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Abstract
Zinc titanate (ZnTiO3) was grown on silicon and porous silicon. ZnTiO3 layers were prepared by sol-gel method. Porous 
silicon was fabricated by electrochemical etching of silicon in HF solution. The effect of substrate porosity on morphology, 
structure and otpical properties of ZnTiO3 nanostructures has been studied. Theses properties were investigated using XRD, 
Ultraviolet–Visible spectroscopy, and HRTEM. Some important parameters (absorption, reflectivity (R (%) and grain size) 
were studied. It was found that the Structural, morphology and optical properties of ZnTiO3 layers are dependent strongly 
on the type of substrates. The crystalline size decreased for ZnTiO3 layers deposited on PS substrate. The average grain size 
is about 80 nm for ZnTiO3 grown on porous silicon. The surface morphology of films was also found to be uniform and 
homogeneous. ZnTiO3-PS shows enhancing photon absorption compared to ZnTiO3-Si.
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1 � Introductuion

Metal oxide semiconductors have recently shown great influ-
ence in the fields of photocatalysis [1–3], optoelectronics 
[4–6], and solar cells [7]. Amongst the studied semiconduc-
tors, Zinc oxide (ZnO) has received much attention. It is a 
wide-bandgap oxide semiconductor with a direct energy gap 
of about 3.37 eV. ZnO has high chemical and mechanical 
stability; furthermore, it is nontoxic and widespread in nature 
[8, 9]. TiO2 has also shown promise in the areas of photoca-
talysis [2], solar cells [10], gas sensor and other optical appli-
cations [11, 12]. Enormous increase of applications based on 
ZnO and TiO2 has been caused not only by the improvements 

of their intrinsic properties but also by the achievements of 
transition metal doping and mixed oxides formations.

So, TiO2 and ZnO have been used to fabricate ZnO-TiO2 
composite materials, annealing conditions and ZnO/TiO2 
molar ratio were found have significants effects on the phase 
formation [13]. The coupling TiO2/ZnO gives a material 
named zinc titanate that enhances the properties of ZnO and 
TiO2, for example, by widening its light absorption spectrum 
[14]. Additionally, the photocatalytic activity of oxides may 
help reduce the susceptibility of pollutants to form aggregate 
structures [15].

However, zinc titanate system has three compounds 
that exist in the: ZnTiO3, Zn2Ti3O8, and Zn2TiO4, which 
it remains as a structural defect. ZnTiO3 is a perovskite-
type oxide (ABO3) whose perovskite structure endows the 
flexibility to alter the arrangement of the A- and B-sites, 
and incorporates cation combinations at the A- and 
B-sites to assemble substituted perovskites. ABO3 have 
been considered as materials with various applications in 
solid oxide fuel cell electrodes (SOFC) [16], metal barri-
ers [17], sensors [18], electronics [19] and catalysts [20]. 
As a well-known member of this family, zinc titanate 
(ZnTiO3) has been used as pigments [21], dye adsorbents 
[22], sensors such as NO and CO gases [23], microwave 
resonator materials [24], heat reflective pigments [25] 
and Photocatalyst [26].
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Several methods are used to synthesize Zinc titanate 
(ZnTiO3), as solid state reaction [27], Sol-gel [28, 29], 
Pechini process [30], Hydrothermal method [31], Sputter-
ing [32], Microwave heating [33], and molten salt Method 
[34]. Zinc titanate (ZnTiO3) thin films deposited on differ-
ent substrates. The investigation of the influence of various 
substrates such as Si (100) [35], glass [36], quartz substrate 
[37], and ITO coated glass [38] has also been studied.

In This work, porous silicon (PS) is another candidate as 
substrates due to adjustable roughness (large internal sur-
face), high resistance, strong absorbability, and potential for 
the development of silicon-based optoelectronic devices. 
Porous silicon has been used to deposit metal oxides and 
obtain good quality thin layers [39–41]. we report the growth 
of ZnTiO3 hexagonal and nanoscale on silicon and porous 
silicon substrates by spin coating. Optical, morphology and 
crystal structure of hexagonal and nanoscale were studied 
by UV-Vis, XRD and TEM techniques. The experimental 
findings on the effect of the sponge- like structure of the 
porous silicon substrates on the crystallinity properties of the 
ZnTiO3 thin films are presented and the causes are discussed.

2 � Experimental Details

For the fabrication of nanostructures, porous Si (PSi) sub-
strates were obtained by electrochemical etching [40, 41] of 
p-type, (100) oriented silicon (Si) wafers with a resistivity 
of 10–20 Ω cm. For the preparation of the porous substrates, 
c-Si wafers were cleaned with 2-propanol (under sonica-
tion) for 4 min. The Si wafers were rinsed with deionized 
water, dried with N2 flux, and immersed in hydrofluoric acid 
aqueous solution (2%) for 4 min, followed by rinsing with 
deionized water and ethanol and dried under N2 flux. The 
etching process was carried out for 15 min in hydrofluoric 
acid (HF, 40 wt%) and ethanol (1:1 volumetric ratio) solu-
tion at a constant current density of 10 mA/cm2. After the 
etching process, the substrates were rinsed with ethanol and 
dried with N2 flux.

On the other hand, ZnTiO3 nanostructured films on PSi 
and Si substrates were obtained by spin coating deposi-
tion. The formation of ZnTiO3 and the corresponding 
characterization have been widely studied in the literature 
[28, 29, 35]. Zinc titanate thin films was prepared by the 
sol-gel method. In general, Zinc acetate dihydrate (Zn 
(CH3COO)2·2H2O, Sigma Aldrich, reagent grade, 99% 
purity), and Titanium (IV) n-butoxide (Ti(O(CH2)3CH3)4, 
Sigma Aldrich, reagent grade, 99% purity) were used as 
Zn and Ti source materials, respectively. The Zinc acetate 
and tetrabutyl titanate were dissolved into ethylene glycol 
monoethyl ether and acid acetic acid solvent at 80 °C and 
stirred for 30 min to form clear solution.

For the deposition, PSi and Si substrates with a dimen-
sion of 20 mm × 20 mm were used. The substrates were 
washed successively with acetone, hydrochloric acid aque-
ous solution, deionized water and absolute ethanol in an 
ultrasound bath. Then, dried at 100 °C for 10 min before 
coating. ZnTiO3 precursor solution was spin-coated on the 
sustrates at 3000 rpm during 30 sec. The as-prepared films 
were annealed at 120 °C for 10 min to remove organic mate-
rials and then at 700 °C for 2 hours to crystallize them into 
a perovskite structure in a rapid thermal annealing furnace. 
The process from coating to annealing was repeated 2, 4, 6 
and 8 times to produce different thickness of the films. The 
as prepared and sintered samples were subjected to various 
analyses by suitable analytical technique.

The structural properties of the prepared materials were 
studied by XRD analysis using (BRUKER D8 advance 
model, at room temperature). The morphology of ZnTiO3 
was analyzed by high resolution transmission micros-
copy (TEM), using a HRTEM JEOL2100F microscope. 
UV-vis absorbance and reflectance spectroscopy analysis 
(UV-vis) was carried out using Perkin Elmer Lamda 950 
spectrophotometer.

3 � Result and Discussion

3.1 � XRD Analysis

The thicknesses of the films resulting of the 2, 4, 6 and 8 
repetitions of spin coating and annealing were found to be 
80 nm, 120 nm, 160 nm and 240 nm.

To study the effect of substrate (Silicon, Porous silicon) 
on crystal structure of ZnTiO3, we performed XRD experi-
ments on the samples. The XRD analysis of ZnTiO3/Si and 
ZnTiO3/PSi were reported as in Fig. 1. The crystal planes 
(104), (110), (024), (116), (214), for hexagonal ZnTiO3 
(JCPDS card No.26–1500) in the diffractograms can be 
indexed [30, 42, 43].

The (104) peak is more intense in the ZnTiO3/PSi 
compare to ZnO/Si. The peak (110) peak appeared in the 
ZnTiO3/PSi compare to ZnO/Si. Consequently, there tra-
duces better crystallinity of ZnTiO3 formed on PSi than on 
Si. The difference in intensity can be explained by higher 
absorption rate of the capillary effect presented in ZnTiO3/
PSi sample and the high adhesion due to the high specific 
surface area in the case of PSi.

The average crystallite sizes of the nanoparticles ZnTiO3 
can be estimated using Scherrer equation which is defined 
as d = (0.94 k)/(bcos (θ)), where d is the average grain size, 
k is the X-ray wavelength (0.15406 nm), b is the full-width 
at half maximum (FWHM), and θ is the diffraction angle 
(32.9°). The strongest peaks (104) in XRD were used to 
calculate the grain size for ZnTiO3. Applying Scherrer’s 
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formula, the grain sizes were found to be 45 nm and 20 nm 
for ZnTiO3 formed on PSi and ZnTiO3 formed on Si, respec-
tively. The obtained values indicate that the porous layer has 
a significant effect on the synthesis mechanism of ZnTiO3 
nanostructures and can serve as the starting point for the 
growth of nanostructures. Therefore, the rough surface 
morphology of PSi plays a major role in controlling the 
growth of the wettinglayer [44]. Due to its special surface 
morphology, the porous layer is a good substrate for lattice-
mismatched heteroepitaxy. The surface of the porous silicon 
layer is composed of many nanocrystals. These Si nanocrys-
tals maintain (100) orientation with the outer surface of the 
silicon wafer. These randomly distributed Si crystallites on 
the surface act as nucleation sites and induce the growth of 
ZnTiO3 nanostructures along the preferred orientation.

3.2 � Optical Properties

Optical properties of the ZnTiO3/Si and ZnTiO3/PSi samples 
have been investigated using UV-Vis spectroscopy. Figure 2 
compares the absorbance of ZnTiO3/Si and ZnTiO3/PSi. The 
layer thickness of ZnTiO3 for two samples is on the order 
of 120 nm. As shown in Fig. 2, the absorbance recorded in 
the spectral range 250–900 nm. The spectrum a correspond-
ing to the samples reveals three bands. A first UV absorp-
tion band extending from 250 to 270 nm with a sharp band 
located at about 260 nm, second band with a centered at 
about 350 nm, and three absorption band extending from 
350 to 900 nm.

The band edge is observed at ~280 (first band) and ~ 400 
(second band) nm for all samples. Those bands edge absorp-
tion intensity show its absorbance capacity in UV light of 

ZnTiO3. it is similar as reported in the literature [45, 46]. 
The absorbance increases with the porous layer due to the 
increasing to optical path in porous silicon specific sur-
face. The increase in the visible absorbance (three band) 
confirmed that the ZnTiO3 nanoparticles are emerged in the 
pores and therefore are deposited on the specific surface. We 
deduce that the ZnTiO3/PS acts as an efficient solar absorber.

Optical absorbance spectra of multilayer ZnTiO3 films 
on porous silicon are shown in Fig. 3. It is seen from this 
Figure; the spectrum is similar to Fig. 2 with variation of 
absorbance intensity. The results show the strongest absorb-
ance in the UV region of 250–400 nm increase with layer 

Fig. 1   X-ray diffraction of 
ZnTiO3 nanostructures grown 
on conditions on (a) Si sub-
strate, (b) PSi substrate
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thickness of ZnTiO3. Figure 3 shows the absorption intensity 
increase of E1, compared to porous silicon and the other 
samples. The enhanced absorption of ZnTiO3 due to the 
Surface Plasmon Resonance (SPR) of the free electrons and 
ZnTiO3 incorporated in pores.

Figure 3 shows the absorption intensity in visible region 
decrease with layer thickness of ZnTiO3. It is because the 
layer become thick, getting larger and smoother, causing a 
reduction in the absorption optical.

The sample E4 has high UV absorbance, which indicates 
this sample has synergistically enhanced UV absorption 
behavior. This is very beneficial for enhanced anti-UV aging 
performance. These conclusions are consistent with the sta-
tistical results as shown in Fig. 4.

Figure 4 shows UV–vis reflectance spectra of PS (black 
line), E1 (red line), E2 (green line), E3 (blue line) and E4 
(light blueline) structures for the wavelength range of 
250 nm–900 nm. The reflectivity of the porous silicon 
surface without ZnTiO3 was around 14.3% and decreased 
to around 13.4% after layer of ZnTiO3 deposed on porous 
silicon at around 450 nm. This is due to the formation of 
needle-like structures that result in enhanced light trapping. 
The decreased reflectivity results in significant increase of 
absorbance in E1. It can be observed from the spectra that 
the optical reflectance spectra of nZnTiO3/PS increased 
significantly with thickness layer. The increased reflectance 
results in significant decrease of absorbance in E2, E3 and E4.

3.3 � HRTEM Study

The microstructural information of the samples was obtained 
using transmission electron microscopy (TEM). Figure 5a 
shows a TEM image of ZnTiO3 grown on Si (a, c) (A) and 

PS (b) (B). As can be seen, the ZnTiO3 was fully crystalline 
at the nanoscale and the formation of irregular spherical 
shaped. The TEM images (Fig. 5) suggest that the submi-
crosized particles of A and B are both crystalline with no 
apparent defects and dislocations. The average diameters of 
the smallest visible isolated particle/crystallite agglomerate 
were found to range between 100 nm and 120 nm for A and 
the particles B with the size of about 80 nm. These results 
are in excellent agreement with the experimental of values 
obtained from XRD.

Figure 6 shows surface morphology of ZnTiO3 particle. 
Note that the microstructure of B becomes a sponge. This 
last composed of nanopores. On the other hand, the structure 
is smooth and lacks pores for A. These results are in parallel 
with UV-Vis results. The porous structure of ZnTiO3 influ-
ences the increases light absorption (UV-Vis) compared to 
A (Fig. 2).

The HRTEM image of the sample is presented in Fig. 7. 
The distance between the adjacent lattice fringes is 0.38 
and 0.1 nm for A and B, which can be assigned to the 
interplanar distance of the hexagonal phases of A and 
B. Compared with compound A, the crystallinity of B is 
better. Comprehensively, the results confirmed that the 
ZnTiO3 layers were successfully prepared at annealing 
temperatures at 700 °C.

4 � Conclusion

In summary, we have synthesized nanoscale ZnTiO3 
on PS and Si. The dependence of the structural and 
optical properties of these nanostructures on the dif-
ferent substrates was investigated systematically. The 
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Fig. 5   TEM image of the 
ZnTiO3 grown on Si (a, c) and 
PS (b)

Fig. 6   TEM image of the 
surface ZnTiO3 grown on Si (a) 
and PS (b)
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nanostructures were polycrystalline in nature, (410) 
plane was the preferred orientation, and showed decreas-
ing crystal grain size with porous silicon substrates. 
A strongest UV-Vis absorption intensity for ZnTiO3 
nanoscale have been obtained on PS substrate com-
pared to ZnTiO3 as grown on Si substrate. This is due 
to the capillary effect and its high specific surface area 
of PS. With HRTEM, We compared the structure and 
morphology of ZnTiO3 nanostructures grown on porous 
silicon and silicon substrate. The average diameter and 
the distance between the adjacent lattice fringes of these 
ZnTiO3 on porous silicon decreased from 120 to 80 nm 
and from 0.38 to 0.1 nm, respectively.
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