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Abstract
In this paper, silicon carbide (SiC) particles were successfully inserted into AA6061-T6 aluminium matrix using multi-pass 
friction stir processing (MPFSP). The effects of MPFSP and SiC particles on temperature distribution, microstructural evolu-
tion, and mechanical properties are being investigated in detail. Processing was carried out at a constant process parameter, 
i.e., tool rotational speed of 1100 rpm, tool traverse speed of 1.5 mm/sec, and tool tilt angle of 2° to modify the microstructure 
and mechanical properties of MPFSP. It has been observed that SiC particles are not homogeneously distributed after the 
first pass, and particles congregate in some places. On the other hand, fourth-pass FSP results in a uniform distribution of 
particles. Agglomeration of SiC particles decreases with an increase in the number of passes and is uniformly distributed in 
the fourth pass of FSP. It has been observed that peak temperature, particle size, grain size, and mechanical properties are all 
influenced by MPFSP. The microhardness has significantly improved with increasing the number of passes. After MPFSP, 
the peak temperatures of the first pass, second pass, third pass, and fourth pass were recorded as 339.67 °C, 330.64 °C, 
320.20 °C, and 312.81 °C, respectively, on the advancing side (AS), and similarly, on the retreating side (RS), 334.03 °C, 
322.11 °C, 312.30 °C, and 303.72 °C, respectively. The values of the maximum ultimate tensile strength (UTS) and 0.2% 
yield stress were observed as 231 MPa, 247 MPa, 296 MPa, 308 MPa, and 178 MPa, 188 MPa, 202 MPa, and 225 MPa with 
the first pass, second pass, third pass, and fourth pass, respectively. But at the same time, % elongation decreased with an 
increase the number of passes.
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1  Introduction

Heat-treated AA6061-T6 is a precipitation hardened alumin-
ium alloy attract the manufacturing and mineral process-
ing industries due to their attributes i.e., excellent thermal 
conductivity, corrosion resistance, high strength-to-weight 
ratio, good castability and lower density, aluminium and 
its alloys are capable of meeting the demands [1–4]. These 
alloys are often utilised in the fabrication of missile casings, 

yacht construction, wings and fuselages and aviation landing 
mat [3–5].

FSP is a modified technique of friction stir welding process 
that was first devised and patented in 1991 by Wayne Thomas 
at The Welding Institute (TWI) [6]. Friction Stir processing, 
also known as surface modification technique, is the process of 
altering the microstructure and mechanical properties of base 
plates. Using nanoparticles in the processed zone, the parent 
metal's elongated and coarse grain structure were refined into 
the fine grain structure [7, 8]. FSP works on a similar approach 
to FSW, detailed explanations of the FSW process are avail-
able in the literature [6, 9, 10]. The FSP method has mostly 
been used to construct aluminium metal matrix composite 
(AMMCs) using nanoparticles [11, 12], with a few research-
ers studying multi-pass FSP for nanoparticle dispersion [13, 
14]. A common FSP strategy is to change the mechanical 
characteristics and microstructure of metallic components. 
There are several methodologies for packing reinforcement 
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particles, such as the groove technique [15, 16], holes method 
[17], direct pasting [18], and spray method [19]. Among these 
approaches, the groove methodology is considered to be the 
most efficacious [20, 21]. Various types of reinforcing par-
ticles including as SiC, TiC, B

4
 C, Al

2
O

3
 , Ti B

2
 , and others 

have been effectively integrated throughout aluminium alloy-
based metal matrices via FSP [22–25]. Among of them, SiC 
is a prominent reinforcement particle because to its advanta-
geous qualities such as outstanding thermal sock resistance, 
high thermal conductivity, low thermal expansion, excellent 
wear resistance, high strength, hardness, low density, and 
ease of availability [26–29]. Ma et al. [29] study the effect 
of multiple-pass friction stir processing on the microstructure 
and tensile properties of a cast aluminum–silicon alloy. They 
also observed that SiC ceramic particles were homogeneously 
distributed throughout the entire processed stir zone produced 
by multi-pass FSP. Sun et al. [30] exhibited homogenous par-
ticle dispersion in a copper plate incorporating nanoparticles 
during second pass friction stir welding. Dolatkhah et al. [31] 
explored multi-pass FSP to prevent particle agglomeration and 
found that, the reinforcement particles were distributed uni-
formly and the grain size was reduced. The movement of mate-
rial flow around the tool, which necessitates an understanding 
of the temperature profile in the weldment. The temperature 
distribution analogy, together with the incorporation of SiCp 
in the plates, provides knowledge that might be used in multi-
pass FSPed. Manoj Kumar et al. [32] investigate the tempera-
ture distribution and material flow in AA6061-T6 friction stir 
welding. They found that temperature decreased further from 
the mixing zones and that temperature distribution is asym-
metric, which is an important aspect of the FSW process.

Rathee et al. [33] Investigated the effect of SiC particles 
size on microstructural and mechanical properties of AA5059/
SiC surface composites during multi-pass FSP. They infer 
from multiple passes that there is a considerable improvement 
in mechanical attributes. Husain Mehdi et al. [34] reported that 
in the five pass FSP, Nano SiC particles were completely and 
uniformly distributed. As the number of FSP passes increases, 
the agglomeration of SiC particles decreases. Sun YF et al. 
[30] studied the impacts of SiC particles on the mechanical 
and microstructure characteristics of a copper joint's FSW. 
They find that homogeneous dispersion of SiC particles in the 
weld zone (WZ) resulted in an increase in microhardness and 
UTS after second passes.

The objective of this study, which served as a fundamen-
tal investigation, was to analyse the effects of MPFSP on the 
temperature distribution in the weld region, microstructural 
characteristics, and mechanical properties of AA6061-T6 

plates that were 6 mm thick plate. Using a constant process 
parameter for this purpose.

2 � Materials and Method

As a base metal (BM), AA6061-T6 (Tempered Condition) 
plates of (150 × 120 × 6 mm) were adopted for the study. 
Tables  1 and  2 shows the chemical compositional and 
mechanical properties of BM. As a reinforcement, Silicon 
carbide powder with an average particle size of 1–40 µm 
were used. A square shaped groove (3 mm side) was cut 
along the centre line of the base plate (As shown in the 
Fig. 1) to preplace SiC particles. After that, the prepared 
plates were cleaned with acetone, then SiC powder was 
packed and compressed into the grooves. Initially, a pin-
less tool H-13 with an 18 mm shoulder diameter was used 
for capping the top surface of the groove (refer Fig. 2a). 
After this, final FSP were performed on sophisticated FSW 
machine setup (refer Fig. 3) using a H-13 tool steel with con-
cave shoulder of 18 mm diameter, and a taper threaded pin 
profile with Pin length of 5.8 mm (refer Fig. 2b). the number 
of FSP pass varies between one to four, while the process 
parameters i.e., tool traverse speed (TTS) of 1.5 mm/sec, 
tool rotational speed (TRS) of 1100 rpm and tool tilt angle 
(TTA) of 2° was kept constant throughout MPFSP.

For thermal profile investigation a K-type chromel-alumal 
thermocouples of 15 Gauge AWG were inserted on the both 
advancing and retreating side of the weld in vertical posi-
tion at a depth of 3.5 mm and 14 mm distance from the 
weld centre-line to measure the temperature achieved during 
the processing. Thermal profiles were recorded using a data 
acquisition system which is coupled with plate. The loca-
tion of the thermocouple, which has inserted into the plate 
shown in Fig. 3.

Welded samples were cut from the centre of each pass in 
a direction perpendicular to the processing method for macro 
and microstructural investigation. The resulting samples 
were polished using 150 grit emery papers sequentially up 
to 2000 grit emery papers, followed by velvet cloth polish-
ing with colloidal silica. After that, the samples were etched 

Table 1   Chemical 
compositional of AA6061-T6 
alloys (wt.%)

Elements Si Fe Cu Mn Mg Cr Zn Ti Al

AA6061-T6 0.60 0.40 0.25 0.10 1.00 0.09 0.03 0.07 Balance

Table 2   Mechanical Properties of AA6061-T6

Ultimate Tensile Strength
(MPa)

Yield Strength
(MPa)

Elongation
(%)

315 255 10.8
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Fig. 1   Schematics diagram of 
base plate with groove

Fig. 2   FSP tool (a) Cover tool, 
(b) Welding tool

1623Silicon (2023) 15:1621–1633



1 3

with Keller's reagent by dipping them for 10–15 s and then 
cleaned them with water or ethanol. The MPFSPed sam-
ples, microstructure and fractured surface was examined by 
Scanning Electron Microscope (SEM) and optical micro-
scope. Vickers’s microhardness tester was used to measure 
the microhardness of MPFSPed samples with a 100-gf load 
and a 10 s dwell period. In order to evaluate mechanical 
behaviour of MPFSPed, tensile specimens were cut perpen-
dicular to the FSP direction.

3 � Result and Discussion

3.1 � The Effect of Multi‑pass FSP AA6061‑T6/SiCp 
on Temperature Distribution

It is well known that proper mixing of material by rotat-
ing tool shoulder and pin leads to an efficient FSW process 
which is directly dependent on temperature generated during 
the process [35]. Temperature is mainly generated due plas-
tic deformation and frictional heat. Figure 4 shows the vari-
ation in the peak temperature profile varying FSP passes. All 
the thermal profiles were developed up to the time required 
to attain the room temperature after gradual cooling. Fig-
ure 4a reveals that maximum peak temperature 339.67 °C 
achieved during first pass FSP. The heat was transmitted to 
the base material during the processing after the first pass 
FSP material was preheated. Furthermore, increasing the 
number of FSP passes, the value of peak temperature of an 

individual thermocouple indicating decreases it may due to 
preheating of the material and other reason larger particles 
size, uneven distribution of particles. It has been observed 
that when the tool axis is close to the thermocouple point, 
the peak temperature is achieved in an instant for every pro-
cess. From Fig. 4a, it can be observed that the peak tem-
perature gradually decreases, as increases the number of 
FSP passes. Increasing the number of FSP passes leading to 
the breakdown the cluster of SiC particles resulting, grain 
refinement and strengthening the particles, reduces the par-
ticles agglomeration. According to [36] reported that addi-
tion of SiC powder in between two plates due to their higher 
thermal conductivity property we could achieve a higher 
peak temperature at higher tool rotational speed.

At fourth pass FSP, particles were homogeneously dis-
tributed, resulting minimum Peak temperature 312.81 °C 
was achieved. Observed from the Fig. 4c value of peak tem-
perature was measured on the advancing side of the first, 
second, third, and fourth passes were 339.67 °C, 330.64 °C, 
320.20  °C, and 312.81  °C, respectively, moderately 
higher than the retreating side was 334.03 °C, 322.11 °C, 
312.30 °C, and 303.72 °C. similar studied by other research-
ers the peak temperature of the advancing side is signifi-
cantly higher than the retreating side [37].

3.2 � Crown Appearance of MPFSP AA6061‑T6/SiCp

Figure 5a demonstrated the effect of reinforced SiCp with 
MPFSPed on AA6061-T6 plate. The FSP's crown looks to 

Fig. 3   Dedicated Friction stir 
welding setup

1624 Silicon (2023) 15:1621–1633
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be defect-free, as there are no flaws or irregularities present. 
Due to the rubbing action of the rotating tool shoulder on the 
workpiece, semi-circular geometries emerge as a crown. The 
soundness of the FSP zone is dictated by the crown's appear-
ance. In all case, the macrostructure resembles symmetrical 
and elliptical in structure. The size and shape of stir zone 
(SZ) primarily depends on the processing parameters and 

tool geometry [38]. Figure 5b illustrates the macrostructure 
of MPFSP of AA6061-T6/SiC. On the photograph, the FSP 
zone's boundary is highlighted. On the processed plate, the 
common FSW imperfections such as warm holes, tunnels, 
and pin holes are not apparent. The macrostructure of the 
processed surface composite reveals a flattened and more 
uniform NZ width and nugget zone area. Also, it increases 

Fig. 4   Effect of MPFSP on 
Temperature profile at (a) 
advancing side, (b) retreating 
side and, (c) variation of peak 
temperature

Fig. 5   (a) Weld surface appearance, (b) macrostructure of MPFSPed samples
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the number of FSP passes, leading to an increase in the NZ 
area, as shown in Fig. 4b. At the constant chosen process 
parameters for all passes of FSP, the desired frictional heat 
generated is adequate for the uniform flow pattern of the 
plasticized material.

3.3 � The Effect of Multi‑pass FSP AA6061‑T6/SiCp 
on Microstructure

A cross section of all processed samples was examined using 
an optical microscope and SEM for microstructural analy-
sis to evaluate the distribution of reinforced particles and 
study the material flow characteristics. The microstructure 
of the NZ of different FSP pass with reinforcement particles 
is illustrated in Fig. 6. No internal defects were seen in all 
MPFSPed samples. Heat input strongly affected the micro-
structure of NZ, owing to intense plastic deformation and 
frictional heat, fine and equiaxed grain structure were found 
in the NZ as compared to other zones [39, 40]. As noticed 
from the Fig. 6a SiC particles were agglomerated in several 
regions, due to improper stirring tool action and lower FSP 
passes, perceived in first pass. According to [34] reported 
that, at the first pass, SiC powder with poor formability than 
the base material was concentrated inside the groove, so 
their flow was difficult, and most of them remained at the 
center of the NZ. However, with increasing the number of 
passes, found that less agglomeration and more uniform 
distribution of SiC particles. The refinement and uniformly 
distribution of the primary SiC nanoparticles were continu-
ously improved as the FSP passes increased [41]. The grain 

size was decimated after the second pass FSP, leading to 
enhance material mixing and dispersion of reinforcement 
particles, as shown in Fig. 6b. It also observed that, the size 
of the reinforcement particles decreases continuously after 
each pass (to refer Fig. 6a-d).

The area fraction of the SiC reinforcement increased 
as the number of FSP passes increased, indicating a direct 
relation between FSP passes and particle distribution due 
to SiC particle fragmentation reduction [27]. According to 
Chang et al. [42] the fine and homogenous microstructure 
was found during MPFSP as a result of decreased heat input 
and strain build up owing to lower rotating speed.

Figure 6d shows that the grain size of SiC particles was 
decreased dramatically and homogeneously scattered in the 
fourth pass FSP compared to other passes. As the number of 
pass increases, the cluster of SiC particles begins to break 
down and uniformly distributed.

Figure 7a-d depicts the SEM image of the dispersion of 
SiC particles in NZ after the first, second, third, and fourth 
pass of FSP. The dispersion of particles is governed by the 
material flow in the NZ. The SEM micrograph of the NZ of 
first pass of FSP (Fig. 7a) reveals the uneven distribution 
of particles. The distribution of SiC particles was found to 
uniformly on increasing the number of passes from first to 
second, but slightly distribution of particles was observed 
in Fig. 7b. fragmentation of particles was also observed 
after second pass FSW due to repeated stirring action of 
tool [26]. Furthermore, increasing the number of passes 
refined and uniform distribution of particles were found. 
Figure 7d reveals that SiC particles size was reduced and 

Fig. 6   Optical microscopy 
image of NZ (a) first pass, (b) 
second pass, (c) third pass, and 
(d) fourth pass

1626 Silicon (2023) 15:1621–1633
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uniformly scattered over NZ, in fourth pass FSP compared 
to the first, second, and third pass FSP. Energy Dispersive 
Spectroscopy (EDS) analysis of NZ after fourth pass FSP 
shown in Fig. 8a. The main components of the AA6061 alloy 
are shown in spectrum 2, while silicon and carbon particles 

were present as a matrix reinforcing element in spectrum 1 
shown in Fig. 8b. As a result of the EDS analysis, it can be 
said that NZ is composed of SiC particles and AA6061 alloy 
and silicon mapping also confirms the uniform dispersion of 
SiC particles in NZ after fourth pass of FSP.

Fig. 7   SEM image of SiC Par-
ticles distribution in NZ of (a) 
first pass, (b) second pass, (c) 
third pass, and (d) fourth pass

Fig. 8   (a) Energy-dispersive spectroscopy analysis, (b) Elemental composition analysis

1627Silicon (2023) 15:1621–1633
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3.4 � Mechanical Properties of MPFSPed AA6061/
SiCp

3.4.1 � The Effect of Multi‑pass FSP AA6061‑T6/SiCp 
on Microhardness

Figure 9 depicts the microhardness value distribution of 
AA6061-T6/SiC in the different weld region at various FSP 
passes. The microhardness profile was determined per-
pendicular to the processing direction in MPFSPed speci-
men. Observed from the Fig. 9, as the number of passes 
increases, the hardness value increases. Meanwhile, it can 
be caused due to the grain fragmentation and refinement 
of SiC particles [34]. the increase in microhardness value 
(117.2 HV) during single pass FSP is lower in compared 
to other FSP pass. However, because of agglomeration 
and uneven distribution of SiC particles, the microhard-
ness curve in the first pass was inconsistent. Attributable 
to the recrystallization mechanism and pinning effect of 
micro-size SiCp, the highly improved microhardness value 
reported after fourth pass FSP is mostly due to homog-
enous distribution of SiC particles and finer grain refine-
ment. Azimzadegan et al. [43] & Fulller et al. [44] studied 
the comparison between the base metal AA6061 and other 
passes, the fourth pass FSP demonstrated a very fine grain 
structure. As a result, the influence of grain refinement, 
high hardness and homogenous distribution reinforcement 
may be contributed to the enhancement of microhardness 
value during multi-pass FSP. The effect of multi-pass FSP 
at constant traverse speed is accompanied by SZ softening. 
This softening is due to the increased number of passes and 
greater particle size. The relationship between hardness and 
grain size has already been correlated using the Hall–Petch 
equation [45, 46].

Where, H
0
 is intrinsic hardness of the alloy, KH  is Hall–Petch 

coefficient, d is the average grain size diameter. According to 
Eq. (1), particle size is inversely related to hardness, hence 
smaller grains have a higher hardness value. Because of the 
lower grain size, the fourth pass has a greater microhardness 
value (132.3 HV) as compared to first, second and third passes.

3.4.2 � The Effect of MFSP AA6061‑T6/SiCp on Tensile 
Strength

Figure 11 shows the UTS, 0.2% yield stress, and % elonga-
tion of AA6061-T6/SiC MPFSP. The SiC particles have a 
favourable impact on both UTS and 0.2% yield stress. The 
average tensile strength of the AA6061-T6 of base mate-
rial were 315 MPa observed, and the joint efficiency was 
calculated as [47].

The efficiency of first, second, third and fourth FSP/SiC 
pass was found to be 73.33%, 78.41%, 93.96%, and 97.77% 
respectively, as compared with base material. The stress—
strain diagram of the base material and MPFSP of AA6061-
T6/SiC is illustrated in Fig. 10. The universal testing was 
used to study the tensile strength of the MPFSPed specimen 
of AA6061-T6. Observed from Fig. 11a-b, as the number of 
passes increased, the UTS and 0.2% yield stress increased 
from 231 to 308 MPa and 178 MPa to 225 MPa, respec-
tively. The first pass of FSP found to be lower strength of 
UTS and 0.2% yield stress than BM strength. this may be 

(1)Hv = H
0
+

KH
√

d

Joint efficiency =
Tensile Strength of welded joints

Tensile strength of base material (AA6061)
× 100

Fig. 9   Microhardness curve of MPFSP of AA6061-T6/SiCp

Fig. 10   Engineering stress – strain diagram of MPFSP of AA6061-
T6/SiC
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attributed to SiCp agglomeration at some regions, due to 
inadequate stirring and uneven SiCp distribution. The inter-
facial bonding between BM and SiCp decreased, leading in 
crack propagation and a decrease in UTS and 0.2%. yield 
stress. Furthermore, it is evident from the Fig. 11a-b that 
UTS and 0.2% yield stress of the second FSP pass increased 
247 MPa and 188 MPa, respectively, although % elongation 
has decreased (Fig. 11c), due primarily to the proper stir-
ring action.

The homogeneous dispersion of SiCp amplifies the pin-
ning action of SiCp. This increase UTS and 0.2% yield stress 
in the third and fourth passes FSP, respectively, from 286 to 
308 MPa and 202 MPa to 225 MPa. The significant increase 
in UTS and 0.2% yield stress, but substantial decrease in 
% elongation, is owing to enhanced fine grain refinement 
generated by vigorous tool stirring.

Furthermore, increasing the number of passes decreased 
inter-particle gaping and improved BM and SiCp interfacial 
compatibility. This feature enhances UTS and 0.2% yield 
stress. The grain size increases as the distance between inter-
particles increases, and the material's strength decreases [48, 
49]. The UTS and 0.2% yield stress improved synchronously 
as the FSP pass increased. The First, second, third, and 
fourth passes of UTS and 0.2% yield stress was observed 
as 231 MPa, 247 MPa, 296 MPa, 308 MPa and 178 MPa, 
188 MPa, 202 MPa, 225 MPa, respectively.

3.5 � Fractography Morphology

SEM was used to investigate the fractured surface in order 
to see how the microstructure influenced the failure pattern 
of the processed specimens. The fractographic image of the 
cracked tensile test specimens MPFSPed of AA6061/SiCp 
was examined. There are four samples that were tested for 
each pass of FSP, as shown in Fig. 12.

The combined effect of heat input, grain size, hardness, 
and particle size must be thoroughly investigated to deter-
mine the mode of failure and location for all samples [29]. 
The tensile fracture outside the NZ reflects well-bonded 
interactions between the reinforcement particles and the 
aluminium matrix. Hamdollahzadeh et al. [50] also reported 
the fracture take place outside the NZ due to good bond-
ing between reinforcement particles and aluminium matrix. 
At the first pass of FSP, the particles accumulated, which 
produced large deep dimples and micro-voids (Fig. 13a). 
This decreased the tensile strength and indicated a frac-
ture of ductile nature. The first pass sample was a raptured 
interface between the thermo-mechanically affected zone 
(TMAZ) and heat-affected zone (HAZ) in RS, as illustrated 
in Fig. 13a. The existence of deep dimples on the tensile 
fracture indicates a ductile mode of fracture [51].

Furthermore, the aggregation of particles is reduced as the 
number of passes increases. As a result of the second pass 

Fig. 11   (a) UTS (b) 0.2% yield 
stress and (c) % elongation of 
MPFSP

1629Silicon (2023) 15:1621–1633
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of FSP, SiC particles scattered unevenly throughout the pro-
cessed region, as shown in Fig. 13b, and the sample failed on 
AS of the TMAZ, where hardness was lower. According to 
[41], the primary cause of the fraction was a raptured inter-
face with cleavage and dimples. While the third pass sample 
also indicates a ductile mode of failure and raptures in the 
AS of TMAZ illustrated in Fig. 13c. Barmouz et al. [52] also 
confirmed the ductile mode of failure by the presence of as 
small dimples. This is due to the specimen's smaller grain size, 
which provides more excellent fracture resistance. The fourth 
pass of the FSP reveals a homogeneous distribution of SiC 
particles and tiny dimples that increase in tensile strength that 
transitions to ductility in nature and sample fractured in AS 
of TMAZ as shown in the Fig. 13d. Husain Mehdi et al. [53] 

they compared to the one-pass FSP/ZrB2, the fourth pass FSP 
had fine, homogeneous dimples that were much clearer to see, 
which are well-known ductile fracture features. The size of the 
dimples decreases with an increase in passes [54].

4 � Conclusion

SiC particles was successfully inserted into multi-pass FSP 
developed aluminium alloy-based metal matrix composites. 
Inserting a k-type thermocouple in the AA6061-T6 plate, 
which is associated with data acquisition to record the tem-
perature distribution during the processing, for investigation 
of thermal characteristics. The effect of SiCp on temperature 

Fig. 12   Location of fracture 
surface of AA6061-T6/SiC (a) 
first pass, (b) second pass, (c) 
third pass, and (d) fourth pass

Fig. 13   Fractography of 
AA6061-T6/SiC (a) First Pass 
(b) second pass (c) third pass, 
and (d) fourth pass

1630 Silicon (2023) 15:1621–1633
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distribution was investigated. The following are some of the 
findings of this research:

•	 The incorporation of SiC particles during MPFSP 
improved significantly UTS, 0.2% yield stress, and micro-
hardness.

•	 MPFSP implies overlapping one another to achieve uni-
form SiC particles dispersion, resulting increases the 
strength.

•	 The thermal analysis of MPFSP shows that value of peak 
temperature profile in each pass decreases with increases 
in number of passes.

•	 After MPFSP, peak temperature of first pass, second pass, 
third pass and fourth pass were recorded as 339.67 °C, 
330.64 °C, 320.20 °C and 312.81 °C respectively in 
AS, similarly in RS recorded as 334.03 °C, 322.11 °C, 
312.30 °C and 303.72 °C respectively.

•	 The microhardness value was consistently increasing 
with MPFSP, observed that first, second, third, and fourth 
passes of 117.2 HV, 120.6 HV,124.8 HV, and 132.3 HV

•	 In MPFSP, SiC particles were found to be completely 
fragmented and dispersed uniformly. With increasing 
the number of passes, agglomeration of SiC particles 
decreases. Uniform distribution of particles was observed 
after the fourth FSP pass.

•	 After performing MPFSP on AA6061/SiC, the UTS and 
0.2% yield stress of the first, second, third, and fourth 
passes were 231 MPa, 247 MPa, 296 MPa, 308 MPa, and 
178 MPa, 188 MPa, 202 MPa, 225 MPa, respectively.
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