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Abstract
In this study, silicon carbide mixed electrical discharge machining (SCMEDM) process has been developed and later 
on modelled also using an artificial neural network (ANN) based technique as well as response surface methodology 
(RSM). Experiments were conducted with Al LM-25/SiC metal matrix composites as per Box Behnken design (BBD). 
Discharge current, pulse-on-time, servo-voltage, powder concentration, tool material and varying reinforcement levels 
were considered as machining input parameters. Material removal rate, tool wear rate and surface roughness were 
taken to be the response parameters. Analysis of variance (ANOVA) method was used to investigate the significant 
effect of parameters on the response measures. The experimental data was trained using a back-propagation ANN 
technique. Research shows that the influence of current, pulse length and tool material on the machining character-
istics of Al LM-25 MMCs is significant. Surrogated models were also developed for proposed process using RSM. 
However, the accuracy of ANN models was found to be better than that of RSM models.

Keywords Silicon carbide mixed electrical discharge machining (SCMEDM) · Artificial neural network (ANN) · Analysis 
of variance (ANOVA) · Response surface model (RSM)
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1 Introduction

Metal matrix composites (MMC) have rapidly penetrated 
into numerous industries including aerospace, defence, 
manufacturing, automobile, electronic and nuclear [1].Due 
to their favourable properties such as light in weight, better 
wear resistance, better specific strength and temperature 
resistance than conventional materials [2], they are exten-
sively used in many industrial applications. In the realm of 
industrial production, conventional machining approaches 
generally are insufficient to machine MMC for achieving 
the required precision and intricate shapes, which are also 
time-consuming and sometimesdifficult to machine [3–5]. 
An advanced manufacturing process is the only way to 
achieve such features on a component. In the recent past, 
Electrical discharge machining (EDM) has been gaining 
attention as a significant technology for cutting several 
hard and difficult-to-machine materials due to the intense 
heating made by controlled, localized electric sparks and 
produces negligible stress (minimum surface tension) on 
the workpiece surface to remove material. Thus, by con-
sidering the most appropriate and optimal process param-
eters, which mostly consume precious time and effort, the 
EDM process becomes more effective in terms of cost, 
quality and productivity than traditional machining of 
difficult-to-cut materials. As a result of the effective utili-
zation of experimental, modelling and optimization meth-
odology, a new technological solution is able to meet and 
control multiple objectives simultaneously (multi-objec-
tive) in order to provide optimized machining of advanced 
MMCs. Many statistical and computational approaches 
have been used for predictive modelling, including RSM 
[6–11], ANN [12–17], Taguchi method [18–21], GRA 
[22–26], desirability function approach of RSM [27–30], 
PCA [31, 32], TOPSIS [33–35], GA [36–39] and PSO 
[40–43].The machinability of various materials has been 
extensively explored by employing various experiment-
aldesign, numerical modelling approaches and optimiza-
tion techniques [44–47], The objective was to estimate 
the performance and to modify the inputfactors in cutting 
the materials likeStainless steel, A2 tool steel, Grey cast 
iron, Inconel 600, 601, 625, 825, 718,MDN 300, AISI D2, 
D3, D6, AISI 316 L,Ti6Al4V, Ti13Zr13Nb, nickel alloy, 
Al7075, Al6061, Al6063 alloy, Al-SiC MMC,  Si3.

2  Literature Review

Several publications applying one out of statistical or com-
putationaltechnique rather than considering both to solve 
multi-objective problems, which are crucial in improving 

machining performance. Hence, appropriate technologi-
cal guideline is required to be developedfor effective and 
optimum machining of LM-25/SiC MMC material by 
SCMEDM process. Because of its extreme strength at high 
temperatures, excellent corrosion resistance and excep-
tional wear resistance.

However, until now, no author has performed any eco-
nomic analysis facilitating cost-effective manufacturing 
based on SCMEDM that can provide scope for further 
researches related to techno-economic aspect.The current 
investigation handles sustainability assessment of EDM 
processes so as to analyze the machining efficiency of 
silicon carbide mixed electrical discharge machining of 
LM-25/SiC MMC with respect to MRRs, TWRs andSRs 
by employing process parameters (discharge current, gap 
voltage, pulse-on-time, powder content, tool material and 
reinforcement percentage).Experimental investigations, 
prediction models and optimal design of multi-responses 
are investigated using Box-Behnken's (BBD) design, 
ANOVA and statistical techniques. Afterward, an artifi-
cial neural network (ANN) is employed as a computational 
model for multi-response optimization. In addition, a best-
fit economic analysis is used to determine the suitability 
of PMEDM for difficult-to-cut materials [2, 48] as well as 
hard-to-cut materials [49, 50], with the purpose of rais-
ing manufacturing industry awareness.SEM observation 
helped interpret the results by investigating the impact of 
discharge current on machined surface morphology, recast 
layer thickness and crack width on the SCMEDMed work 
surface thickness and crack length. This study provides a 
method for assessing sustainability while considering the 
machining performancefrom the perspective of novelty; 
these results can help establish an economic advantage 
for SCMEDM in industries such as automotive, aerospace, 
military and electrical. Mentioned points make the present 
study unique and will lead to a significant contribution to 
advance sustainable manufacturing (Table 1).

Reviewing the literature reveals that ANN is frequently 
used in modelling and process optimization. It is able to 
build nonlinear relationships between a large variety of input 
and output parameters. An ANN can be trained on any num-
ber of data sets and it is capable of maintaining implicit 
relationships between inputs and outputs implicitly, unlike 
mathematical models which are data-driven, self-adaptive 
and rigid. Furthermore, artificial neural networks can be 
trained on a wide range of data sets and they can infer com-
plex nonlinear functional relationships between inputs and 
outputs implicitly. Most research uses a single-hidden-layer 
ANN architecture, thus, the accuracy of the resulting model 
has received less attention. Further, the previous work did 
not consider composites, notably LM-25/SiC composites, 
as a work item. Despite the fact that tool material is a key 
parameter, it can affect the accuracy of SCMEDM [70].
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Earlier research did not take account of it while modelling 
this process.

3  Experimentation

3.1  Silicon Carbide Mixed Electrical Discharge 
Machining (SCMEDM)

Researchers have demonstrated that SCMEDM increases the 
speed of EDM based machining SCMEDM is an advanced 
machining technique that mixes a fine, abrasive, electrically 
conductive powder with the dielectric medium. Metallic 
powders suspended in a dielectric medium reduce the insu-
lating strength of the material, resulting in a higher inter 
electrode gap. These results in improved EDM performance 
like higher MRR reduce TWR and SR than regular EDM. 
Figure 1 depicts the schematic of SCMEDM.

In PMEDM suitable powder SiC is chosen to mix with 
the dielectric liquid in a controlled set-up with pumping 
device. The powder is mixed using a stirrer for complete 
mixing in the dielectric liquid and pump ensures that it so 
not get settled in the tank. Similar to conventional EDM 
thermal energy is generated at the junction of electrode and 
job with the help of high voltage electrical sparks. Due to 
presence of powder the electrical density at the machining 
spot decreases which in turn forces the thermal energy pro-
duced to raise the local temperature to a higher value thereby 
melting and vaporising the job material. To avoid excessive 
heating short pulses are used. PMEDM involves adding con-
ductive powders to achieve an increased MRR, SF and tool 
life by causing dielectric liquid to breakdown earlier [71]. 
Conduit powders such as copper [71], aluminium [70–72] 
of various sizes, chromium [73], silicon carbide [74], CNT 
[75], manganese[76], boron carbide [77], graphene nano 
powder [78], graphite [79] and others, when added to the 
dielectric liquid will results in higher MRR and reduced SR. 
By mixing powder with dielectric liquid, the MRR can be 
increased by 1% to 33% without compromising quality [80]. 
In one study [81], an increase in MRR due to non-uniform 
heat dissipation was identified, resulting in the dissipation 
of surplus residual heat.

Al powders in the appropriate proportion are mixed with 
dielectric liquid to enhance the responses [82].As per during 
machining of aluminium composite with copper electrodes, 
addition of aluminium powder in specified quantities to die-
lectric liquid leads to better MRR and SR [72]. The appro-
priate addition of CNTs to EDM's dielectric liquid increases 
its machining rate and reduces the SR [83]. Nano-almond 
powder significantly improved titanium alloy surface qual-
ity for biomedical applications by forming carbon-enriched 
surfaces for better osseointegration [70]. A CNT additive 
was found to reduce micro crack formation and improve the Ta
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stability of machining [75]. Adding chromium to dielectric 
liquid produces a chromium-rich machined surface [84]. To 
improve the SR, the powder concentration needs to be con-
trolled [77]. Depending on the workpiece and surface fin-
ish of the components, proper identification of powder size 
and concentration can yield a mirror finish [85]. Chromites 
powders in an appropriate size and concentration reduce 
SR and cracks and reduce crater size when machining H-11 
die steel [73]. The micro hardness of the machined surface 
must also increase with an increase in powder concentration. 
A proper choice of powder concentration can yield better 
results [86]. Micro hardness is measured when manganese 
powder is mixed with dielectric liquid during machining of 
OHNS die steel. A maximum of 8% of the powder can be 
added in proportion to dielectric liquid [70]. Multi walls of 
CNT increased MRR until 8 gm/lit of powder concentra-
tion was reached [80]. When machining H11 die steel, the 
ability of materials to transfer current effectively increased 
MRR. SR reduced until SiC powder concentration of 4 gm/
lit was achieved. Due to addition of SiC in the dielectric 
liquid, the transfer of material from electrode to job was 
of small quantity [87]. Dubey et al. [54] experimented on 
Al7075– 5%B4Cp metal matrix composite by incorporating 
chromium powder in machining. Higher peak current and 
pulse on time increase the height of recast layers. Singh et al. 
[88] implemented RSM &ANN technique to estimate exper-
imental inputs and modelling of measure response such as 
MRR, TW, and SR. It is observed that predicted results from 
ANN model are compared with experimental result are quite 
satisfactory. Naiket al. [89] Response surface methodology 
(RSM) and analysis of variance (ANOVA) are employed, 

respectively, for experimental analysis, predictive model-
ling in electrical discharge machining process for alumin-
ium–silicon carbide metal matrix composite. Result reveal 
that discharge current have major influence on machined 
surface. Phate et al. [90] have employed the Artificial Neu-
ral Network (ANN)-Based PCA technique for analysing 
processes and enhancing the process performance. From 
the investigation. It is observed that the % composition of 
silicate, the pulse off time (POFF) and current (IP), are the 
most critical process parameters. Ming et al. [91] proposed 
a multi-variable regression model using back propagation 
neural network (BPNN) and a radial basis neural network 
(RBNN) to model and optimize die sinking EDM process 
of SiC/Al composites. Padhee et al. [92] A response surface 
methodology (RSM) has been used to analyze the effects 
of independent variables on the results and develop Non-
sorted genetic algorithms (NSGA) for investigating the 
machining performance of power mix EDM using EN 31 
steel.Tall et al. [93] observed MRR of the Al/Al2O3 com-
posite with EDM can be improved by adding aluminium 
powder in the dielectric liquid. Kolli et al. [94] found that 
adding graphite powder (14  g/L) and surfactant (vary-
ing between 0.25 and 15.0 g/L) to a dielectric fluid when 
EDMing titanium alloy improved the MRR. Kansal et al. 
[95] observed that the machining rate of die steel has been 
improved by adding silicon powder (average particle size 
30 mm) in the dielectric fluid, in particular an increase from 
2.67 to 4.58  mm3/min was reported at a 3 g/L concentration 
of Si powder. According to Singh et al. [96], the highest 
MRR was found when silicon powder was diluted by 8 g/L 
PMEDM. In Kumar et al. [97] studied that during PMEDM 

Fig. 1  ZNC EDM machine 
ELECTRA PLUS, (Model S-50 
ZNC)
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of the Al-SiCP MMC, peak current, powder concentration 
and pulse duration are the influencing factors. The authors 
observed that reinforcement of 10% SiC particles (average 
size of 25 mm) with 4 g/L silicon powder concentration 
results in to a higher MRR of 2.93  mm3/min. According to 
the PMEDM studies [98–103] a higher powder concentra-
tion in dielectric liquids improves machining performances. 
Tripathy et al. deployed TOPSIS and GRA techniques to 
assess the efficacy of chromium powder mixed EDM with 
copper electrode for machining H-11 die steel. Experimental 
results indicate that adding a proper concentration of parti-
cles of the proper size improves SF [104]. Kansal et al. [105] 
have demonstrated that a novel nano porous layer gener-
ated by PMEDM techniques can enhance the biomechanical 
anchorage of bone-implant structures. Tripathy and Tripathy 
[106] studied chromium powder mixed EDM to investigate 
the effect of process variables on micro hardness in H-11die 
steel and estimate the migrated material from workpiece to 
tool depending on peak current, powder concentration, duty 
cycle and pulse time employing SEM and EDS. Nanimina 
et. al. [107]. Experimental results showed that using nano 
aluminium powder as a matrix in EDM to machine Ti6Al4V 
workpieces with a copper-tungsten electrode improved SF 
by reducing micro cracks and crates. Surface restoration is 
improved due to uniform distribution of silver particles and 
a carbide-rich surface layer formed by alloying of trans-
fer elements. Hamidullah et. al. [108] studied the effect of 
SiC powder concentration on particle deposition, subsur-
face structures and surface topography during PMEDM of 
Ti-6Al-4 V-ELI material and concluded that the material 
transfer mechanism improves with low pulse currents and 
higher suspended particle concentration. Kumar et. al. [109] 
investigated machining of Inconel 825 workpieces using 
 Al2O3 micro PMEDM machining. It was determined that 
discharge current, pulse duration and voltage are the major 
parameters affecting MRR and SR. Rajavel et. al. [110] pre-
sented a comprehensive review of EDM of various compos-
ite materials. Saharia et. al. [111] studied Hybrid PMEDM 
with Multi-Walled Carbon Nano Tube (CNT) powders and 
kerosene for grinding EN19 alloy steel parts with brass elec-
trodes. Surekha, et. al. [112] investigated experimentally the 
use of aluminium powder in EDM with brass electrodes for 
machining EN-19 alloy steel and concluded that gap voltage 
and peak current affect MRR significantly.

3.2  Material of the Work Piece

An abrasive tool was used to machine LM-25/SiC reinforced 
composite material and developed work piece specimens 
with dimensions of 150 × 15x10 mm (Length x Width x 
Thickness).Semi-automatic polishing equipment is used to 
polish the specimens to get a consistent surface quality on 
each one. The chemical composition of Al LM-25(Wt %) 

composite material includes: Al 92.3812, Cu 0.0944, Mn 
0.2396, Ni 0. 662, Si 0.243, Fe 0.032, Zn 0.005, Pb 0.002, 
Sn 0.070 and C6. The mechanical properties are Density 
2,680 kg/m3, Ultimate tensile strength 282 MPa, Percent 
elongation 5, Brinell hardness number 92 BHN and Modulus 
of elasticity 71GPa.

3.3  Experimental Details

Figure 1 illustrates the schematic perspective in its entirety. 
ELEKTRA PLUS Model S-50 ZNC, Pune, India PMEDM 
is utilised to conduct experimentation. When a sample of the 
required size is prepared from an LM-25 reinforced compos-
ite alloy containing 0%, 5% and 10% by weight of silicon 
carbide reinforced material with a size of 30 microns (280 
mesh), it exhibits superior wear resistance, high specific 
strength, low density and high stiffness while also exhibiting 
excellent thermal and shock resistance. A cylindrical elec-
trode (ø12 mm) was employed as a negative-polarity elec-
trode and EDM oil was used as the dielectric liquid in this 
experiment. During the tests, both electrodes were kept in a 
silicon carbide mix dielectric to keep them from corroding.

4  Experimental Method

4.1  Experimental Design with RSM

Regression analysis has been carried out using commercial 
statistical software (Minitab 19) to model the response vari-
ables. The impact of process parameters on performance fac-
tors are modelled and estimated using an ANOVA test [113, 
114]. ANOVA is also used to investigate the significance 
of the developed models to estimate the significance level 
of input parameters; interaction and quadratic terms [115, 
116]. To establish the adequacy and prediction capabilities 
of the developed empirical models, correlation coefficient 
 R2, adjusted  R2 and predicted  R2were used [117].

This research work is focused to evaluate the impact of 
six machining parameters (discharge current, servo power, 
pulse-on-time, tool material, % reinforcement and powder 
concentration) on machine performance, including the MRR, 
TWR and SR during silicon carbide mix EDM machining of 
LM-25/SiC composites. According to Box Behnken designs 
[118] a total of 54 experiments are required to estimate the 
impact of six machining parameters on machine response. 
Each experiment will be replicated once. Table 2 and 3 
show the input parameters and experimental results for the 
TWR, MRR, and Ra, which are averages of values derived 
in both runs.The current set of input parameters was chosen 
after performing literature research, evaluating mechanism 
competence and taking machine constraints into account. 
In order to establish a mathematical relationship between 
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the dependent and independent variables, response surface 
methodology was applied [119]. Using RSM, the number of 
experimental trials can be reduced to some extent and hence, 
their interactions can be studied effectively.

Generally, the second-order regression model shown in 
Eq. 1 is used in response surface methodology.

Y represents the predicted response;  Xi is the input 
variables,  Xii

2 and  Xi,  Xj is the square and constant term, 
respectively. The unknown regression coefficients are βo, 
βi, βii and βij and € is the error. Experimental work has been 
performed to examine the impact of different EDM input 
parameters such as discharge current, servo voltage, pulse on 
time, powder concentration, different types of tool material 
and different weight fraction of work material on machining 
performance viz. MRR, TWR, SR. The parametric level is 
coded using the equation.

As shown in Eq. 2, Z represents the coded value (-1, 0, 1), 
The values Xmax and Xmin are the maximum and minimum 
values of actual parameters and the actual value X is the 
value of the parameter.

5  Results and Discussion

5.1  Analysis of Variance

The accuracy of the developed models was evaluated with 
an ANOVA test using Minitab 19 Software. The results are 
presented in Tables 4, 5, and 6 using the response surface 
models of MRR, TWR, and SR, described in the follow-
ing sections. In this study, the adequate criterion was  R2, 
adjusted  R2 and anticipated  R2, all of which were around 
one, suggesting that the models were appropriate and fit the 

(1)Y = �o +
∑

�iXi + �iX
2

ii
+ �ijXi,Xj + C

(2)Coded value (z) =
X −

Xmax+Xmin

2

Xmax−Xmin

2

data well. MRR has an  R2 of 86.83%, TWR has an  R2 of 
84.43% and Ra has an  R2 of 80.34%.Through this backward 
elimination procedure, insignificant terms can be removed 
from fit quadratic models, and the lack of fit test will not 
appear significant. Following the backward elimination 
process, the final quadratic response based analysis was 
performed.

ANOVA Table 4 shows that the most significant influenc-
ing factor for MRR is the tool material with a contribution 
of 11.90%, followed by powder concentration, servo voltage, 
discharge current, pulse-on-time, and% reinforcement, with 
contributions of 7.15%, 5.02%, 4.04% and 3.24%, respec-
tively. In addition, the coefficient of determination  (R2) and 
adjusted  (R2) values are 86.83%, and 83.38%respectively, 
which indicates close alignment between the coefficient 
of determination  (R2) and 77.13% significance level of the 
model. The lack of a fit test was deemed less significant than 
intended for MRR.

Further, Table 5 shows that the most influential parameter 
for TWR is pulse on time, which contributes 6.94%. Other 
important considerations include powder concentration, 
discharge current, servo voltage, % reinforcement and tool 
material, which contribute 5.55%, 4.61%, 4.09%, 3.80% and 
3.22%, respectively. In general, the coefficients of determi-
nation  (R2) and adjusted  (R2) values of 84.43% and 80.35% 
are in agreement with the experimental results.

According to ANOVA Table 6, tool material is the most 
significant parameter for SR (11.90%). It is followed by 
servo voltage, powder concentration, pulse on time, dis-
charge current and % reinforcement percentage contribu-
tion (6.07%, 5.15%, 2.46%, 2.02% and 1.49%).The value of 
the coefficient of determination  (R2) 80.34% is reasonable 
agreement with the adjusted  (R2) 76.24% respectively. This 
results in the not significant lack of fit being beneficial for 
SR.

According to this study, the anticipated  R2 and the modi-
fied  R2 were both in agreement with one another. The lack 
of fit was not statistically significant for each of the exam-
ples. A coefficient of variation (CV) number less than 0.41 
indicates that the studies are more accurate and consistent.

Table 2  Process variables and 
their levels

Process variables Unit Symbols Optimum level

Min Centre Max

–1 0 1

Discharge Current (Ip) Ampere A 2 3 4
Pulse on time  (Ton) Micro second B 30 50 75
Servo Voltage (Vs) Volt C 50 60 70
Con. of powder gm/ltr D 0 2 4
Tool Material - E Brass Copper Graphite
% Reinforcement - F LM-25 LM-25–5%SiC LM-25–10%SiC
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Table 3  Experimental run with 
process parameters and machine 
response

Sr.No Run no Ip
amp

Ton
µs

V
volt

Powder con
gm/ltr

T
tool

W
work

MRR
(mm3/min)

TWR 
(mm3/min)

SR
(μm)

1 1  − 1  − 1 0  − 1 0 0 1.86567 0.03348 5.104
2 2 1  − 1 0  − 1 0 0 2.25835 1.84642 9.723
3 3  − 1 1 0  − 1 0 0 2.89164 2.11116 8.535
4 4 1 1 0  − 1 0 0 3.21343 3.50334 9.677
5 51  − 1  − 1 0 1 0 0 2.582 3.09062 9.967
6 52 1  − 1 0 1 0 0 3.14328 3.59285 9.885
7 53  − 1 1 0 1 0 0 3.71194 3.96696 9.456
8 54 1 1 0 1 0 0 4.24119 4.72232 10.64
9 13 0  − 1  − 1 0  − 1 0 0.10925 1.54581 7.592
10 14 0 1  − 1 0  − 1 0 0.82119 2.9229 8.607
11 15 0  − 1 1 0  − 1 0 0.18462 2.5629 7.757
12 16 0 1 1 0  − 1 0 0.61819 3.13436 8.839
13 17 0  − 1  − 1 0 1 0 2.46865 2.8584 6.394
14 18 0 1  − 1 0 1 0 3.11925 3.6761 9.885
15 19 0  − 1 1 0 1 0 3.4258 3.86991 9.044
16 20 0 1 1 0 1 0 3.8225 4.56991 9.742
17 9 0 0  − 1  − 1 0  − 1 0.16656 2.63348 6.583
18 10 0 0 1  − 1 0  − 1 1.20894 2.92232 9.884
19 43 0 0  − 1 1 0  − 1 0.46776 3.04464 10.83
20 44 0 0 1 1 0  − 1 1.42314 3.8558 9.847
21 11 0 0  − 1  − 1 0 1 0.1985 0.73348 6.499
22 12 0 0 1  − 1 0 1 1.20297 1.51116 9.092
23 45 0 0  − 1 1 0 1 1.32313 1.52232 9.432
24 46 0 0 1 1 0 1 2.55119 1.84464 8.661
25 5  − 1 0 0  − 1  − 1 0 0.30144 1.0229 9.278
26 6 1 0 0  − 1  − 1 0 0.52388 2.53436 9.849
27 47  − 1 0 0 1  − 1 0 1.61731 1.378 7.142
28 48 1 0 0 1  − 1 0 2.64328 1.9771 9.813
29 7  − 1 0 0  − 1 1 0 1.78656 0.63274 8.697
30 8 1 0 0  − 1 1 0 2.20716 1.98973 9.831
31 49  − 1 0 0 1 1 0 2.72895 1.37168 10.85
32 50 1 0 0 1 1 0 3.51462 2.88938 10.63
33 27 0  − 1 0 0  − 1  − 1 0.03731 0.8229 10.33
34 28 0 1 0 0  − 1  − 1 0.07626 1.83348 10.93
35 29 0  − 1 0 0 1  − 1 0.05462 0.54424 8.457
36 30 0 1 0 0 1  − 1 0.5231 1.80973 9.557
37 31 0  − 1 0 0  − 1 1 0.03231 0.0229 7.132
38 32 0 1 0 0  − 1 1 0.16119 0.81145 7.782
39 33 0  − 1 0 0 1 1 0.07462 0.04424 7.478
40 34 0 1 0 0 1 1 0.16925 0.74424 8.209
41 35  − 1 0 1 0 0  − 1 0.07731 0.01116 7.249
42 36 1 0  − 1 0 0  − 1 0.18119 0.22232 8.819
43 37  − 1 0 1 0 0  − 1 0.46831 0.07116 6.463
44 38 1 0 1 0 0  − 1 1.48656 0.08116 9.192
45 39  − 1 0  − 1 0 0 1 0.13731 0.08232 5.394
46 40 1 0  − 1 0 0 1 1.41656 0.01116 5.471
47 41  − 1 0 1 0 0 1 1.96104 0.72232 7.946
48 42 1 0 1 0 0 1 2.38059 1.65089 9.996
49 21 0 0 0 0 0 0 0.22388 0.04464 8.153
50 22 0 0 0 0 0 0 0.21656 0.03348 4.788
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A degree of confidence of 95% was employed for identi-
fying important machining factors, including the TWR and 
Ra. It was concluded that tool material, powder concentra-
tion, servo voltage, discharge current, and pulse on time had 
the greatest impact on MRR. The pulse time, the voltage, 
the quantity of powder all has great impact on TWR, while 
the tool material has a significant impact on Ra. The high 
discharge energy quickly breaks down the material, therefore 
increasing its resistance.

5.2  Prediction using ANN

Analogous neural networks can be used to forecast response 
parameters for a given set of process parameters. To obtain 
the most accurate predictions the neural network should be 
trained with some samples before testing. The weights and 
bias values have been calculated as 6–15-15–3 structure To 
perform the ANN prediction, the network received six input 

Table 3  (continued) Sr.No Run no Ip
amp

Ton
µs

V
volt

Powder con
gm/ltr

T
tool

W
work

MRR
(mm3/min)

TWR 
(mm3/min)

SR
(μm)

51 23 0 0 0 0 0 0 0.2485 0.01116 4.711
52 24 0 0 0 0 0 0 0.25626 0.03348 4.432
53 25 0 0 0 0 0 0 0.02631 0.01116 8.131
54 26 0 0 0 0 0 0 0.01274 0.01116 6.073

Table 4  Summary of ANOVA table for MRR

Source DF Adj SS Adj MS F-Value P-Value

Model 11 75.7428 6.8857 25.17 0.000
Linear 6 36.1532 6.0255 22.03 0.000
A-Discharge Current 1 7.9162 7.9162 28.94 0.000
B-Pulse on Time 1 7.1460 7.1460 26.12 0.000
C-Servo Voltage 1 6.5938 6.5938 24.10 0.000
D-Con. of powder 1 4.9667 4.9667 18.16 0.000
E-Tool Material 1 13.0456 13.0456 47.69 0.000
F-% reinforcement 1 0.6530 0.6530 2.39 0.130
Square 5 46.5016 9.3003 34.00 0.000
A*A 1 8.9394 8.9394 32.68 0.000
B*B 1 8.7675 8.7675 32.05 0.000
C*C 1 7.2178 7.2178 26.38 0.000
D*D 1 10.0194 10.0194 36.63 0.000
F*F 1 7.6255 7.6255 27.87 0.000
Error 42 11.4897 0.2736
Lack-of-Fit 36 11.3161 0.3143 10.87 0.003
Pure Error 6 0.1736 0.0289
Total 53 87.2325

Table 5  Summary of ANOVA table for TWR 

Source DF Adj SS Adj MS F-Value P-Value

Model 11 88.928 8.0844 20.70 0.000
Linear 6 48.556 8.0926 20.72 0.000
A-Discharge Current 1 1.365 1.3652 3.50 0.068
B-Pulse on Time 1 19.566 19.5656 50.10 0.000
C-Servo Voltage 1 18.338 18.3381 46.96 0.000
D-Con. of powder 1 17.668 17.6680 45.25 0.000
E-Tool Material 1 1.320 1.3199 3.38 0.073
F-% Reinforcement 1 3.676 3.6762 9.41 0.004
Square 5 62.776 12.5552 32.15 0.000
A*A 1 0.881 0.8812 2.26 0.141
B*B 1 23.632 23.6321 60.52 0.000
C*C 1 19.125 19.1249 48.98 0.000
D*D 1 27.271 27.2713 69.84 0.000
F *F 1 7.668 7.6681 19.64 0.000
Error 42 16.401 0.3905
Lack-of-Fit 36 15.599 0.4333 3.24 0.072
Pure Error 6 0.802 0.1336
Total 53 105.329

Table 6  Summary of ANOVA table for SR

Source DF Adj SS Adj MS F-Value P-Value

Model 13 112.778 8.6752 7.09 0.000
Linear 6 47.247 7.8745 6.43 0.000
A-Discharge Current 1 12.689 12.6891 10.37 0.003
B-Pulse on Time 1 4.257 4.2573 3.48 0.070
C- Servo Voltage 1 13.990 13.9904 11.43 0.002
D-Con. of powder 1 1.480 1.4798 1.21 0.278
E-Tool Material 1 1.308 1.3085 1.07 0.307
F-% Reinforcement 1 4.620 4.6196 3.78 0.059
Square 4 52.436 13.1091 10.71 0.000
B*B 1 6.070 6.0697 4.96 0.032
D*D 1 38.901 38.9012 31.79 0.000
E*E 1 14.324 14.3238 11.71 0.001
F *F 1 7.010 7.0099 5.73 0.021
2-Way Interaction 3 13.656 4.5519 3.72 0.019
C*D 1 7.311 7.3115 5.97 0.019
C*F 1 3.057 3.0573 2.50 0.122
D*E 1 3.287 3.2870 2.69 0.109
Error 40 48.949 1.2237
Lack-of-Fit 34 33.591 0.9880 0.39 0.964
Pure Error 6 15.358 2.5597
Total 53 161.727
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variables—Ip, Ton, Vs, C, material, reinforced % and three 
output variables—MRR, TWR, and SR Matlab software 
ANN prediction module has been used to separate training 
data from test data. The literature has reported that training 
data of 70% can lead to more accurate results of prediction. 
The current study kept 70% of the training data for predic-
tion, and the rest for training. ANN models produce six input 
parameters and three output parameters by varying the num-
ber of neurons in the hidden layer. For optimal regression 
values, not only the number of neurons in the hidden layer 
should be varied, but also the learning rate and the momen-
tum coefficient. The learning rate should be varied between 
0 and 1, while the momentum coefficient should be varied 
between 0 and 2.

An ANN system demonstrates the capability to handle 
complex functions. It has been successfully utilized in a 
variety of industries for multiple purposes, including defect 
detection, process identification, estimation of property val-
ues, smoothing of data and error detection. A neural network 
can also be effectively used for designing and developing 
products, optimizing processes and estimating activity coef-
ficients [120, 121]. Based on the concept of biological neural 
networks, a neural network could be regarded as a massively 
parallel, highly distributed tool for processing large amount 
of data. It consists of a set of neurons capable of acquiring, 
learning and adjusting to new information to ensure that 
knowledge is retained [122]. A multi-layered neural network 
was used to simulate the SCMEDM process and predict the 
TWR, MRR and Ra response variables for the machining of 
aluminium and SiC MMC.

5.3  ANN Performance

A total of fifty-four unique input–output patterns were ana-
lysed using the NN package in MATLAB. The assumption 

X = N1-N2-Y is used for generalised ANN models. Where X, 
represents the input layer's number of neurons, N1 denotes 
the first hidden layer's number of neurons, N2 denotes the 
second hidden layer's number of neurons and Y denotes the 
output layer's number of neurons. In addition, noise was 
included in the weights to help keep the network structure 
stable whilst it was tuned for performance. The model was 
trained using a technique known as Levenberg–Marquardt 
(LM), which is a kind of optimization algorithm. The fol-
lowing Eq. (3) was used to evaluate the network's perfor-
mance using the Mean Square Error (MSE).

Yi signifies the ith neuron's experimental output,  Yi sig-
nifies the  ith neuron's projected output, N signifies the total 
number of training patterns and M signifies the total num-
ber of neurons in the output layer [123]. There have been 
numerous optimization efforts made by altering the number 
of neurons in the first layer of the 6-N1-15–3 NN. The num-
ber of neurons in the  N1 layer was fixed at fifteen while the 
number of neurons in the second hidden layer was varied 
between one and fifteen to improve the 6–15-N2-3 algorithm. 
With this approach, the total number of neuron combina-
tions in the hidden layers could be significantly reduced. 
The ANN model is trained using 38 of the 54 experimental 
values and the trained ANN model is tested using 16 of 
the 54 experimental values. Variation in the mean squared 
error during ANN model training for various epoch counts 
was investigated. At epoch 5, the best validation was seen 
with an MSE of 2.086 in the single hidden layer (Fig. 2). 
The regression coefficient acquired during the training of the 
ANN model is 0.99657, which is extremely close to one. The 
best validation performance value achieved using a double 
hidden layer is 2.9188 at epoch 3, as shown in Fig. 3 and the 

(3)MSE =
1

M × N

∑N

j=1

∑N

j=1
(Y

�

i − Yi)2

Fig. 2  Experimental and pre-
dicted MRR value

592 Silicon (2023) 15:583–601



1 3

corresponding experimental and predicted values for TWR 
as a sample are depicted in Fig. 2. The regression coefficient 
acquired during the training of the ANN model was 0.99308. 
To prevent local minima, the NN structure was trained sev-
eral times with negligible weight variation throughout the 
training phase. Thus, in the study, the 6–15-15–3 (Double 
hidden layer) structure was used to evaluate the performance 
of SCMEDM processes (Table 7).

5.4  A Parametric Study on Machine Response Using 
the RSM Model

The new ANN model 6–15-15–3 (double hidden layer) was 
used to test the influence of input process parameters on 
response variables. While graphs for each parameter were 
constructed, the rest were left at their default values of 0.

5.4.1  Parametric effect on MRR

Based on their results in Table 4, the following parameters 
also have a significant effect on MRR: Ip, Ton, Vs, C, tool 
material, and % reinforcement. However, Ip is the most influ-
encing parameter, showing a sharp spike in MRR by 2.4 
mm3/min when it decreases initially before increasing from 
3 to 4A.The reason for this is that an increase in peak current 
produces more heat energy and hence increases the melt-
ing and evaporation of material from the workpiece, result-
ing in an increased MRR.In addition, the MRR increases 
by 1.2  mm3/min when Ton is raised from 30 to 75 s, and it 
increases by even more when the servo voltage is raised from 
50 to 70 V. The voltage has become increasingly dominant 
in MRR because of a decrease in electrode gap between the 
workpiece and the tool. By adding large amounts of abrasive 

particles to dielectric liquid the dielectric strength of the 
fluid is enhanced as well, which raises the MRR..As a result 
of their high thermal conductivity, copper tools produce a 
higher MRR than brass and graphite tools and the addition 
of 1% reinforcement to a workpiece has the least impact on 
MRR (46%) (Fig. 4).

5.4.2  Parametric effect on TWR 

Furthermore, the TWR was graphically analyzed with input 
parameters and Ip, Ton, Vs and C was found to have signifi-
cant impacts on the TWR, as shown in Table 6. The most 
influential parameter, Ip, indicates significant increases in 
TWR when the current increases steeply from 2 to 4A, Also, 
the mean TWR increases directly proportional to the Ton 
when the Ton increases the time from 52.5 s to 75 s. In 
addition, TWR increases with an increase in servo voltage 
from 50 to 70 v. In fact, abrasive particles in the dielectric 
liquid appear to be the main factor affecting the TWR. This 
indicates that powder concentration is the most important 
factor for the TWR. The tool material also has a consider-
able impact on the tool wear rate. Despite the fact that 100% 
reinforcement was found insignificant in the current study, 
its effect cannot be ignored when compared to other param-
eters [124] (Fig. 5).

5.4.3  The Parametric Influence on SR

From the perspective of quality, surface quality is the most 
important factor. Hence, the impact of input parameters 
on the SR was analyzed graphically, and it was discovered 
that Ra was maximum at a higher value of Ip, Ton, Vs. 
and C, and minimum at a low value, as shown in Table 6. 

Fig. 3  Mean squared errors 
obtained during ANN training 
(double hidden layer)
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Table 7  Testing the capability of ANN models using Double hidden layer for prediction of MRR, TWR and SR

Process parameter Target values ANN Predicted values ANN Absolute Error

S.N Ip Ton V C T W MRR TWR SR MRR TWR SR MRR TWR SR

Amp μs volt gm/ltr (mm3/min) (mm3/min) (μm) (mm3/min) (mm3/min) (μm) (mm3/min) (mm3/min) (μm)

1 2 30 60 0 0 5 1.86567 0.0334 5.104 1.7399 3.0116 7.9758 0.1257 2.9781 2.8718
2 4 30 60 0 0 5 2.25835 1.8464 9.723 2.3304 1.71758 9.5503 0.0720 0.1288 0.1726
3 2 75 60 0 0 5 2.89164 2.1111 8.535 2.8058 2.1653 8.1780 0.0857 0.0541 0.3569
4 4 75 60 0 0 5 3.21343 3.5033 9.677 2.8771 3.2243 9.4535 0.3362 0.2789 0.2234
5 2 30 60 4 0 5 2.582 3.0906 9.967 1.9466 0.9014 6.2024 0.6353 2.1891 3.7645
6 4 30 60 4 0 5 3.14328 3.5928 9.885 3.2880 3.6716 9.8524 0.1447 0.0788 0.0325
7 2 75 60 4 0 5 3.71194 3.9669 9.456 3.6173 3.8431 9.5094 0.0946 0.1237 0.0534
8 4 75 60 4 0 5 4.24119 4.7223 10.646 3.4430 3.1944 11.318 0.7981 1.5278 0.6725
9 3 30 50 2 -1 5 0.10925 1.5458 7.592 0.7082 1.2536 7.0936 0.817451 0.2921 0.4983
10 3 75 50 2 -1 5 0.82119 2.9229 8.607 0.8564 2.8741 8.550 0.0352 0.0487 0.0564
11 3 30 70 2 -1 5 0.18462 2.5629 7.757 0.2842 2.6327 7.6472 0.0996 0.0698 0.1097
12 3 75 70 2 -1 5 0.61819 3.1343 8.839 1.2673 1.8115 10.092 0.6491 1.3227 1.2533
13 3 30 50 2 1 5 2.46865 2.8584 6.394 2.7390 3.0364 6.7010 0.2704 0.1780 0.3070
14 3 75 50 2 1 5 3.11925 3.6761 9.885 2.4138 0.8244 8.2218 0.705438 2.8516 1.6631
15 3 30 70 2 1 5 3.4258 3.8699 9.044 3.3744 3.8044 8.8657 0.0513 0.0654 0.1782
16 3 75 70 2 1 5 3.8225 4.5699 9.742 3.9893 4.4866 9.1413 0.1668 0.0832 0.6006
17 3 50 50 0 0 0 0.16656 2.6334 6.583 0.3141 2.2205 6.7696 0.1475 0.4129 0.1866
18 3 50 70 0 0 0 1.20894 2.9223 9.884 1.1904 2.9778 9.5585 0.0184 0.0555 0.3254
19 3 50 50 4 0 0 0.46776 3.0446 10.832 0.8355 1.3340 9.3629 0.3678 1.7105 1.4690
20 3 50 70 4 0 0 1.42314 3.8558 9.847 1.2937 3.6094 9.937 0.1293 0.2463 0.0901
21 3 50 50 0 0 10 0.1985 0.7334 6.499 0.6225 0.5410 6.6001 0.4240 0.1923 0.1011
22 3 50 70 0 0 10 1.20297 1.5111 9.09 1.0652 1.4142 8.7451 0.1377 0.0968 0.3448
23 3 50 50 4 0 10 1.32313 1.5223 9.432 1.3761 1.3994 9.2243 0.0529 0.1228 0.2076
24 3 50 70 4 0 10 2.55119 1.8446 8.661 2.7055 1.9121 8.5628 0.1543 0.0674 0.0981
25 2 50 60 0 -1 5 0.30144 1.0229 9.278 0.8882 0.9658 7.5153 0.5868 0.0570 1.7626
26 4 50 60 0 -1 5 0.52388 2.5436 9.849 0.5048 2.5747 9.6749 0.0190 0.0403 0.1741
27 2 50 60 4 -1 5 1.61731 1.378 7.142 1.6037 1.1876 7.2296 0.0135 0.1903 0.0876
28 4 50 60 4 -1 5 2.64328 1.9771 9.813 1.0564 2.8280 8.1873 1.5868 0.8509 1.6256
29 2 50 60 0 1 5 1.78656 0.6327 8.697 1.7234 0.7017 8.7143 0.0631 0.0690 0.0173
30 4 50 60 0 1 5 2.20716 1.9897 9.83 2.2380 1.6848 6.8361 0.0309 0.3048 2.9938
31 2 50 60 4 1 5 2.72895 1.3716 10.851 2.1895 0.3574 6.7496 0.5394 1.0142 4.1013
32 4 50 60 4 1 5 3.51462 2.8893 10.632 3.4028 2.8093 10.568 0.1117 0.0800 0.0639
33 3 30 60 2 -1 0 0.03731 0.8229 10.337 0.0991 0.8832 10.038 0.0618 0.0603 0.289
34 3 75 60 2 -1 0 0.07626 1.8334 10.937 1.7224 3.6281 11.468 1.6461 1.7946 0.5317
35 3 30 60 2 1 0 0.05462 0.5442 8.457 0.6378 1.3047 9.0700 0.5832 0.7605 0.6130
36 3 30 60 2 1 0 0.5231 1.8097 9.557 0.6378 1.3047 9.0700 0.1147 0.5049 0.4869
37 3 30 60 2 0 10 0.03231 0.0229 7.132 0.1805 0.0705 6.9075 0.1482 0.0476 0.2244
38 3 75 60 2 -1 10 0.16119 0.8114 7.782 0.0169 0.7425 7.9358 0.1442 0.0689 0.1538
39 3 30 60 2 1 10 0.07462 0.0442 7.478 0.8934 0.6766 5.8829 0.8188 0.7209 1.5950
40 3 75 60 2 1 10 0.16925 0.7442 8.209 0.4591 0.8344 8.2009 0.2899 0.0902 0.0080
41 2 50 50 2 0 0 0.07731 0.0111 7.249 0.3579 2.0334 6.2650 0.2806 2.0222 0.9839
42 4 50 50 2 0 0 0.18119 0.2223 8.819 0.4898 0.2970 8.7608 0.3087 0.0747 0.0581
43 2 50 70 2 0 0 0.46831 0.0711 6.463 0.4055 0.1453 6.3926 0.0627 0.0742 0.0703
44 4 50 70 2 0 0 1.48656 0.0811 9.192 1.4422 0.2603 8.7464 0.0442 0.1791 0.4455
45 2 50 50 2 0 10 0.13731 0.0823 5.394 0.0744 0.3868 6.4568 0.0628 0.3044 1.0628
46 4 50 50 2 0 10 1.41656 0.0111 5.471 1.6285 -0.05842 5.9198 0.2119 0.0695 0.4488
47 2 50 70 2 0 10 1.96104 0.7223 7.946 1.9845 0.6586 7.5425 0.0234 0.0637 0.4034
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Table 7  (continued)

Process parameter Target values ANN Predicted values ANN Absolute Error

S.N Ip Ton V C T W MRR TWR SR MRR TWR SR MRR TWR SR

Amp μs volt gm/ltr (mm3/min) (mm3/min) (μm) (mm3/min) (mm3/min) (μm) (mm3/min) (mm3/min) (μm)

48 4 50 70 2 0 10 2.38059 1.6508 9.996 2.2602 1.7261 9.8858 0.1203 0.0752 0.1101
49 3 50 60 2 0 5 0.22388 0.0446 8.153 0.2321 0.0484 5.8971 0.0082 0.0038 2.2558
50 3 50 60 2 0 5 0.21656 0.0334 4.788 0.2321 0.0484 5.8971 0.0155 0.0149 1.1091
51 3 50 60 2 0 5 0.24850 0.0111 4.711 0.2321 0.0484 5.8971 0.0163 0.0373 1.1861
52 3 50 60 2 0 5 0.25626 0.0334 4.432 0.2321 0.0484 5.8971 0.0241 0.0149 1.4651
53 3 50 60 2 0 5 0.02631 0.0111 8.13 0.2321 0.04846 5.8971 0.2058 0.0373 2.2328
54 3 50 60 2 0 5 0.01274 0.0111 6.073 0.2321 0.04846 5.8971 0.2193 0.0373 0.1758

Fig. 4  Effect of input parameter 
on MRR

Fig. 5  Effect of input parameter 
on TWR 
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However Ip is the most important parameter that increases 
Ra value with an incremental current from 2 to 4A as a 
result, the SR is mainly affected by current. In addition, 
Ra increases by 9.5 μm when Ton increases from 52.5 s to 
75.0 s, respectively. Additionally, Ra increased by 9.5 *m 
when Ton increased from 52.5 s to 75.0 s, and Ra is also 
directly proportional to voltage for the same range of IP and 
V. In the present study, surface quality was also affected by 
the addition of abrasive particles. These particles speed up 
the material removal process, resulting in a decline in SR. 
Tool material selection also affects surface quality, as tool 
reinforcement has a negative impact on Ra (Fig. 6).

5.5  Morphology of the SEM Image

As reported in the literature, the discharge energy is respon-
sible for the bulk of the changes in surface texture through-
out the SCMEDM process. As a result, a variety of paramet-
ric settings were tested to determine the surface quality of 
specimens machined using SCMEDM.A material characteri-
zation reveals uneven deposition, pockmarks, holes, debris 
globules, as well as an appearance of a white layer. The run 
order of 31 specimens is shown in Fig. 7;

Despite higher MRR being obtained from the high dis-
charge energy strike on the surface, there were still deep 
pockets, lower debris and a recast layer with a poor SF in the 
machine [125]. The discharge energy is directly proportional 
to the size of the crater and the amount of metal removed. 
Increased discharge enlarges and multiplies globules, voids 
and pockmarks. White layer (also known as recast layer) also 
undergoes thermal and chemical reactions; which can result 
in changes to the chemical composition of the upper layers 
as well as phase shifts. The white layer is often harder than 

the bulk material due to its oxide content. It is important to 
note that the effects of SCMEDM parameters on the LM-25/
SiC composite surface layers have not been examined in this 
study and more investigation is needed.

6  Conclusions

The purpose of this study is to develop a ANN model for 
the prediction of performance measures that include Metal 
Removal Rate (MRR), Tool Wear Rate (TWR) and Surface 
Roughness (Ra) for the SCMEDM process for machining 
LM-25/SiC composites and examining the significance 
of machining parameters such as discharge current (Ip), 
pulse on-time  (TON), servo voltage, powder concentration, 
tool materials and percent reinforcement for performance 
measures.

Design of Experiments (DOE), Artificial Neural 
Networks (ANN) and Analysis of Variances (ANOVA) 
are used as models in this study. The designed ANN 
model accurately predicted MRR, TWR and Ra values 
as a result of the approach taken. As a result of the used 
approach, the developed ANN model was able to predict 
MRR, TWR and Ra values with excellent accuracy as a 
result of the approach adopted. During the training of 
the ANN model, the regression coefficient obtained is 
0.99308; for validation is 0.89047 and for testing the 
trained ANN model is 0.94429. The overall regression 
coefficient is 0.96811,

This research may have both practical and theoreti-
cal ramifications. On the practical side, the results of the 
research can help practitioners develop an effective and 
efficient SCMEDM technique for machining LM-25/SiC 

Fig. 6  Effect of input parameter 
for SR
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MMC. On the other side, theoretical implications include 
expanding knowledge of the SCMEDM process database 
and gaining a better grasp of the linkages between machin-
ing parameters and performance measurements. Future 
study could involve optimising the SCMEDM process for 
cutting different materials or the same material but with 
different sets of machining parameters and performance 
measurements. Another research strategy may be to opti-
mise the SCMEDM process for cutting the same material 
but using different optimization tools and comparing the 
results to validate present research findings. The following 
conclusions have been reached as a result of this research:

1. As the results of the ANOVA analysis showed, the 
tool material had the largest effect on the SCMEDM 
machining of the LM-25/SiC composite. According to 
this research, the tool material is the most influential 
parameter for MRR, with the highest percentage of con-
tribution of 11.90%, followed by powder concentration, 
servo voltage, discharge current, pulse-on-time and rein-
forcement, with contributions of 7.15%, 5.02%, 4.04% 
and 3.24%, respectively.

2. In ANOVA analysis, the predictive error for the RSM 
models for MRR, TWR and Ra is less than 6% on aver-
age for experimental values.

3. By employing a feed-forward back propagation neural 
network with a 6–15-15–3 structure, it was possible to 
generate an accurate process model. The best validation 

performance value was 2.9188 at epoch 3 when using a 
double hidden layer.

4. By comparing the results predicted by ANN models and 
RSM models, it was found that ANN generated more 
reliable and acceptable results for the study than RSM 
because of its higher modeling capability.

5. Compared to the RSM model, the neural network model 
forecasts MRR, TWR and Ra better. The decrease pre-
dicted value of the neural network model compares 
favorably to that of the RSM model.

6. In high discharge energy settings, SCMEDM-machined 
materials produced larger debris globules, more pock-
marks and more uneven layer deposition.
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