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Abstract
Glass system was designed using the formula 34B2O3 – 9SiO2 – 18CaO – 14 P2O5 – (25 − x) Na2O - xTiO2, x = (0 ≤ x ≤
5 mol%) in this article. Glass systems were investigated in terms of physical, structural, thermal, and mechanical charac-
teristics. Furthermore, XRD was used to characterize amorphous nature systematically. The structural networks in the
samples were analyzed by FTIR spectra to illustrate structural units like SiO4, TiO4, BO3, and BO4. Titanium ions act as
a trigger to convert BO3 into BO4 units, according to preliminary FT-IR results. The glass density and velocities increased
after adding TiO2. The experimental and theoretical elastic moduli increased with increasing glass densities and velocities.
The increasing trend of ΔT with increasing TiO2 concentration suggested that glass stability had enhanced. According to
the results of this study, the mechanical and thermal features of the bioactive glass compositions studied are significantly
influenced by the addition of TiO2. This research could be used in the future to improve the mechanical and thermal
efficiency of bioactive glass systems. G 5 is the best one in terms of mechanical and thermal properties according to these
findings.
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1 Introduction

Biocompatible materials for implant applications have gotten
a lot of attention in recent years [1–7]. In dental prosthetics
and orthopedic implants, as a filler material, bioactive glasses
are used. The existence of bioactive glasses with a variety of

physicochemical and mechanical characteristics expands the
variety of potential therapeutic options. It has been attempted
to describe the impacts of thermal treatment conditions and
bioactivity [8–12].

45S5 is the most commonly used bioactive glass for many
applications [13, 14]. When B2O3 is added to 45S5 bioglass,
the glass’s acellular bioactive behavior improves as a result.
Sitarz et al. [15] and his associates used SEM, EDAX, MIR,
and NMR procedures to investigate the bioactivity of B2O2

mixed NaCaPO4–SiO2–PO4 glasses. Several efforts have
beenmade in recent years to modify the chemical composition
of bioactive glasses to control the rate of degradation and
mechanical strength and incorporate other oxides like Na2O,
CaO, Al2O3, and TiO2 into the bioactive glass [16–18]. The
elastic properties of biomaterials have been measured using
various techniques, for instance, ultrasonic procedures. The
ultrasonic non-destructive method procedure has long been
regarded as a one-of-a-kind tool for determining the properties
of materials.

The presence of TiO2 in glasses has a significant impact
on structural, physical, and thermodynamic properties, in-
cluding polymerization degree [5, 10, 19–30]. Duan et al.
[31] & Moghanian et al. [32–41] examined the mechanism

Silicon (2022) 14:10817–10826
https://doi.org/10.1007/s12633-022-01784-7

* Kh. S. Shaaban
khamies1078@yahoo.com

* Nuha Alharbiy
nfharbiy@uqu.edu.sa

1 Department of Chemistry, Faculty of Science, Al - Azhar University,
P.O. 71452, Assiut, Egypt

2 Physics Department, College of Science, Princess Nourah bint
Abdulrahman University, P.O. Box 84428, Riyadh 11681, Saudi
Arabia

3 Department of Physics, College of Science, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia

4 Physics Department, Faculty of Science, Umm Al-Qura University,
Makkah, Saudi Arabia

5 Physics Department, Faculty of Science, Al-Azhar University, P.O.
71524, Assiut, Egypt

http://crossmark.crossref.org/dialog/?doi=10.1007/s12633-022-01784-7&domain=pdf
http://orcid.org/0000-0002-5969-3089
mailto:khamies1078@yahoo.com
mailto:nfharbiy@uqu.edu.sa


of TiO2’s role in the CaO–Al2O3–SiO2–TiO2 glass struc-
ture. Bioglass-based medical products in orthopedics and
dentistry are the most common. These glasses have been
studied in terms of a variety of factors, including modifying
a chemical formulation. Thermal stability and mechanical
characteristics were found to increase as the concentration
of TiO2 increased, indicating the formation of oxygen brid-
ges (BO). Herein, we are focusing on the XRD, FT-IR,
DTA, and ultrasonic velocities of the glass samples which
are not yet widely studied. The relevant information here is
used to determine the optimal glass composition for bio-
medical applications. The high reactivity of these materials
is their primary benefit for periodontal repair and bone
augmentation.

2 Methods and Materials

Preparation: 34B2O3 – 9SiO2 – 18CaO – 14 P2O5 – (25
− x) Na2O - xTiO2, x = (0 ≤ x ≤ 5 mol%) glass in Table 1
and ref. [42] was prepared.

XRD& Density measurements: As ref. [42].
FT-IR:A JASCO 430 spectrometer was used to detect FT-

IR absorption.
DTA: A Thermal Analyzer (TA-50 Shimadzu, Japan) was

utilized to perform differential thermal analysis (DTA). The
glass transition, onset crystallization, and fully crystallization
temperatures Tg, Tc, & Tp for each glass were determined
using the general procedure for determining Tg, Tc, and
Tpfor each glass.

Mechanical: The Echo - graph (Krautkramer model
USM3) was used to make the ultrasonic measurements.

The longitudinal and shear VL&VT velocities were calcu-
lated using this method. In addition to the density, the VL&VT
were accustomed to calculating elastic moduli.
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Transverse; G ¼ ρv2t ;
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3 Results and Discussion

3.1 Physical Characteristics

XRD pattern proves that the glasses have an amorphous state
[22, 42–48] (Fig. 1). Density (ρ) and molar volume (Vm) are
used to examine the physical characteristics of glasses. All of
the prepared samples’ (ρ) and (Vm) values are shown in Fig. 2.
G 5 has a significantly higher density than the others. The
difference in molecular masses and densities between TiO2

(79.89 g/mol),(4.23 g. cm−3) and Na2O (61.69 g/mol),
(2.27 g. cm−3) explains the increase in (ρ) with increasing
TiO2 content. Furthermore, the increase in (ρ) denotes that
TiO2 causes the glass structure to become more compact. It
has been discovered that the values of (Vm) are lower. This
may be due to a decrease in interatomic spacing between the
glass networks, which causes a decrease in Vm. G 5 has a

Table 1 Chemical formulation (mol, %)

code B2O3 SiO2 CaO P2O5 Na2O TiO2

G 1 34 9 18 14 25 0

G 2 34 9 18 14 24 1

G 3 34 9 18 14 23 2

G 4 34 9 18 14 22 3

G 5 34 9 18 14 20 5
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significantly lower Vm than the others. The variation in bond
length between Ti- Ti (0.2896 nm) and Na2O (0.3716 nm)
explains the decrease in Vm with increasing TiO2 content
[49–56]. As a result, such behavior denotes the presence of
BO as a result of TiO2 substitution. As a result, the values (ρ)
and (Vm) of this study agree with the values (ρ) and (Vm) of the
calculated El-Maaref et al. [49, 52].

3.2 DTA

The Tg, Tc, & Tp temperatures are parameters that depend on
bond strength, cross-link density, and packing density. The
relationship between the glass structure and the glass charac-
teristics is reflected in these temperatures [11, 57, 58]. The
constructional dependence on TiO2 amount in the 34B2O3 –
9SiO2 – 18CaO – 14 P2O5 – (25 − x) Na2O - xTiO2, x = (0 ≤
x ≤ 5 mol%) glasses is the most noticeable feature. The DTA
profile for all of the samples is shown in Fig. 3 & Table 2. It
can be seen in Table 2 that the Tg, Tc, & Tp increases as the

TiO2 content rises. We expose all evidence that validates our
description in this work to test the dependence Tg, Tc, & Tp has
on other parameters. Because the bond strength of Ti-O
(73kcals) is higher than that of Na-O (20 kcals), the Tg, Tc,
& Tp values increases with TiO2.

The thermal stability of the glasses (ΔT = Tc- Tg), weighted
thermal stability Hg ¼ Δ T

Tg
, S criterion S ¼ Tp−Tc

� �
Δ T
Tg

:

ΔT, Hg, and S values increases as the TiO2 content increases.
The most thermally stable glass is the one with the highest
TiO2 content. The termΔT specifies the glasses’ thermal sta-
bility, and we reported that ΔT values rise as TiO2 content
rises. The increasing trend of ΔT with increasing TiO2 con-
centration, on the other hand, suggested that glass stability had
enhanced. As the replacement of weaker Na-O bonds by
stronger Ti-O bonds can be attributed to the increasing glass
stability as TiO2 increases. These results are identical to those
obtained from the data in [59–61]. As a result, such behavior
denotes the presence of BO as a result of TiO2 substitution. As
a result, the values Tg, Tc, & Tp, ΔT,Hg & S of this study agree
with the values calculated by Alrowaili et al. & Wahab et al.
[52, 59].

We calculated the (OPD) to study the effect of TiO2 con-
tent on Tg, as shown in Table 2, and Fig. 4. The increase in Tg
could be explained by the (OPD) parameter, as shown in

Fig. 2 ρ & Vmof synthetic samples

Table 2 DTA data of investigated glasses

code Tp (K) Tg (K) ΔT Tc (K) S Hg

G 1 951.15 727.15 224 860.15 28.03 0.308

G 2 983.15 748.15 235 889.15 29.53 0.314

G 3 1008.15 754.15 254 909.15 33.34 0.337

G 4 1018.15 771.15 247 924.15 30.11 0.32

G 5 1052.15 788.15 264 950.15 34.17 0.335

Fig. 3 DTA of investigated glasses

Fig. 1 XRD of 34B2O3-9SiO2- 18CaO – 14P2O5 – 23Na2O- 2TiO2 glass
sample
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Fig. 4. It exhibited a similar trend to that of Tg as TiO2 content
increased. We can deduce that the bond strength and OPD
parameters control the variation of Tg based on these two
parameters. By forming TiOx (x = 4 or 6), we can link an
increase in Tg to an increment in network connectivity. We
propose that the titanium structural units in the glass network
result in higher connectivity based on the chemical formula
34B2O3 – 9SiO2 – 18CaO – 14 P2O5 – (25 − x) Na2O -
xTiO2, x = (0 ≤ x ≤ 5 mol%). As a result, when TiO2 increases,
the Tg value of the glasses increment. The rigidity of the glass
network increased as a result of the cross-linking, resulting in
an increment in Tg [59–61].

3.3 Mechanical Investigations

Figure 5 and Table 3 present the experimental values of ultra-
sonic velocities (VL & VT) as well as various glass composi-
tions. Table 3& Fig. 5 show that adding more TiO2 content
increases velocities. VL values range from 4590 to 5040 m/s,
while VT values range from 2435 to 2610 m/s. With more
TiO2 added, the composition-dependent density increases
(VL & VT), as shown in Fig. 5. The increase in (VL & VT),
as TiO2 content increases, may be due to an increase in bond-
ing oxygen (BO) and, as a result, the glass network’s connec-
tivity. Furthermore, the increase in (VL & VT), confirm that
TiO2 causes the glass structure to become more compact [51,
62–67]. These results are identical to those obtained from the
data in [51, 62–67]. As a result, such behavior denotes the
generation of BO with TiO2 substitution. The values of this
study agree with the values calculated by El-Rehim et al.,
Koubisy et al. & Alothman et al. [62, 63, 65].

With the addition of TiO2, all elastic moduli (both experi-
mentally and theoretically) show the same trend of variations
across the entire composition range, as shown in Figs. 6, 7 &
Table 3. All elastic moduli were an effect by ρ, VL & VT.
When the Na2O glass is modified with TiO2, the increment

in elastic moduli is proportional to the increase in sample
densities, indicating that Ti ions fill the interstitial positions
of the Na glass network [51, 62–67].

As the TiO2 content increases, the (d), (H), (σ), and (Z)
increase as well, reaching a maximum of 5 mol% TiO2, as
shown in Fig. 8. The glasses under investigation have a (d)
parameter of around 2, indicating a two-dimensional structure
with growing cross-links. The Poisson’s ratio (σ), increases as
TiO2 increases (σ), is the ratio of horizontal to longitudinal
strain in a glass system, and it is usually proportional to the

Fig. 4 (OBD) & (Tg) of synthetic samples

Table 3 Mechanical parameters values

Samples G 1 G 2 G 3 G 4 G 5

VL 4590 4705 4820 4895 5040

VT 2435 2460 2545 2565 2610

L 56.04 62.43 69.00 73.08 81.54

G 15.77 17.07 19.24 20.07 21.87

K 35.01 39.67 43.35 46.33 52.38

Y 41.14 44.77 50.27 52.6 57.59

Lth 155.65 173.67 191.76 202.93 226.44

Gth 35.58 37.99 40.33 41.85 44.96

Kth 108.21 123.02 137.99 147.13 166.49

Yth 91.14 97.90 104.46 108.65 117.23

Vi 0.99 1.05 1.10 1.13 1.19

Gi 10.98 11.15 11.31 11.48 11.81

Vo 12.02 11.31 10.72 10.42 9.87

OPD 83.23 88.40 93.27 95.96 101.36

d 1.80 1.72 1.77 1.73 1.67

Ts 422 432 464 472 491

αp 106,475 109,143 111,811 113,551 116,915

H 2.06 2.14 2.48 2.53 2.67

Ms 1886.8 1908.1 1972.7 1989.2 2025.7

θD 359.4 370.3 389.2 395.6 409.2

Z 1.2 1.3 1.4 1.5 1.6

Fig. 5 VL & VT of manufactured samples
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true crosslink density. (σ), increases as the average crosslink
density rise. The Debye temperatures (θD) and average veloc-
ities Ms s of TiO2 -containing glass samples are shown in
Fig. 9. (θD) is dependent on (Ms). As a direct consequence,
θD increased as TiO2 content increased. Fig. 10 shows the Ts
&αp for each sample. The addition of TiO2 enhances Ts&αp,
as previously stated. (Vi) and (Gi) refer to the investigated
TiO2-containing glasses, as shown in Fig. 11. (Vi) and (Gi)
values increment as TiO2 increment [51, 62–67]. These values
are illustrated in Table 3. These results are identical to those
obtained from the data in [51, 62–67].

3.4 FT-IR Characteristics

The boron in the glasses originated in various vibrational
states, as shown in the FT-IR spectra Fig. 12. Furthermore,
in many areas of the spectrum, SiO4 and BO4 units overlap
significantly [3, 4, 21, 45, 68–72]. The bands between 1200

and 1400 cm−1 are related to various (B-O stretching) vibra-
tions, and the absorption at 745 cm−1 belongs to (B-O bend-
ing). The presence of BO4 and BO3 of boron is represented by
these bands. Shoulders amongst 865 cm−1 and 1200 cm−1 on

Fig. 6 L. G. K & Y experimentally for glasses

Fig. 7 L. G. K & Y theoretically for glasses

Fig. 8 (d), (H), (σ)& (Z) for glasses

Fig. 9 (θD) & (Ms),for glasses

Fig. 10 Ts &αp for glasses
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the other hand, specify the establishment of BO4. However,
because of Si-O and P-O bonds. Bands at 374–392−1 due to
the vibration of metal cation as Ti+2, Ca+2,& Na+. The Si-O-Si
bond vibration, which belongs to the (SiO4) units, is respon-
sible for the band at 442 - 405 cm−1. The TiO4 bond vibrations
are responsible for the band at ~532 cm−1. The (P-O) bond is
responsible for the absorption between 570 cm−1.

Furthermore, (Si-O-NBO) bonds can be attributed to the
bands in the 1174–952 cm−1 region. Band of 952 cm−1 is
correlated to O –Ti– O in [Si(Ti)O4] tetrahedral. Hydrogen
bonding is caused by vibrations between ~2887 cm−1. H2O
is responsible for the vibrations seen at ~3435 cm−1. B can
change its coordination number with oxygen from BO3 to
BO4, resulting in a variety of anionic environments in which
the modifying metal ions can coordinate. The addition of dop-
ants to boroxide glass makes the structure more stable, which
can be deduced.

The effect of titanium ions on the relative of BO4 and BO3

was calculated using the deconvolution parameters, such as
relative area (A) of FT-IR peaks. The de-convoluted FT-IR
spectrum is shown in Fig. 13. For each glass sample, Table 4
lists de-convolution parameters. To calculate the fraction of
N4 & N3 values, use the following formulas:

N4 ¼ A1
A1þ A2

;

N3 ¼ 1−N 4

The increase in N4values correspond to a rise in BO4 units
and the decrease in N3 values correspond to a reduction in
BO3 units. BO3 and BO4 units coexist in the glass composi-
tion, according to FT-IR spectra. Titanium ions appear to con-
vert trigonal BO3 units into tetrahedral BO4 units, according to
preliminary FT-IR results [3, 4, 21, 45, 68–72].

4 Conclusions

The physical, thermal, and mechanical characteristics of glass
systems 34B2O3 – 9SiO2 – 18CaO – 14 P2O5 – (25 − x)
Na2O - xTiO2, x = (0 ≤ x ≤ 5 mol%) were investigated. The
absence of peaks in the XRD spectra signifies the amorphous
phase of the fabricated samples. The structural network in the
samples was confirmed by FTIR spectra to contain structural
units like SiO4, TiO4, BO3, and BO4. Titanium ions appear to

Fig. 11 (Vi) and (Gi) for glasses

Fig. 12 FT-IR of manufactured samples

Table 4 De-convolution parameters of the glasses under investigation

G 1 C 374 – 570 713 869 986 1072 – 1210 1410 (A1) (A2) N4

N3

A 2.79 – 13.35 7.03 23.36 16.57 10.57 – 15.57 10.75 50.504 26.323 0.657 0.343

G 2 C – 405 559 721 868 966 1055 – 1206 1413
49.507 23.009 0.683 0.317A – 3.01 10.49 13.98 17.35 17.32 14.84 – 14.69 8.31

G 3 C – 442 532 745 883 992 1081 – 1235 1418
49.973 21.891 0.695 0.305A – 9.37 10.46 8.31 13.78 20.81 15.38 – 13.50 8.39

G 4 C 392 – 558 720 885 – 1035 1132 1235 1410
54.132 18.687 0.743 0.257A 4.50 – 8.58 14.10 17.71 – 23.79 12.64 9.21 9.48

G 5 C 378 – 567 729 864 952 1045 1174 – 1419 63.257 7.394 0.895 0.105
A 2.90 – 12.29 14.17 11.97 12.88 10.42 27.98 – 7.39

10822 Silicon (2022) 14:10817–10826



convert BO3 into BO4 units, according to preliminary FT-IR
results. The glass density and velocities increased after TiO2

was added. The experimental and theoretical elastic moduli
increase with increasing glass densities and velocities. The
increasing trend of ΔT with increasing TiO2 concentration
suggested that glass stability had enhanced. According to the
results of this study, the mechanical and thermal properties of
the bioactive glass compositions studied are significantly in-
fluenced by the addition of TiO2. This research could be used

in the future to enhance the mechanical and thermal efficiency
of bioactive glass systems.
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