
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12633-022-02034-6

ORIGINAL PAPER

Beneficial role of exogenous silicon on yield, antioxidant systems, 
osmoregulation and oxidative stress in fenugreek (Trigonella 
foenum‑graecum L.) under salinity stress

Nadia Lamsaadi1 · Ahmed El Moukhtari1 · Ziati Irouane1 · Mohammed Mouradi1 · Majida El Hassni1 · 
Cherki Ghoulam2,3 · Mohamed Farissi1 

Received: 22 April 2022 / Accepted: 18 July 2022 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Purpose In the Earth’s crust, silicon (Si) is the most abundant element after oxygen, while, under salt stress, its role in the 
tolerance of aromatic and medicinal plants (AMPs) is not yet detailed. For this reason, in this study we evaluated the effect 
of exogenous Si on some tolerance-related parameters in salt-stressed fenugreek, as an important AMP.
Methods 3 mM of exogenous Si was applied to assess its impact on plant biomass and on some tolerance-related parameters 
in fenugreek (Trigonella foenum-graecum L.) grown under 150 mM NaCl stress.
Results Results showed that salinity reduced growth parameters, relative water content, photosystem II efficiency, stomatal 
conductance and  K+ and  Ca2+ contents, while it increased the  Na+ content, which could explain the obtained reduction in 
fenugreek growth and yield. However, Si supply reversed the depressive effects of salinity and improved fenugreek growth 
and yield. Adding exogenous Si also caused a significant reduction in  Na+ content and increased  K+ and  Ca2+ concentrations. 
The content of malonyldialdehyd and hydrogen peroxide and the level of electrolyte leakage were significantly increased in 
salt-stressed fenugreek, while were significantly decreased after Si supplementation. The reduction in oxidative stress mark-
ers in Si-treated plants was correlated with a significant increase in both enzymatic and non-enzymatic antioxidant systems 
and an important accumulation of compatible solutes.
Conclusion Therefore, exogenous Si was directly involved in the central defensive mechanisms to enhance salt tolerance of 
fenugreek, thus its application could be a promoting strategy to alleviate the damages of salinity on fenugreek growth and 
yield.
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1 Introduction

In recent years, climate change has given rise to several 
abiotic stresses. Soil salinization is one of the most of 
these environmental challenges, because approximately 
7% of the world land area, 50% of the irrigated land and 
20% of cultivated land are affected by high accumulation 
of salt ions, causing a considerable decrease in agricul-
tural systems, in terms of production and yield [1]. In fact, 
salinity stress induces oxidative stress and consequently 
destructs most of the vital plant processes, including seed 
germination, photosynthesis, ions uptake, membrane per-
meability and cell homeostasis [2–4]. Salt stress signifi-
cantly reduced the content of photosynthetic pigments and 
the efficiency of both photosystems, thus it greatly affected 
photosynthetic process activity, as a vital mechanism in 
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the plant life cycle [5]. Membrane stability also drasti-
cally affected under salt stress due to high accumulation 
of malondialdehyde (MDA) and reactive oxygen species 
(ROS), like hydrogen peroxide and superoxide [6, 7]. In 
this context, Luo et al. [8] found that salinity stress actives 
transcription of NADPH oxidase genes like RbohD, lead-
ing to uncontrolled production and accumulation of ROS, 
and in turn disturbs cell membrane permeability. In plant 
rhizosphere, accumulation of salt ions like sodium  (Na+), 
chloride and sulfate, causes an osmotic stress and eventu-
ally reduces water and nutrients accessibility to plant root 
[9]. In plant, excess of  Na+ ions negatively affect nutri-
tional balance by disrupting plant nutrient uptake, explain-
ing by reduction in the content of essential elements, like 
potassium, in plant tissues during exposure to salt stress 
[10]. Following their above-mentioned injurious effects, 
salt stress can destruct and inhibit the growth process of 
various plants, including aromatic and medicinal species.

Fenugreek (Trigonella foenum-graecum L.), as an old 
medicinal plant, it has long been cultivated as a spice 
crop in the Mediterranean area, where it has been used 
by people as one of the ingredients in daily diet [11, 12]. 
Regarding the medicinal and therapeutical properties, it 
has been reported that fenugreek seeds are used for two 
main pharmacological properties; hypocholesterolaemic 
and antidiabetic activities [13, 14]. More than that, in 
a recent study, which aimed to evaluate the anticancer 
potential of methanolic fenugreek seed extract, Alru-
maihi et al. [15] documented that fenugreek seed extracts 
have many substances with significant cytotoxicity effect 
for cancer cells. On the other hand, fenugreek, as other 
legume plants, is known for its atmospheric nitrogen 
fixation ability by its symbiosis with rhizobia. In this 
context, Singh et al. [16] estimated that fenugreek can 
fix 48% of its total nitrogen (N) during growing sea-
son. Thus, in addition to their medicinal properties, 
fenugreek can be used as a good soil renovator and a 
best green manure [17]. However, salt stress and other 
environment-stressed factors drastically affected growth 
and yield of fenugreek. Indeed, germination parameters 
i.e., seedling biomasses, embryo viability and seed 
reserve mobilization of fenugreek seeds are negatively 
affected under 200 mM salinity stress [7]. Nasseri et al. 
[18] found that plant biomasses, chlorophyll content 
and membrane integrity in fenugreek were significantly 
reduced with addition of NaCl to the growth medium. 
Also, Zaghdoudi et al. [19] demonstrated that 150 mM 
NaCl salt stress decreased the activities of both photo-
system I and II, explaining the significant decrease in 
photosynthetic activity, as well as fenugreek growth. The 
large above-cited medicinal and agricultural advantages 
of this medicinal plant encouraged future researchers to 
develop new and ecofriendly strategies, such as treatment 

with exogenous nutrients like silicon (Si), to enhance 
the growth and production of fenugreek under stressed 
conditions.

In terms of abundance, Si is the most abundant element 
after oxygen in earth [20]. Various plant species are known 
for its ability to absorb and accumulate Si in their cell tis-
sues [20, 21]. Many studies reported that Si is a beneficial 
element that enhance plant growth and improve plant tol-
erance to several abiotic stresses like heavy metal [22], 
drought [23], phosphorus deficiency [24] and salt stress 
[6]. However, in case of AMPs, the effect of exogenous 
Si has not yet received more attention. Nasseri et al. [18] 
evaluated only the effect of Si treatment on plant growth, 
relative water content, electrolyte leakage and chlorophyll 
content in salt-stressed fenugreek plants but, their effect 
on antioxidant system, osmoregulation and photosystem 
efficiency is not yet assessed and detailed. For this reason, 
in the present work, the effect of exogenous Si application 
on photosynthetic parameters, oxidative stress markers, 
antioxidant systems and osmoregulation were assessed in 
fenugreek, as an AMP, to understand the mechanism by 
which Si improved plants tolerance and yield under salt-
stressed conditions.

2  Materials and Methods

2.1  Plant Material and Growth Conditions

Fenugreek (Trigonella foenum-graecum L.) seeds were 
supplied by the National Institute of Agronomic Research 
(INRA Morocco) and used as plant material. Eight fenugreek 
seeds, disinfected with 5% of sodium hypochlorite solution for 
5 min, were sown in plastic pot, containing 160 g of sterilized 
sand-peat mixture (1:4 v:v), in a growth chamber at 25 ± 1 °C, 
60%—80% relative humidity and 16 h photoperiod. One 
week after germination, 4 fenugreek seedlings were kept and 
irrigated with Hoagland nutrient solution [25], containing 
 KH2PO4 (250  µM  L−1),  KNO3 (600  µM  L−1),  K2SO4 
(0.75 mM  L−1),  MgSO4 (1 mM  L−1),  CaCl2 (1.65 mM  L−1), 
Fe-EDTA (16 µmol  L−1),  H3BO3 (4 µM  L−1),  MnSO4 (6 µM 
 L−1),  ZnSO4 (1 µM  L−1),  CuSO4 (1 µM  L−1) and  Na2MoO4 
(0.1 µM  L−1). Two weeks after sowing, plants were divided 
into two plots: plants treated with 0 mM NaCl and plants 
treated with 150 mM NaCl supplied to the nutrient solution. 
Each plot was divided into two subplots: plants treated 
with 0 mM Si and plants treated with 3 mM Si supplied to 
the nutrient solution in  CaSiO3. For each treatment, 12 pots 
containing 4 plants each were considered. Stress was applied 
for one month, and then some growth attributes, photosynthetic 
characteristics and other biochemical parameters associated 
with salt tolerance, like level of oxidative stress markers and 
antioxidant molecules, were evaluated.

548 Silicon (2023) 15:547–561



1 3

2.2  Growth Attributes

After one month of salt stress and Si treatment, some growth 
attributes, such as shoot and root dry weight, plant length 
and leaf area were assessed. Just before the harvest, plant 
height was determined in three random plants from each 
treatment using a ruler graduated to centimeters and millim-
eters. Plants were then harvested, and shoots were separated 
from the roots, oven dried at 80 °C for 48 h and their dry 
weight was determined.

Leaf area was determined in three random leaves from 
three random plants according to El Moukhtari et al. [6]. 
Briefly, leaves were cut and laid out on a white sheet con-
taining a scale and scanned using a digital scanner. Leaf 
area was measured using Mesurum software version 3.4.4.0.

After 3 months, fenugreek plants were hand-harvested 
and the number of immature seeds per pod (NSP) was 
recorded, with three replicates for each treatment.

2.3  Relative Water Content

Relative water content (RWC) was determined as described 
in [26]. The third fully expanded youngest leaf from top was 
excised from three random plants from each treatment and 
their fresh weight (FW) was recorded immediately. Samples 
were then cut and transferred to distilled water for 8 h and 
their turgid weight (TW) was determined. Samples were 
then kept in an oven at 70 °C for 24 h and their dry weights 
(DW) was measured. RWC was calculated following the 
formula below:

2.4  Photosynthetic Pigment Content

Photosynthetic pigments were determined following Arnon’s 
[27] method. Fresh leaf material (0.1 g) was homogenized 
at 4 °C in 2 mL of acetone (80%) using mortar and pestle. 
Homogenate was then centrifuged at 10 000 rpm for 10 min 
at 4 °C, and the supernatant was used to read the optical den-
sity (OD) at 645 nm, 663 nm and 480 nm. Chlorophyll (Chl) 
a, Chl b, total Chl and carotenoid contents were calculated 
according to D’souza and Devaraj [28], with three replicates 
for each treatment.

2.5  Quantum Efficiency of the Photochemistry of PS 
II  (Fv/Fm) and Stomatal Conductance

Regarding photosystem II efficiency, the ratio of variable flu-
orescence to maximum fluorescence (Fv/Fm) was determined 
in 9 leaves from each treatment after 20 min of darkness 

RWC (%) = [(FW − DW)∕(TW − DW)] × 100

adaptation using a portable fluorescence meter (Handy PEA, 
Hansatech, England) according to Mouradi et al. [29]. For 
stomatal conductance (gs), a leaf porometer (SC1 Model, 
Decagon Devices, version 2012) was used. Five replicates 
for each treatment were considered. Measurement was taken 
between 9 and 12 p.m. and before each measurement, the 
instrument was calibrated to ensure an accurate reading [30].

2.6  Malonyldialdehyde (MDA) and Hydrogen 
Peroxide  (H2O2) Contents and Electrolyte 
Leakage Percentage (EL)

MDA content was estimated in three replicates using 
the thiobarbituric acid (TBA) method [31]. 100  mg 
of fresh leaf material were homogenized in 1 mL of 
0.5% TBA prepared in 20% trichloroacetic acid (TCA) 
and the resulted homogenate was heated at 95 °C for 
30 min. After cooling down, samples were centrifuged 
at 14 000 rpm for 10 min, and the absorbance of super-
natant was determined at 532 nm and 600 nm. MDA 
content was determined using its extinction coefficient 
of 155  mM−1  cm−1 and expressed as µmol MDA  g−1 FW, 
with three replicates for each treatment.

H2O2 content in fenugreek leaves was determined fol-
lowing the method of Brennan and Frenkel [32]. 100 mg 
of fresh leaf materials were ground in 2 mL of cold 
acetone and centrifuged at 5000 rpm for 15 min at 4 °C. 
Afterward, to 1350 µL of supernatant, 150 µL of 20% 
titanium, prepared in concentrated hydrochloric acid 
(HCl), (v/v), and 300 µL of concentrated ammonia were 
added and the mixture was centrifuged at 10 000 rpm 
for 10 min. Supernatant was then discarded and the pre-
cipitate was washed five times with cold acetone and 
recovered in 3 mL of 2 N sulfuric acid to determine 
 H2O2 content after absorbance measurement at 410 nm. 
 H2O2 was calculated using a standard curve prepared 
with known concentration of  H2O2 and expressed as 
mmol  H2O2  g−1 FW, with three replicates for each treat-
ment were considered.

According to Ghoulam et al. [26], the EL was deter-
mined in three replicates per treatment. Three leaves 
from each treatment were cut and washed thoroughly 
with deionized water, to remove all surface electrolytes, 
and immersed in 10 mL of distilled water. After 24 h 
of agitation at 25 °C, the initial electrical conductivity 
 (EC1) was measured using a conductivity meter (DDS-
12DW, Benchtop Conductivity Meter). Samples were 
then autoclaved at 120 °C for 20 min and the finale elec-
trical conductivity  (EC2) was measured. EL was calcu-
lated by the following formula:

EL(%) = (EC
1
∕EC

2
) ∗ 100
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2.7  Enzymatic Antioxidant Activity

Polyphenol oxidase (PPO) was extracted by grinding 100 mg 
of fresh leaf material in 1 mL of 50 mM phosphate buffer 
(pH 6), containing 5% of polyvinylpyrrolidone (PVP). The 
PPO activity was determined according to Hori et al. [33], 
following the oxidation of catechol for 3 min at 410 nm. 
One unit of PPO activity was defined as the amount of 
enzyme causing 0.01 absorbance increases. PPO activity 
was expressed as enzymatic unit (EU)  min−1  mg−1 protein, 
with three replicates for each treatment.

For superoxide dismutase (SOD), 0.1 g of fresh mate-
rial was ground in 1 mL of 50 mM phosphate buffer (pH 
7.8), containing 1% of PVP and 0.1 mM ethylenediamine-
tetraacetic acid. The mixture was centrifuged at 12 000 × g 
for 20 min at 4 °C and the resulted supernatant was used for 
SOD activity as reported previously [34]. One enzymatic 
unit of SOD was defined as the amount of enzyme required 
to inhibit the reduction of 50% NBT. SOD activity was 
expressed as EU  min−1  mg−1 protein, with three replicates 
for each treatment.

For both antioxidant enzymes, Bradford [35] method was 
followed to determine the content of enzymatic proteins of 
the extracts.

2.8  Non‑Enzymatic Antioxidant Content

Co-extraction of total polyphenols and flavonoids was real-
ized as reported previously by Lamsaadi et al. [7]. 100 mg of 
fresh plant materials were homogenized in 1 mL of metha-
nol (80%) at 4 °C using mortar and pestle. After 20 min of 
centrifugation at 12 000 × g at 4 °C, the supernatant was 
recovered and stored at -20 °C until evaluation of the total 
polyphenols and flavonoids contents.

For total polyphenols, Folin-Ciocalteu (FC) method was 
adopted [36]. 50 µL of the resulted supernatant was mixed 
with 250 µL of FC reagent and the volume was adjusted 
to 5 mL with distilled water. After incubation for 3 min at 
room temperature, the volume was adjusted to 6.5 mL with 
 Na2CO3 (20%) and the resulted mixture was incubated at the 
dark for 1 h at room temperature. The OD was then read at 
725 nm and the content of total polyphenols was determined 
and expressed as mg gallic acid equivalents  g−1 FW, with 
three replicates for each treatment.

Flavonoids content was assessed following the method of 
Chang et al. [37]. Briefly, 300 µL of methanol (95%), 20 µL 
of 10% aluminum chloride  (AlCl3), 20 µL of potassium ace-
tate (1 M) and 560 µL of distilled water were added to 100 
µL of supernatant. After incubation for 30 min at room tem-
perature, the absorbance of the resulted mixture was read at 
415 nm and the flavonoids content was calculated referring 
to a standard curve prepared from different concentrations of 

quercetin. Flavonoid content was expressed as mg quercetin 
 g−1 FW, with three replicates for each treatment.

2.9  Compatible Solutes Accumulation

The proline content was determined by homogenizing 
100 mg of fresh materials in 1 mL of aqueous sulfosalicylic 
acid (3%) according to Bates et al. [38], with three replicates 
for each treatment. The homogenate was centrifuged at 14 
000 rpm for 10 min at 4 °C and to 400 µL of the resulted 
supernatant, an equal volume of ninhydrin reagent and con-
centrated acetic acid were added. After 1 h of incubation at 
95 °C, the reaction was stopped using an ice bath. After-
ward, 800 µL of toluene was added and the absorbance of 
the pink phase was read at 520 nm. The content of proline 
was determined using a standard curve prepared with known 
concentrations of proline and expressed as mmol proline 
 g−1 FW.

Glycine betaine content was measured according to 
Grieve and Grattan [39]. 250 mg of dried plant materials 
were mechanically shaken with 7.5 mL of distilled water 
for 48 h at 25 °C, and the resulted filtrate was diluted 1:1 
with 2 N sulfuric acid. After incubation in an ice bath 
under agitation for 1 h, 0.2 mL of cooled potassium iodide-
iodine (KI-I2) reagent was added to 0.5 mL of mixture and 
incubated at 4 °C for 16 h. Then, after centrifugation at 10 
000 rpm for 15 min at 0 °C, the supernatant was carefully 
recovered and the precipitate was dissolved in 3 mL of 1.2 
dichloroethane. The OD of the dichloroethanic phase was 
measured at 365 nm and the content of glycine betaine was 
determined from a standard curve and expressed as mmol 
glycine betaine  g−1 DW, with three replicates for each treat-
ment were considered.

As described by Dubois et al. [40], the content of soluble 
sugars was determined by homogenizing 100 mg of fresh 
leaf samples in 4 mL of 80% ethanol (v/v), with three rep-
licates for each treatment. After 15 min of centrifugation 
at 5000 rpm at 4 °C, 1 mL of 5% phenol and 5 mL of con-
centrated sulfuric acid were added to 1 mL of supernatant. 
The mixture was left to cool down, and then the absorbance 
was measured at 485 nm. The content of soluble sugars was 
calculated from a standard curve prepared with glucose solu-
tions and expressed as mg glucose  g−1 FW.

2.10  Sodium  (Na+), Potassium  (K+) and Calcium 
 (Ca2+) Determination

Na+,  K+ and  Ca2+ contents in fenugreek plants were deter-
mined according to Oukaltouma et al. [41]. 0.5 g of dry 
fenugreek plants were incinerated for 6 h at 600 °C in a 
Protherm Furnaces (PLF 120/12). The resulted ashes were 
recovered in 3 mL of 10 N HCl and the volume was adjusted 
to 50 mL using deionized water. The amount of  Na+,  K+ 
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and  Ca2+ was determined using a flame emission photom-
eter (AFP100 Model, Biotech Management Engineering Co. 
Ltd., UK).

2.11  Statistical Analysis

Data were analyzed using two-way analysis of variance 
(ANOVA II), where Si and salinity were the independent 
variables. Means were compared using Tukey’s test at 95% 
confidence level. Pearson's correlation matrix was realized 
by using XLSTAT statistical software, version 2014.5.03 at 
p < 0.05.

3  Results

3.1  Growth Attributes

Results indicated that salt stress significantly (p < 0.05) 
reduced shoot dry weight (SDW), root dry weight (RDW), 
plant height (PH) and leaf area (LA) by 60%, 66%, 145% and 
89%, respectively, as compared to control (Table 1; Fig. 1a-
b). However, 3 mM of Si supplementation to the growth 
medium of salt-stressed fenugreek plants alleviated the nega-
tive impact of salt and increased SDW, RDW, PH and LA 
by 100%, 100%, 60% and 40%, respectively, relative to Si-
untreated salt-stressed plants. Under normal conditions, Si 
supply increased SDW by 20%. Regarding water status of 
fenugreek plants, relative water content (RWC) was signifi-
cantly (p < 0.05) decreased from 64 to 42% under salt stress. 
Si supplementation improved leaf RWC of fenugreek plants 
under either stressed or unstressed conditions. Indeed, RWC 
of stressed and unstressed plants was 1.6 and 1.2-fold higher 
under Si treatment relative to their respective Si-untreated 
control. (Table 1).

Under salinity conditions, number of seed per pod (NSP) 
was 1.72-fold higher in Si-treated fenugreek plants as 
compared to plants without Si (Table 1). Moreover, under 
unstressed conditions, Si improved NSP by 14% relative to 
Si-untreated control.

3.2  Photosynthetic Pigments

Results presented in Fig. (2a-d) showed that photosynthetic 
pigments were significantly (p < 0.05) reduced upon salt 
stress. Indeed, chlorophyll (Chl) a, Chl b, total Chl and carot-
enoids were 2.59, 1.79, 2.32 and 2.20-times lower under 
150 mM NaCl treatment as compared to the salt-untreated 
control. However, Si supply to the growth medium of salt-
stressed fenugreek plants significantly improved Chl a, Chl 
b, total Chl, and carotenoids, respectively, by 40%, 33%, 
38% and 37% as compared to Si-untreated salt-stressed 
plants. Under normal conditions, Si treatment has no sig-
nificant (p > 0.05) effect on Chl a, Chl b and total Chl.

3.3  Stomatal Conductance and Photosystem II 
Efficiency

Stomatal conductance (Fig.  3a) and the photosystem II 
efficiency (Fv/Fm; Fig. 3b) were decreased, respectively 
from 66.8 to 24.4 mmol  H2O  m−2  s−1 and from 0.89 to 0.64 
in response to 150 mM NaCl. However, the treatment of 
salt-stressed plants with 3 mM Si significantly (p < 0.05) 
improved the stomatal conductance and the photosystem 
II efficiency by 43% and 19% relative to Si-untreated salt-
stressed plants. In non-stressed plants, there was no signifi-
cant (p > 0.05) difference between Si-treated and untreated 
fenugreek plants (Fig. 3a-b).

3.4  Oxidative Stress Markers and Membrane Cell 
Integrity

Exposure of fenugreek plants to 150 mM NaCl significantly 
(p < 0.001) increased the oxidative stress markers such as 
malonyldialdehyde (MDA) and hydrogen peroxide  (H2O2) 
contents and electrolyte leakage (EL) as compared to the 
control (Fig. 4a-c). In fact, when compared to the unstressed 
control, MDA and  H2O2 contents and EL (%) were 18.1, 
1.87 and 3.4-fold higher in fenugreek plants exposed to 
salinity stress. However, when salt-stressed fenugreek 
plants were supplied with 3 mM of exogenous Si, MDA and 

Table 1  Effect of exogenous silicon (3  mM Si) treatment on SDW, 
RDW, PH, LA, NSP and RWC of fenugreek plants grown under 
unstressed (0  mM NaCl) and stressed (150  mM NaCl) conditions. 

Data are the mean of three replicates ± standard error, and the differ-
ent letters show a significant difference at p < 0.05

C, control; Si, 3 mM Si; NaCl, 150 mM NaCl; SDW, shoot dry weight; RDW, root dry weight; PH, plant height; LA, leaf area; NSP, number of 
seeds per pod; RWC, relative water content

Treatments SDW
(mg  plant−1)

RDW
(mg  plant−1)

PH
(cm  plant−1)

LA
(cm2)

RWC 
(%)

NSP

C 153.33 ± 5.13b 27.33 ± 0.64a 35.66 ± 0.20a 4.89 ± 0.29a 63.88 ± 0.82b 14.00 ± 0.76b
Si 180.00 ± 7.69a 26.35 ± 0.51a 36.80 ± 0.15a 4.76 ± 0.22a 73.45 ± 3.01a 16.00 ± 0.38a
NaCl 60.00 ± 3.84d 10.00 ± 0.48c 14.56 ± 0.29c 2.59 ± 0.09c 42.40 ± 1.97c 6.00 ± 0.38d
NaCl + Si 123.33 ± 6.41c 19.66 ± 0.25b 23.46 ± 0.24b 3.62 ± 0.17b 68.51 ± 2.71ab 10.33 ± 0.64c
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 H2O2 contents and EL were reduced by 40%, 18% and 40%, 
respectively relative to Si-untreated salt-stressed plants. No 
significant difference was observed between Si-treated and 
untreated fenugreek plants under normal conditions for all 
investigated oxidative stress markers (Fig. 4a-c).

3.5  Enzymatic and Non‑Enzymatic Antioxidant 
Activity

Results illustrated in Table 2 revealed that the contents 
of total polyphenols and flavonoids were drastically 
reduced upon salt stress. Indeed, 150 mM NaCl stress 
significantly (p ≤ 0.001) decreased total polyphenols from 
9.72 to 4.32 mg gallic acid  g−1 FW and flavonoids from 
20.50 to 6.36 mg quercetin  g−1 FW reflected 56% and 
69% of reduction rates, respectively, as compared to the 

control. However, Si supplementation markedly allevi-
ated the negative impacts of salt stress and significantly 
(p < 0.001) improved total polyphenols and flavonoids 
contents.

Regarding enzymatic antioxidant activity (Table 2), the 
activity of superoxide dismutase (SOD) and polyphenol 
oxidase (PPO) was significantly (p < 0.05) increased by 
166% and 72%, respectively under salt stress as compared 
to the control. Additionally, the activity of both SOD 
and PPO was further increased in salt-stressed fenugreek 
plants when supplied with exogenous Si. In fact, under 
combined treatment of 150 mM NaCl and 3 mM Si, the 
activity of SOD and PPO was increased by 124% and 
14%, respectively as compared to salt stress alone. When 
applied to the unstressed plants, Si has no significant effect 
(p > 0.05) on SOD and PPO activities.

Fig. 1  Effect of exogenous 
silicon (3 mM Si) treatment on 
plant phenotype (a) and leaf 
area (b) of fenugreek plants 
grown under unstressed (0 mM 
NaCl) and stressed (150 mM 
NaCl) conditions. C, control; Si, 
3 mM Si; NaCl, 150 mM NaCl; 
NaCl + Si, combination of NaCl 
and Si

552 Silicon (2023) 15:547–561
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3.6  Compatible Solutes Accumulation

Salt stress caused a significant increase in the content of 
compatible solutes, in terms of soluble sugars, proline 
and glycine betaine, and this increase was more furthered 
(p < 0.01) when salt stressed fenugreek plants were treated 
exogenously with 3 mM Si (Fig. 5). Indeed, in Si-treated 
salt-stressed plants, soluble sugars, proline and glycine 
betaine contents were significantly increased by 42%, 56% 
and 14%, respectively, relative to plants treated with NaCl 
alone (Fig. 5). Si treatment had no significant (p > 0.05) 
effect on compatible solutes under unstressed conditions.

3.7  Mineral nutrition

Results in Table 3 showed that salt stress imposition elevated 
the content of sodium  (Na+) by 217%, while it significantly 
(p < 0.05) reduced potassium  (K+) and calcium  (Ca2+) by 
53% and 29%, respectively relative to the untreated con-
trol. In addition, the increase in  Na+ and the decrease in 
 K+ reduced  K+/Na+ ratio from 0.61 to 0.12 reflected 80% 
of reduction rate (Table 3). However, treatment with Si 
significantly (p < 0.05) increased  K+, while it significantly 
decreased  Na+ content leading to a higher  K+/Na+ ratio 
(0.26) compared to Si-untreated salt-stressed fenugreek 
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Fig. 2  Effect of exogenous silicon (3  mM Si) treatment on chloro-
phyll a (a), chlorophyll b (b), total chlorophyll (c) and carotenoids (d) 
contents of fenugreek plants grown under unstressed (0  mM NaCl) 
and stressed (150  mM NaCl) conditions. Bars represent standard 

errors of three replicates and the values followed by different letters 
show a significant difference at p < 0.05. C, control; Si, 3  mM Si; 
NaCl, 150 mM NaCl; NaCl + Si, combination of NaCl and Si
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Fig. 3  Effect of exogenous 
silicon (3 mM Si) treatment on 
stomatal conductance (a) and 
photosystem II efficiency (b) of 
fenugreek plants grown under 
unstressed (0 mM NaCl) and 
stressed (150 mM NaCl) condi-
tions. Bars represent standard 
errors of three replicates and 
the values followed by different 
letters show a significant differ-
ence at p < 0.05. C, control; Si, 
3 mM Si; NaCl, 150 mM NaCl; 
NaCl + Si, combination of NaCl 
and Si
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plants grown under unstressed 
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Bars represent standard errors 
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plants (0.12). Moreover, Si treatment alleviated the negative 
effect of salinity and significantly (p < 0.05) improved  Ca2+ 
content. Under normal conditions, Si application caused a 
significant increase in the content of  Na+,  K+ and  Ca2+, but 
it remarkably decreased  K+/Na+ ratio.

4  Discussion

Reduction in plant growth is a common response to salt 
stress, which is might be due to a reduction in cell division 
and cell elongation [42]. Similarly, our findings revealed 
that under salt stress conditions, fenugreek plants growth 
was severely reduced as reflected by a significant decrease in 
shoot and root dry weight, plant height and leaf area. Salin-
ity also remarkably reduced the number of seeds per pod 
by 57% relative to the unstressed control. Therefore, expo-
sure to 150 mM NaCl interestingly reduced both fenugreek 
growth and yield. However, exogenous Si supply to the 
growth medium significantly alleviated the harmful effects 
of 150 mM NaCl stress on all the above studied growth and 
yield parameters. These findings are in agreement with those 
of El Moukhtari et al. [6], who reported that 3 mM Si sig-
nificantly improved plant biomass, plant height, leaf number 
and leaf area in Medicago sativa L. under 120 mM NaCl 
stress. Likewise, Ali et al. [10] found that Si was able to 
improve plant biomass and RWC in exposed maize to salin-
ity. According to Bayat et al. [43], when applied under salt 
stress, Si caused a significant increase in calendula growth 
traits including shoot and root dry weight, plant height and 
leaf area. Similar findings were reported in purslane [44], 
basil [45] and honeysuckle [46]. Several studies demon-
strated that, under stressed conditions, the plants biomass 
reduction could be the results of photosynthesis capacity 
reduction. Indeed, the decrease in plants growth parameters 
is significantly correlated with a decrease in chlorophyll 
synthesis and in other photosynthetic parameters in various 

plants species like lavender [9], Vigna angularis [47] and 
cucumber [48]. In the present study, salt-stressed fenugreek 
plants had reduced photosynthetic pigments (Chl a, Chl b, 
total Chl and carotenoids) as compared to controls. This 
effect is often attributed to the toxic effect of  Na+ and  Cl− on 
chlorophyll synthesis machinery, where there is a close neg-
ative correlation between shoot  Na+ content and photosyn-
thetic pigments, like total chl (r = -0.89; p ≤ 0.05; Fig. 6). 
Another explanation of the decreased Chl content under 
salt stress is the increase in the activities of Chl degrading 
enzymes such as chlorophyllase, Chl-degrading peroxidase 
and pheophytinase [49]. Yang et al. [50] reported that pho-
tosynthesis inhibition is one, among others, factors that will 
minimize growth under salt stress. This was clearly observed 
in our study as indicated by the highly significant correla-
tion (Fig. 6) observed between root dry weight and Chl a 
(r = 95; p ≤ 0.05), Chl b (r = 69; p ≤ 0.05), total Chl (r = 93; 
p ≤ 0.05) and carotenoids (r = 71; p ≤ 0.05). However, sup-
ply of Si in salt-stressed fenugreek plants led to significant 
increases of Chl a, Chl b, total Chl and carotenoids. Another 
consequence of salt stress on photosynthesis is the decrease 
of Chl fluorescence, especially the photosystem II param-
eter; Fv/Fm ratio [51]. This might be a consequence of Chl 
reduction in response to salt. Our results revealed that Fv/Fm 
ratio was remarkably reduced upon salt stress and this nega-
tive effect was reversed by Si treatment. Interestingly, Fv/Fm 
ratio was positively correlated with Chl content (r = 0.89, 
p ≤ 0.05 for total chl), confirming the finding of Ganieva 
et al. [52]. Previous studies indicated that Si supplementa-
tion significantly improved photosynthetic pigments due to 
its ability to increase the activities of some Chl synthesis 
enzymes, including δ-aminolevulinic acid dehydratase and 
porphobilinogen deaminase, under salt stress [49].

Added exogenous Si also contracted the inimical effects 
of 150 mM NaCl constraint on nutrition balance by enhanc-
ing fenugreek nutrition, in terms of high content of  K+ and 
 Ca2+ and a significant decrease of  Na+ accumulation, which 

Table 2  Effect of exogenous silicon (3  mM Si) treatment on total 
polyphenols and flavonoids contents and SOD and PPO activities in 
fenugreek plants grown under unstressed (0 mM NaCl) and stressed 

(150  mM NaCl) conditions. The represented data are the mean of 
three replicates ± standard error, and the different letters show a sig-
nificant difference at p < 0.05

C, control; Si, 3 mM Si; NaCl, 150 mM NaCl; NaCl + Si, combination of NaCl and Si; SOD, superoxide dismutase; PPO, polyphenol oxidase; 
EU, enzymatic unit; FW, fresh weight

Treatments Non-enzymatic antioxidant content Enzymatic antioxidant activity

Total polyphenols (mg gallic 
acid  g−1 FW)

Flavonoids
(mg quercetin  g−1 FW)

SOD activity
(EU  min−1  mg−1 protein)

PPO activity
(EU 
 min−1  mg−1 
protein)

C 9.72 ± 0.24b 20.50 ± 0.66a 33.32 ± 3.13c 0.40 ± 0.03c
Si 16.38 ± 1.14a 19.46 ± 0.04a 31.81 ± 7.11c 0.38 ± 0.05c
NaCl 4.32 ± 0.66d 6.36 ± 0.40c 88.84 ± 12.82b 0.69 ± 0.01b
NaCl + Si 7.64 ± 0.31c 14.51 ± 0.40b 199.03 ± 5.97a 0.79 ± 0.01a
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might be the reason of improved biomasses and phenotype 
of fenugreek plants under salt stress. In agreement to the 
above findings, Shekari et al. [53] found that application 
of Si decreased  Na+ concentration and increased  K+ con-
centration in roots and shoots of Anethum graveolens L. 
plants, correlating with a significant amelioration in chlo-
rophyll content and plant biomasses under saline condi-
tion. Therefore, the positive effect of Si on photosynthetic 
pigment can also be attributed to the involvement of Si in 
reducing  Na+ uptake by salt-stressed plants. Shen et al. [54] 
demonstrated that Si supplementation resulted in reduced 
 Na+ content and improved  K+ content, photosynthetic pig-
ments content and gas exchange parameters, which in return 
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Fig. 5  Effect of exogenous silicon (3 mM Si) treatment on the content 
of soluble sugars (a), proline (b) and glycine betaine (c) in fenugreek 
plants grown under unstressed (0 mM NaCl) and stressed (150 mM 
NaCl) conditions. Bars represent standard errors of three replicates 

and the values followed by different letters show a significant dif-
ference at p < 0.05. C, control; Si, 3  mM Si; NaCl, 150  mM NaCl; 
NaCl + Si, combination of NaCl and Si

Table 3  Effect of exogenous silicon (3 mM Si) treatment on  Na+,  K+ 
and  Ca2+ contents and  K+/Na+ ratio in fenugreek plants grown under 
unstressed (0  mM NaCl) and stressed (150  mM NaCl) conditions. 
The different letters show a significant difference at p < 0.05

Na+, sodium;  K+, potassium;  Ca2+, calcium; C, control; Si, 3 mM Si; 
NaCl, 150 mM NaCl; NaCl + Si, combination of NaCl and Si

Treatments Na+

(mg  g−1 DW)
K+

(mg  g−1 DW)
Ca2+

(mg  g−1 DW)
K+/Na+

C 35.33d 48.35c 44.69c 0.61a
Si 70.43c 60.48a 52.08b 0.42b
NaCl 112.04a 31.55d 31.50d 0.12d
NaCl + Si 107.70b 59.80b 73.05a 0.26c
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enhanced Glycyrrhiza uralensis and G. inflata growth under 
salinity stress. Previously, the significant improvement of 
plant growth, photosynthetic activity and nutrition balance 
in response to adding exogenous Si under salt stress has 
been reported, also, in several plant species such as wheat 
[55], basil [45] and Crocus sativus L. [56]. In salt-stressed 
okra plant, Abbas et al. [57] reported that foliar spray of Si 
enhanced stomatal conductance, photosynthetic rate, tran-
spiration rate and number and size of stomata. More than 
that, Gou et al. [58] showed that added Si could significantly 
decrease chlorophyll degradation and tomato plant senes-
cence under salt stress. Based on above cited positive effects, 
Si-mediated increase in growth, yield and photosynthetic 
activity of fenugreek plants might be partly attributed to 
different mechanisms, including decrease in salt ions uptake, 
like  Na+, increase in mineral nutrition  (K+ and  Ca2+), mod-
ification in gas exchange and photosystems performance 
under salt stress.

Closing stomatal pores is a common response of plants 
to overcome water loss by transpiration especially under 
osmotic stress conditions [59]. However, this led to reduction 
of  CO2 assimilation and to perturbation of photosynthetic 
activities. In the present study, salt-stressed fenugreek plants 
showed a lower RWC as compared to control, indicating an 
osmotic stress. The decrease in RWC in salinity conditions 
was positively and significantly correlated to a decrease in 
stomatal conductance (r = 0.78, p ≤ 0.05) (Fig. 6). However, 
as previously reported by Siddiqui et al. [60] and Avestan 
et al. [61], Si supply along with NaCl significantly improved 
both RWC and stomatal conductance. Si improved RWC 
under salt stress has been reported in several plant species 
including maize [62], wheat [55], cucumber [48] and turf-
grass [63]. On the one hand, it was reported that, after the 
uptake, Si accumulates on the epidermis of various plant tis-
sues mainly as a polymer of hydrated amorphous silica, and 
consequently raised the wax content of the plant epidermis 
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to regulate the water use efficiency and water evaporation 
[64–66], which could explain the enhanced RWC in Si-
treated salt-stressed plants.

Compatible osmolytes are small molecules that can act 
as osmoprotectant, alleviating salt stress by regulating cel-
lular osmotic pressure [67, 68]. Furthermore, the ability 
of stressed plant to accumulate compatible osmolytes may 
define their tolerance capability [69]. In the present study, 
salt-stressed fenugreek plants have accumulated numer-
ous compatible solutes, including organic (proline, glycine 
betaine and soluble sugars) and inorganic  (K+) compounds. 
More interestingly, the increased compatible solutes in 
salt-stressed plants were further enhanced when they were 
treated with 3 mM Si, which could explain the RWC ame-
lioration under salt-mediated osmotic stress and in return 
enhanced morphological aspect and growth of stressed 
plants. Previous research indicated that Si increased salt 
tolerance of plants by regulating osmolytes accumulation, 
allowing osmotic potential adjustment. For example, in a 
study conducted on salt-stressed Cucumber by Mousavi 
et al. [70], Si incorporation in cultured media resulted in a 
significant increase in the content of proline and soluble sug-
ars. The same has been reported in other plant species such 
as wheat [55] and okra [57]. According to Zhu et al. [71], 
exogenous Si was involved directly in proline biosynthe-
sis by inhibiting the activity of proline dehydrogenase and 
enhancing that of pyrroline5-carboxylase synthase, which 
resulted in an increase in plant proline content.

The effect of salt stress in plants can also be seen in the 
form of oxidative stress. Elevated  Na+ content particularly 
in the aerial parts led to a dramatic accumulation of  H2O2 
(r = 0.90, p < 0.05) in the leaves. If not metabolized,  H2O2 
could induce membrane damages [72]. In our study, the 
increase in  H2O2 content was significantly correlated with 
MDA content (r = 0.94, p < 0.05) and electrolyte leakage per-
centage (r = 0.90, p < 0.05), indicating an oxidative damage. 
Similar findings were obtained by Ahanger et al. [47], who 
found that, under salinity, the accumulation of ROS was 
positively correlated with an increase in lipid peroxidation. 
However, in the current study, incorporation of Si to the 
growth medium significantly mitigated the adverse effects 
of salt stress on membrane integrity by decreasing  H2O2 and 
MDA contents and electrolyte leakage value. Similarly, sev-
eral studies reported that ROS generation and membrane cell 
instability were significantly declined in response to exog-
enous Si application under salt stressed conditions [45, 61, 
73]. To overcome salinity-mediated oxidative stress, toler-
ant plants adopt some tolerant strategies. This includes the 
induction of the enzymatic and non-enzymatic antioxidant 
pathways [74]. Importantly, in the current study, supply of 
Si to salt-stressed plants furthered the increase in the activity 
of SOD and PPO, together with an increase in the content 
of non-enzymatic antioxidant compounds (total polyphenols 

and flavonoids). Thus, Si treatment induced ROS detoxifica-
tion by promoting the activities of antioxidant enzymes, and 
enhancing the content of non-enzymatic antioxidant com-
pounds, such as total polyphenol and flavonoids. Likewise, 
in salt-stressed tomato, Al-aghabary et al. [73] reported that 
Si treatment decreased lipid peroxidation and  H2O2 content, 
while it increased SOD and catalase activities. Si-mediated 
reduction in oxidative stress under salinity stress was also 
reported in rice [75], okra [55], Anethum graveolens L. [53] 
and Glycyrrhiza uralensis [76] during response to salinity 
constraint. Thus, in addition to the enhancement of photo-
synthetic process performance and accumulation of osmo-
protectant compounds, incorporation of exogenous Si to the 
stressed growth medium was also able to alleviate the harm-
ful effect of 150 mM NaCl on fenugreek plants by activating 
both enzymatic and non-enzymatic antioxidant systems, as 
well as detoxification of oxidative stress markers.

5  Conclusion

Overall, salt stress significantly reduced fenugreek growth 
and yield, due to reduction in relative water content, photo-
system II efficiency and chlorophyll content. Also, salinity 
caused a significant induction of oxidative stress, reflecting 
by high accumulation of MDA and ROS in salt stressed fen-
ugreek plants. However, Si addition alleviated salt-induced 
reduction in plant growth and yield by enhancing photosyn-
thesis, relative water content and the uptake of indispensable 
nutrients like  K+ and  Ca2+. Exogenous Si also decreased 
 Na+ accumulation and saved the membrane permeability, 
due to a decrease in oxidative stress markers. In addition, 
adding Si induced defense-related mechanisms via the acti-
vation of both enzymatic and non-enzymatic antioxidant sys-
tems and accumulation of organic compounds, in terms of 
proline, glycine betaine and soluble sugars. Thus, under salt 
stressed conditions, Si treatment might be a useful method 
for improving fenugreek tolerance and yield.
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