. 
Advances in high throughput techniques have made possible 
the studies of those traits which can not be measured or studied 
manually or with traditional phenotypic techniques. Besides, 
manually recorded data is always prone to errors and can not 
be as accurate as of data recorded through high-throughput 
phenotyping. High throughput phenotyping technique can 
allow the study of plant growth and development and physi-
ological changes throughout the life cycle. Si supplementation 
improves plant water potential at pre-flowering stage, increases 
chlorophyll a, b and carotenoids contents, reduces heavy met-
als uptake, enhances plant height, and improves the overall 
growth of plants [163]. [164]reported that Si application in 
soybean enhanced nitrogen uptake from 6 to 34%, Si from 
7 to 47%, nodulation from 25 to 46%, root length from 16 to 
33% and shoot dry weight from 6 to 23% when compared to 
control (no application of Si) plants. A possible role of Si in 
improving plant growth is attributed to the alteration in cel-
lular and biochemical mechanisms as well as enhanced mem-
brane integrity and antioxidant defense system under various 
abiotic stresses conditions. Antioxidant enzymes enhance the 
growth and morphological characteristics of wheat and other 
several plants. The activities of certain antioxidant enzymes in 
diverse crops were elevated by treatment with Si [48]. Si sup-
plementation included 2ip and IAA improved regeneration of 
adventitious roots while increasing activity of the antioxidant 
enzymes, SOD, CAT, and APX [165, 166].

6.2  Advantageous Effects of Silicon in Plants 
under Abiotic Stress

Several studies indicate, Si has the capability to overcome 
both chemical stress such as metal toxicity, nutrient imbal-
ance, and salinity, and physical stress, including freezing, 
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UV, high temperature, and loading (Fig. 3). Salinity is a 
major problem in semi dry and dry areas as it results in 
a large reduction in yield; it can be overcome, however, 
through the application of sufficient exogenous Si [167]. 
For example, in tissues of cucumber, Si indirectly reduced 
oxidative damage by regulating the activities of superoxide 
dismutase (SOD), glutathione reductase (GR), ascorbate 
peroxidase, guaiacol peroxidase, and dehydroascorbate 
reductase [167–169]. Silicon application to tomatoes under 
stress conditions reduced oxidative damage to leave by 
enhancing SOD and catalase (CAT) activities. Application 
of Si can increase protein content in leaves, enhance activity 
of ascorbate peroxidase, and reduce  H2O2 malondialdehyde 
levels [154, 170–174].

In various crops including wheat, Si positive effects have 
been demonstrated over abiotic stresses. Application of Si 
to wheat under drought stress significantly helped to reduce 
stress by up-regulating GR, CAT, and SOD. During drought, 
Si enhances the uptake of water in wheat and other plants 
via regulation of aquaporin channels [175]. In higher plants 
the application of Si can protect against toxicity of heavy 
metals, increase yield to satisfactory levels, and improve 
overall plant health. Silicon has the ability to eliminate 
manganese (Mn) toxicity either by detoxification of Mn or 
through reduction of soluble apoplastic Mn content in cell 
walls [176, 177]. It was reported in cucumbers, sorghum and 
wheat that Si decreased Mn toxicity by enhancing enzymatic 
and non-enzymatic antioxidant activities and reducing per-
oxidase effects on membrane lipids [177–179]. The effects 
of Si on various plant species under abiotic stress (salinity, 
drought, heavy metal, etc.) are shown in Table 3 below.

6.3  Effects of Silicon on Salinity Stress

Yield reduction in wheat from salinity stress is a serious prob-
lem. Salinity stress is a major threat in semidry and fully dry 
areas of Pakistan and other part of the world, where wheat 
has been grown for decades, such as Balochistan, Punjab, 
and India. However, the oxidative damage caused by salinity 
stress can be remedied through exogenous application of Si 
at sufficient concentrations [202–205], for example to sweet 
peppers, cucumbers and tomatoes [116, 186, 206] (Fig. 2).

Si enhances protein content in leaves and reduces the 
concentration of malondialdehyde, ascorbate peroxidase, 
and hydrogen peroxide. The positive effects of Si on salin-
ity stress have already been confirmed in wheat, cucumber, 
maize, rice, and tomato[116, 186, 206–209].

It has been reported that when rice plants were kept under 
both control and salinity stress conditions, Si application 
along with NaCl resulted in a better performance of rice 
under salinity stress compared to control. Tolerance against 
NaCl in wheat could be enhanced significantly by application 
of a nutrient solution containing a high concentration of Si 

[210]. Si has the capacity to enhance the soluble protein con-
tent in leaves and increase plant efficiency to recover the solu-
ble proteins that were lost under salinity stress [211, 212].

6.4  Effects of Silicon Under Heavy Metals Stress

Stress of metals, such as cadmium (Cd), manganese (Mn), 
and chromium (Cr) results in stunted growth, poor devel-
opment, and most importantly, makes monocot and dicot 
crop species susceptible to insect attack and reduces the final 
yield (Fig. 3). The Si application of stimulated heavy metal 
transport, prevented crops from being damaged and reduced 
the malondialdehyde (MDA) content [175, 213–216]. Heavy 
metal accumulation in wheat reduced antioxidant enzyme 
activity and promotes production of ROS. Silicon nanopar-
ticle (SiNP) application along with chromium (Cr) in plants 
increased antioxidant enzyme activity and photosynthetic 
pigments [217].

6.5  Effects of Silicon Under Drought Stress

Photosynthetic pigments are significantly influenced by 
drought stress, which causes an imbalance between anti-
oxidant enzymes and the production of ROS, thus reducing 
overall crop production [218–220]. Crop treatment with Si 
applications reduced the concentration of flavonoids, glu-
tathione, and lipid peroxidation while enhancing ascorbate 
content [221]. Supplementation with Si and polyethylene 
glycol (PEG) on tomatoes led to induction of drought stress 
and produced tolerance through enhancing CAT and SOD 
activities and promoting high water uptake [222].

6.6  Effects of Silicon on Ultraviolet Irradiation

Ultraviolet radiation (UV) has adverse effects on crop 
growth, vigour, and protein, amino acid, sugar, and chlo-
rophyll contents, with chlorophyll contents being primar-
ily affected. Si application under such conditions induces 
resistance to UV stress through biochemical and physiologi-
cal processes [21, 175, 223]. Application of Si to tropical 
plants under UV stress enhanced SOD and POD activity and 
also increases MDA and anthocyanin contents [174, 224]. 
Si nanoparticle application improved the overall growth of 
crops at the seedling stage against UV stress [225].

6.7  Advantageous Effects of Silicon in Plants Under 
Biotic Stress

Few plants have the ability to develop well in the absence 
of Si, and in some cases like rice and the silicifier, horsetail, 
Si deficiency results in high susceptibility to fungal attack 
[226–228]. Si has been proven to reduce rice susceptibil-
ity to sheath blight disease (Fig. 3) [154] by the formation 
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of a silica gel-like structure of silicon dioxide  (SiO2) in the 
cuticle layer of the rice plants that prevents fungus penetra-
tion into the cells, another defensive mechanism of Si against 
fungal diseases [229, 230]. Si treatment reduced the effects 
of sheath blight by boosting the crop’s defence mechanism 
against pathogenesis, enhancing the components of phenolic 
compounds and raising the activities of β-1,3-glucanases, 
polyphenol oxidase, phenylalanine ammonialyase and per-
oxidase[231]. The destruction from leaf blast and neck in 
rice could be reduced by application of Si, depending on 
the Si dose and severity of the disease [232, 233]. Powdery 
mildew is one of the well-known fungal diseases of plants 
caused by Sphaerotheca fuliginea, that can be prevented by 
Si treatment [234, 235]. Enhancing the Si concentration in 
shoots of cucumber reduced the chances of powdery mildew 
occurrence[154]. It has also been found that Si helped plants 
to withstand against insect attack such as leaf spider, leaf hop-
pers, mites, and brown hoppers. Resistance to these insects 
also depends on the Si concentration within the plant [236].

6.8  Effects of Silicon Against Insect and Other Pests

Insects are some of the most highly diverse living creatures 
on earth. They are found in every corner of the planet and are 

composed of more than one million species [237]. They have 
the ability to adapt to any kind of natural climatic conditions; 
therefore, they are found in greater number than any other living 
animals. They play an important role in the surrounding environ-
ment and also have shown importance for human beings. About 
0.5% of the insect species are pests, and a few of them can be 
a threat to plants and human beings [238]. Application of Si 
induces tolerance in plants against insect and pest attack. Several 
studies have shown that Si supplementation stimulates defence 
mechanism of plant by developing tolerance against disease 
caused by insects and pest, such as Sogatella furcifera, Nilapa-
rvata lugens, and Cicadella viridis [239] (Table 4). Magna-
porthe grisea is a fungi that attack rice and wheat, form lesions 
on upper side of leaves, and treatment with Si prevents lesion 
formation [240, 241]. Si develops resistance in wheat against 
Sesamia inferens and Scirpophaga incertulas [55, 239–241].

7  Effects of Silicon Against Fungi and Fungal 
Diseases

Fungal pathogens are one of the key constraints on produc-
tion of high-quality crops for human consumption and live-
stock. Fungicides are chemicals that are produced on large 

Fig. 2  The pictorial representation of silicon impact on plants under 
salinity stress. Alleviation of silicon salt stress involves six main strate-
gies: First, Si can increases the photosynthetic activity, increase carbon 
dioxide utilization rate, increase PS-II activity in reaction center and 
promote pores opening. Second, Si regulates homeostasis of ions by 
mediating Na + uptake, compartmentalization, transport and associated 
genes expressions (e.g. HKT and NHX). Third, Si possesses potential 
of regulation enzymatic and non-enzymatic concentration/activities of 

antioxidants and endogenous polyamine accumulation in order to reduce 
the oxidative stress induced by salt stress. Fourth and fifth, Si improves 
hydraulic conductance of roots by regulating activities of aquaporin 
proteins and increasing osmo-regulatory capacities that contributes in 
an increase in water-uptake and transportation. Sixth, Si might medi-
ate homeostasis of ions and reduces oxidative stress by regulating poly-
amine metabolism. Single solid red line along bar at the end: process of 
mediating. Red arrows show up (increase) and down (decrease)
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scale from chemical industries to control diseases caused by 
fungi. Over use of these chemicals on a large scale affects 
human health and harms the environment. With the passage 
of time different strains of fungi have developed resistance 
against these chemicals, therefore use of Si against fungi is 
an effective alternative with no side effects on humans or 
the environment [242]. Si deposition in epidermal tissues 
of wheat developed a physical barrier against insertion of 
fungal pathogens into specific tissues. Moreover, Si helps in 
thickening the cellulose membrane, produces a dense silica 
layer, and increases the density of the silicified cells present 
in the epidermis of leaves. Exogenous application of Si in the 
field is effective in controlling fungal pathogens under natu-
ral conditions. Therefore, Si could be included as a defensive 
component in plans for disease management to substantially 
decrease losses in yield [243]. Plant height, leaf area, num-
ber of tillers, size of panicle, seed yield, and biomass can 
be increased under field conditions by Si supplementation, 
and significant levels of tolerance can be developed against 

fungi [244]. Foliar application of Si against powdery mildew 
is far more effective than any of the other chemical. Foliar 
application of Si has the same effects on surface of leaves as 
uptake via roots from soil or other medium [245].

8  Silicon Against Bacteria and Bacterial 
Diseases

Si has the ability to develop systemic acquired resistance 
(SAR) similar to that of commercially available products, 
like acibenzolar-S-methyl (ASM) and benzothiadiazole 
(BTH) [246]. Bacterial wilt is a well-known disease of 
tomatoes caused by bacteria. Research was conducted to 
evaluate the effect of Si against this bacterial disease in the 
field. Results showed that exogenous application of Si was 
highly effective in control of this disease [63]. A few years 
ago, it was reported that plants that were treated with Si 
had increased enzymatic activities of defence mechanisms 

Fig. 3  Role of silicon against biotic and abiotic stresses. Si applica-
tion either as foliar or fertilizer under biotic stress reduces the severity 
of disease and helps plants to escape from stress and maintain overall 
plant growth. Si under abiotic stress reduces the uptake of heavy met-

als and increases the uptake of water to escape from drought, heat and 
salinity stresses. Silicon promotes root growth and development and 
induces salicylic acid (SA) signaling to recognize pathogenic attacks 
and develop local resistance in infected regions of plants

3295Silicon (2023) 15:3283–3303
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like phenylalanine ammonia-lyase (PAL) and peroxidase 
(POX). An increase in the activity of these enzymes ulti-
mately helped monocot and dicot plant species develop 
tolerance against bacterial attack especially on leaves 
[247]. Si stimulated the expression of those genes, which 
were involved in plant defences against bacteria, fungi, 
and viruses [248]. The seedling stage of cereal plants is 
always considered as critical because at this stage wheat is 
exposed to many microorganisms. Bacterial attack at this 
stage results in huge losses of grain yield and total bio-
mass production of wheat. At seedling stage, application 
of calcium silicate has been found as safeguard for wheat 
against bacterial leaf streak [249]. Application of calcium 
silicate at a concentration of 1.14 g/kg against bacterial 
leaf streak (BLS) was highly effective in cereal crops [250]. 
Bacterial rice blight is a serious disease of rice responsible 
for about 60% loss of rice yield. The causal organism of 
this disease is Xanthomonas oryzae. Application of Si in 
high concentration to rice reduces bacterial rice blight up 
to 75% during the growing season [70, 251].

9  Concluding Remarks and Future 
Directions

In this review, we have discussed the importance of Si, its 
transport from roots to shoots, the associated biochemical 
changes and regulations of the transport genes in monocot 
and dicot plant species under biotic and abiotic stresses. 
Biofortification strategies can help in increasing the intake 

of Si in order to overcome deficiencies in plants in a cost-
effective way. Exogenous applications or applications in the 
growth media have found to have significant effects on plant 
fitness, vigour, growth, and development under abiotic and 
biotic stresses. Si concentration in soil varies from region 
to region and country to country. For good performance of 
plants in stressed environments, Si is required in high con-
centration. ROS are generated during stress, possess highly 
active species like singlet oxygen and hydrogen peroxide, 
which by perturb the normal biochemical and physiological 
processes of plants. Si application increases the production 
of antioxidant enzymes like POD, SOD, and CAT, and thus 
reduces oxidative stress. Further research is still required to 
determine the optimal moderate concentration of Si, which is 
advantageous for improving plant growth and performance, 
specifically to avoid Si toxicity. Identification of novel genes 
or gene families and up- or down-regulation of genes associ-
ated with Si accumulation at moderate concentration in plants 
through genetic engineering might help in the reduction of 
environmental pollution caused by toxic chemicals applied on 
plants under biotic stress. Marker assist breeding (MAB) or 
marker assist selection (MAS) might help in the identification 
of novel genes and the genetic diversity among different plant 
species for Si uptake and accumulation through use of DNA 
markers such as SSR, RFLP, and RAPD.
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