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Abstract

High dielectric constant carbon nanotubes (CNTs) based polymer composites with enhanced thermal stability are promising
materials for energy storage devices because of high breakdown voltage, ease in processing, enhanced flexibility and low cost. In
the present work, 3-aminopropyltriethoxysilane (APTES) as additive was used along CNTs as filler and polymethylmethacrylate
(PMMA) as matrix to enhance the dispersion of filler in matrix by increasing interfacial interaction between these two. These
composites were synthesized by using solution casting method and monitored by FTIR spectroscopy whereas XRD and SEM
analyses have been performed to explore the role of APTES in dispersion of CNTs. Significant improvement in the dielectric
constant (Dielectric Constant: 40 at 1.6 wt% of CNTs) has been observed on adding small fraction of APTES-CNTs. An
impressive increase in thermal stability of the composite was achieved because of APTES. It is noted that weight loss in
APTES-CNTs/PMMA composite at 460 °C is less than that of CNTs/PMMA composite at 400 °C. Use of APTES-CNTs
appears to be quite encouraging when the obtained values of dielectric constant and results of thermal stability of APTES-
CNTs/PMMA are compared with those of pristine CNTs based PMMA (CNTs/PMMA) composites. Mechanism of APTES to
control the agglomeration of CNTs in the composite is distinctive and effective in improving the features of composite.

Keywords Ternary polymer composites - High dielectric constant - Thermal stability - Energy storage

1 Introduction

Electroactive polymer composites with high dielectric con-
stant value are considered as potential candidate for energy
storage applications and actuators [1, 2]. Inorganic fillers
based composites with high dielectric constant polymer ma-
trix could be a suitable choice for this purpose [3, 4]. To obtain
high net dielectric constant, large contents of such fillers are
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required which may increase the dielectric constant of poly-
mer matrix but results in the loss of some important features of
the polymer. More specifically, flexibility and ease in process-
ing are compromised while fabricating the composites made
up of inorganic based material as filler and high dielectric
constant polymer matrix. On the other hand, composites fab-
ricated from a high dielectric constant organic filler materials
exhibit high net dielectric constant and also retained the flex-
ibility of the matrix. Among different types of organic fillers,
CNTs are recognized as excellent nanoscale filler with extra
ordinary electrical and mechanical properties [5—7]. Different
nanocomposites have been prepared by combining CNTs with
different polymers like polystyrene (PS) or polyvinyl alcohol
(PVA) [8, 9], but problem associated with the use of these
CNTs, especially when used in large amount, is their agglom-
eration in polymer matrix which limits the features of
electroactive polymer composites. Functionalization of
CNTs is believed to be the best approach in order to reduce
its agglomeration for example, surface modification, in-situ
polymerization, chemical bonding [10, 11] etc. Modified
CNTs are proved to be helpful in enhancing the electrical,
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thermal or mechanical properties of different polymers [12,
13]. CNTs modified by using organic polymer like
polyaniline (PANI) and dodecyl benzene sulphonic acid
(DBSA) are suggested to be helpful in enhancing the proper-
ties of polymethylmethacrylate (PMMA) by increasing the
dispersion of CNTs in the matrix [14]. PMMA is a thermo-
plastic and shatter resistant polymer. Its excellent mechanical
and optical properties make it useful in making its transparent
thin films which can be used in number of applications in
electronics. A lot of research has been done on the PMMA
based composites by dispersing different fillers. However,
much more work is required in order to explore its optical
and dielectric properties.

In present work, (3-aminopropyl) triethoxysilane
(APTES), coupling agent, was used along the CNTs for syn-
thesis of PMMA composites (APTES-CNTs/PMMA). It is
reported that after electrostatic adsorbing at the surface of
the substrate, APTES undergoes self polymerization
[15-17]. Researchers worked on PMMA and APTES combi-
nation for some different scientific aspects like in medical or
for plastic binding [18, 19]. However, modification of CNTs
by APTES for the enhancement of electrical and thermal prop-
erties of PMMA has not been studied yet. Here, it is expected
that APTES would play its role in controlling the agglomera-
tion of CNTs by developing the spread network in the matrix
after adsorbing at the surface of CNTs and help in increasing
the dielectric properties of the composites as reported [20].
Mechanism of controlling the agglomeration of CNTs by
APTES is unique and effective one. Synthesis process of
APTES-CNTs/PMMA was examined by FTIR spectropho-
tometer. To explore the role of APTES, scanning electron
microscopy (SEM) and X-ray diffraction technique were em-
ployed. Values of the dielectric constant were measured as
function of frequency and contents of CNTs with the help of
LCR meter. Thermal stability of the composites was investi-
gated by thermo gravimetric analysis (TGA). For better un-
derstanding of the role of APTES in APTES-CNTs/PMMA
composites, their results were compared with those of pristine
CNTs based PMMA composites (CNTs/PMMA).

2 Materials and Methods

PMMA (Molecular weight ~ 350,000), CNTs, 95% with O.D
x L 6-9nm X 5 pm and APTES (>98%) were purchased from
Sigma Aldrich while chloroform was obtained from Merck.
All the chemicals were used as obtained without pre-
treatment.

2.1 Synthesis of CNTs/PMMA Composites

CNTs/PMMA composites with varied contents of CNTs were
prepared by solution mixing method. For suspension of
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CNTs, calculated amount of CNTs was taken in 15 mL of
chloroform and kept on stirring for one hour followed by
ultra-sonication of 20 min. Separately prepared solution of
calculated amount of PMMA in chloroform was added slowly
in the homogeneous suspension of CNTs along vigorous stir-
ring. Resultant blend was ultra-sonicated for 30 min. This
blend was casted on petri dish and left at room temperature
for evaporation of solvent to have thin film of CNTs/PMMA
composites [21].

2.2 Formation of APTES-CNTs as Filler

CNTs were functionalized before treatment with APTES as
reported in reference [22]. To prepare APTES-CNTs, a report-
ed method [23] with some modification was used. Dispersion
of equal weight of CNTs was mixed with 10% solution of
APTES and resultant mixture was kept on stirring for 1 h
followed by ultra-sonication of 1 h. APTES-CNTs were re-
covered and washed by distilled water and ethanol with the
help of centrifugation.

2.3 Synthesis of APTES-CNTs/PMMA Composites

Above prepared filler, APTES-CNTs, was used in different
amounts for the synthesis of APTES-CNTs/PMMA composites.
For the preparation of 0.2 wt%, a weighed amount of APTES-
CNTs was dispersed in 15 mL of chloroform at constant stirring
of 1 h followed by ultrasonication for 20 min. This suspension
was then added to a solution of PMMA dissolved in chloroform
and kept for ultra-sonication for further 25 min. To get prepared
composite in the form of thin film, this suspended solution was
casted on petri dish and left overnight for the evaporation of
solvent at room temperature. Same steps were followed for the
preparation of other series of APTES-CNTs/PMMA composites
by using prepared APTES-CNTs. Figure 1 shows the schematic
steps followed during experiment. Detail of composition of the
prepared composites is given in Table 1.

2.4 Instrumentations and Sample Preparations

FTIR spectra, of thin films of pure PMMA and its composites
were recorded using FTIR spectrometer (CARY-630) of
Agilent. For dielectric constant measurements, LCR meter
(E4980AL) with frequency up to 1 MHz of Keysight
Technologies was used. For analysis by FTIR spectrometer
and LCR meter, squared shaped (sized: 1 in.) films of the
composites and pure PMMA were directly used. For morpho-
logical study, Scanning Electron Microscope (S3700N) of
Hitachi was used with a maximum acceleration voltage of
30 KV and magnification power ranges from 5x to 300Kx.
Thermal stability was studied by using thermo gravimetric
analyzer (TGA-50) of Shimadzu from room temperature to
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3 Result and Discussion
3.1 Spectroscopic Characterization

Here, FTIR spectroscopy was performed to characterize the syn-
thesized composites and APTES-CNTs. FTIR spectra of the thin
films of pure PMMA, pure CNTs, APTES-CNTs,
CNTs/PMMA and APTES-CNTs/PMMA composites at highest
wt% of CNTs are given in Fig. 2. Usually, pure CNTs show no
peak in IR spectrum as CNTs have no IR active species, how-
ever, the band appeared between 2000 and 2200 cm ' represents
the indirect CO, compensation from the atmosphere [24]. In the
spectrum of APTES-CNTSs, peaks appeared at 3355 cm ' and
1621 cm™" represent the stretching and deformation modes of —
NH; [19, 25, 26], which do confirm the modification of APTES

by CNTs. Spectrum of pure PMMA shows peaks around 1080 to
1199 cm ™" for bending vibration of C-O-C, peak at 1242 cm™"
for stretching vibration of C-O, low intensity peak at 1640 cm ™
corresponds —OH group bending vibration and peak at
1725 cm ™! belongs to stretching vibrations of C=0 group [14,
27, 28]. In the spectrum of CNTs/PMMA no sharp change in the
PMMA peaks are observed however, in case of APTES-CNTs/
PMMA spectrum, an increase in the intensity of absorption band
at 1640 cm ' is observed which corresponds to the bending
vibrations of -NH, group of APTES whereas, presence of addi-
tional low intensity peak at 3800 cm ™' belongs to the stretching
vibrations, of -NH, group of APTES. Somehow, same results
are reported in literature where PMMA surface was modified
directly by APTES solution either to improve the adhesion be-
tween PMMA and skin tissue or bonding between polymers [18,
19]. Presence of peaks belonging to -NH, group of APTES
indicates the incorporation of APTES-CNTs in PMMA, success-
ful synthesis of APTES-CNTs/PMMA and peak pattern present
in FTIR spectrum of PMMA is regenerated in the spectra of

Table 1 Wt% composition of

CNTs, APTES and PMMA in S.No. APTES-CNTs/PMMA CNTs/PMMA

CNTs/PMMA and APTES-

CNTs/PMMA composites Wt.% of CNTs ~ Wt.% of APTES-CNTs ~ Wt.% of PMMA  Wt.% of CNTs  Wt.% of PMMA
1 0 0 100 0 100
2 0.4 0.8 99.6 0.05 99.95
3 0.6 1.2 98.8 0.1 99.9
4 0.8 1.6 98.4 0.5 99.5
5 1.4 2.8 97.2 0.63 99.37
6 1.6 32 96.8 1 99
7 2 4 96 1.47 98.53
8 25 5 95 2.31 97.69
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Fig. 2 FTIR spectra of pure PMMA, pure CNTs, APTES-CNTs,
CNTs/PMMA and APTES-CNTs/PMMA composites at 2 wt% of CNTs

CNTs/PMMA and APTES-CNTs/PMMA composites which in-
dicates that chemical structure of the PMMA is remained intact
after the composite formation [29].

3.2 Structural and Morphological Studies

X-ray diffractogram of CNTs, APTES-CNTs, PMMA,
CNTs/PMMA and APTES-CNTs/PMMA are shown in
Fig. 3. Main humps of PMMA are present in all the three types
of diffractograms. XRD of CNTs shows single peak at 25.6 ©
as reported in literature [30-32] which is regenerated in
CNTs/PMMA composite as well. Moreover, in case of
APTES-CNTs/PMMA, two noticeable changes occur; slight
change in shape of humps and disappearance of peak that
belongs to CNTs. Latter is due to better dispersion of CNTs
and former is probably because of coupling of APTES with
PMMA. This supports our stance for use of APTES to
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Fig. 3 X-ray diffractogram patterns of CNTs, PMMA, APTES-CNTs,
CNTs/PMMA composite with 2.3 wt% of CNTs and APTES-CNTs/

PMMA composite with 2.5 wt% of CNTs
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enhance dispersion of CNTs by establishing spread network
in PMMA.

Figure 4 shows the SEM images with surface profile and
topography of the APTES-CNTs/PMMA and CNTs/PMMA
composites. The morphology of composite surfaces demon-
strates the effect of the presence or absence of APTES on the
dispersion of CNTs in the PMMA matrix. In the absence of
APTES, CNTs are dispersed in the form of stacks of random
sizes with uneven distribution, as shown in Fig. 4c, d. On the
other hand, APTES presence results in the homogeneous distri-
bution of the CNTs in the whole structure of PMMA and thus,
forms a uniformly patterned surface, as shown in Fig. 4a, b.

The topographic analyses of the respective micrographs
exhibits critical differences in the surface properties of
APTES-CNTs/PMMA and CNTs/PMMA composites, which
are summarized in Table 2. The average and root-mean-square
(RMS) roughness of APTES-CNTs/PMMA and
CNTs/PMMA composites are comparable, but the standard
deviation values are quite different which is emphasizing the
morphological differences. The uniformity of surface features
in APTES-CNTs/PMMA composite is demonstrated by the
very low standard deviation, while CNTs/PMMA composite
surface shows inhomogeneity with high standard deviation
and inconsistent distribution of peaks and valleys.

3.3 Dielectric Properties

Dielectric constant calculated using Eq. 1 [33] as function of
wt% of CNTs for both types of composites are presented in
Fig. 7.

t
(g

Where C'is capacitance of dielectric material, d is diameter of
the electrodes (0.001 m), #,, is thickness of the sample
(0.0001 m) and ¢, is free space permittivity (8.854 x 10 '* F/
m). Dielectric constant of the PMMA is found to be significantly
improved on addition of small amount of CNTs for both types
of composites. Maximum values of dielectric constant as high as
40 and 25 are observed for APTES-CNTs/PMMA and
CNTs/PMMA composites respectively, with just 1.6 wt% of
CNTs. Interface of CNTs and PMMA results in the develop-
ment of nano capacitors which becomes the reason for the ac-
cumulation of electrical charges [34]. Higher are the contents of
scattered CNTs, higher will be interfacial surface. Thus, higher
accumulated charges result in an enhanced value of dielectric
constant.. Recently, Adaptive Neuro Fuzzy Inference System
(ANFIS) was used for the functionalization of CNTSs in order
to obtain the high dielectric constant value of PMMA compos-
ites. However, the maximum value obtained by using this ap-
proach was only 12 [35]. But here, significantly improved value
of dielectric constant for APTES-CNTs/PMMA as compared to
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Fig.4 SEM images, surface profile of the selected area (highlighted in grey), and 3d-micrographs of a-b APTES-CNTs/PMMA, and ¢-d CNTs/PMMA

composites at highest wt% of CNTs

that of CNTs/PMMA and other PMMA based composites re-
ported in literature is obtained due to enhanced dispersion of
CNTs in PMMA because of APTES. Thus, networking by
APTES keeps the CNTs apart and results in high population
of charge accumulated in the APTES-CNTs/PMMA composite.

Dielectric constant as function of frequency for APTES-
CNTs/PMMA composites with different wt% of CNTs is
displayed in Fig. 5b and response of dielectric constant to
frequency is observed to be quite interesting. Dependence of
dielectric constant on frequency for composites with 1.6 wt%
of CNTs is strongest one. Refer to Fig. 5a, value of dielectric
constant observed is maximum for APTES-CNTs/PMMA

composite with 1.6 wt% of CNTs. According to percolation
theory, it can be assumed that percolation network would be
formed for composites with higher contents of CNTs and thus
results drop in of value of dielectric constant. Strong frequen-
cy dependence of dielectric constant for composite with
1.6 wt% of CNTs suggests the presence of maximum charge
polarization as a result of accumulation of charges at the in-
terface of CNTs and PMMA at this point [36—39]. This kind
of materials is considered as the best choice for actuators [40].
Here, APTES helped in having large value of dielectric con-
stant before establishing the conductive network and signifi-
cant frequency dependent dielectric constant.

Table 2 The surface properties of

APTES-CNTs/PMMA and Surface properties APTEs-CNTs/PMMA CNTs/PMMA
CNTs/PMMA composites
Average value Standard deviation Average value Standard deviation
RMS roughness (nm) 58.33 3.57 58.87 18.71
Average roughness (nm) 49.57 3.37 47.93 15.03
Average height (nm) 137.0 214 105.2 34.8
Maximum height (nm) 284.6 28.8 265.9 55.1

Table note. The surface properties are determined from the topographic analysis of at least three SEM micro-
graphs of composite surfaces with different magnifications

@ Springer
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Fig. 5 a Trend of dependence of dielectric constant on contents of CNTs
for APTES-CNTs/PMMA and CNTs/PMMA composites. b Frequency
dependence of dielectric constant for APTES-CNTs/PMMA composites
with different contents of CNTs

3.4 Electrical Percolation and Conductivity

Study of electrical percolation phenomena is considered as
vital factor in establishing electrical character of polymer com-
posites used in electronics. Electrical percolation phenomena
can be well explained by simple power law given in Eq. 2 [41]

oo (f~f) for [=f. (2)

Where o s conductivity, fis the filler content, f.. is critical
amount of filler at percolation threshold and ¢ is the exponent
constant. A linear log-log plot of (f-fc) against o is used to
determine the values of “’f.” and “¢”. Insets of Fig. 6a, b rep-
resent these linear plots for CNTs/PMMA and APTES-CNTs/
PMMA composites, respectively. Calculated values of £, and ¢
are 0.05 wt.% and 1.2, respectively, for APTES-CNTs/
PMMA composites and 0.5 wt.% and 2, respectively, for
CNTs/PMMA composites. Universal value of “z” with three
dimensional system reported in the literature [42] is well
matched with present work. Values of percolation threshold
reported in literature for CNTs based PMMA composite are
given in Table 3. Here, low value of percolation threshold was
obtained in case of APTES-CNTs/PMMA than
CNTs/PMMA and similar reported composites. It is reported
elsewhere that APTES functionalized at the surface of poly-
mer immobilized the biomolecule dispersed at the polymeric
surface [25]. Likewise, it is supposed that APTES reduces the
mobilization of the CNTs which restrict the re-agglomeration
of CNTs. Therefore, better dispersion of CNTs becomes the
reason of low value of percolation threshold. SEM images
given in Fig. 4 also support the claim of more uniform and
homogeneous dispersion of CNTs in APTES-CNTs/PMMA
than in CNTs/PMMA composites.

Figure 6a, b show the electrical conductivities of
CNTs/PMMA and APTES-CNTs/PMMA composites as
function of CNTs at 1000 KHz. It is observed that addition
of small amount of CNTs in PMMA increases the conductiv-
ity of the composites significantly. Seven to eight orders of
magnitude increase in conductivity is observed on addition of
0.8 wt% and 1 wt% of CNTs with and without APTES, re-
spectively. Similarly, maximum value of conductivity was
found in the order of 10" S/cm for both types of composites
with contents of CNTs range from 1.8-2 wt% with APTES
and 2-2.2 wt% without APTES. Data of maximum conduc-
tivity along with contents of CNTs at which this value was
obtained from literature for CNTs based PMMA composites is
given in Table 3. It can be noticed that there are only two cases
where values of maximum conductivity recorded are greater

Table 3  Data of electrical properties and method of preparation of CNTs based PMMA composites

Sr. No. Omax (S/cm) fe *e State of the CNTs Method of preparation Ref
1 1.37 (10 vol%) 0.5 wt% - Pristine CNTs Solution mixing method [43]
2 1072 (3 wt%) 0.07 wt% - PEO modified CNTs Two step solution mixing method [44]
3 1076 (1 wt%) 1.52 wt% Very high aspect ratio CNTs Melt mixing method [45]
4 10 (40 wt%) 0.3% - CNTs with Fe as catalyst Solution mixing method [46]
5 =107 (5 wt%) 0.5 wt% - Modified CNTs with acyl group Solution mixing method [47]
6 1071 (1.5 wt%) 0.1 wt% 10 (2 wt%) PS adsorbed CNTs Solution mixing method [48]
7 5 X107 (10 wt%) 8.5 wt% 12 (10 wt%) Pristine CNTs Melt mixing method [49]

*g = dielectric constant
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than value observed in present work. At one place [43], pris-
tine CNTs were used which resulted high value of maximum
conductivity but at significantly large filler contents. In second
case, Fe adsorbed at the surface of CNTs were used as filler
and thus, Fe, additionally, contributed towards observed con-
ductivity value [50]. But, as already discussed, use of inorgan-
ic fillers results in suppression of other important features of
polymer. A low value of percolation threshold and achieve-
ment of maximum conductivity at relatively low wt% of
CNTs for APTES-CNTs/PMMA is become possible because
of the enhanced dispersion of CNTs due to spread network of
APTES which not only helps in developing indirect interac-
tion between CNTs and PMMA but also set CNTs apart from
each other by reducing the chances of their interaction. Thus,
because of the dual role of APTES, significantly enhanced

100+
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Fig. 7 Plot of thermal degradation of PMMA (dotted line),

CNTs/PMMA (thin line) and APTES-CNTs/PMMA (thick line)
composites at highest wt% of CNTs

value of dielectric constant, conductivity and improved perco-
lation threshold are obtained.

3.5 Thermal Stability

Thermal stability of the prepared composites and PMMA was
investigated by thermal gravimetric analyzer and results of
thermal degradation are given in Fig. 7. Almost 3% of
CNTs/PMMA and 7% of APTES-CNTs/PMMA composites
were left at 600 °C but PMMA was decomposed completely
at 400 °C. Amount of APTES-CNTs/PMMA composites left
at460 °C was greater than that of CNTs/PMMA composites at
400 °C. Comparison of the thermal stability of APTES-CNTs/
PMMA composites with that of CNTs/PMMA composites
and similar systems found in literature encourages the use of
APTES [51].

Decomposition start, mid and end temperatures along with
char yield, are shown in Table 4. In order to show the increase
in thermal stability of APTES-CNTs/PMMA composite, heat
resistance index (Tyg;) was calculated for both types of com-
posites by using the following equation [52] and are given in
Table 4.

THRI = 0.49 x [T5 4+ 0.6 x (T307T5)] (3)

Here Ts and T3 represent temperature values at which 5%
and 30% of weight losses were occurred, respectively.
Increasing order of Tyg; from PMMA to CNTs/PMMA and
followed by APTES-CNTs/PMMA is shown in Table 4. As
reported in literature an increase in Ty increases the thermal
stability [53, 54], therefore, thermal stability of APTES-
CNTs/PMMA composite is found to be more as compared
to CNTs/PMMA and PMMA. Galip and his co-workers syn-
thesized microcapsules of PMMA filled with CNTs and
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Table 4 Decomposition

temperature at different stages Sample Decomposition Char yield (%) at Ts T30 Thrr
with char yield % and heat . 593 °C O O °C)
resistance index of PMMA and Start Mid End
composites of CNTs/PMMA and 0 (§(©®)] °C)
APTES-CNTs/PMMA
PMMA 29.87 3304 600 0.34 389.15 35146 179.6
CNTs/PMMA 36.85 37623 593 2.67 415 388.7 195.6
APTES-CNTs/PMMA  39.6 384 600 6.7 >600 413.94 >2393

epoxy resin and maximum Tyg; calculated for their mixture
was 151.46 °C [52] which is significantly low as compared to
the present work. Moreover, in Fig. 7 it is clearly observed that
APTES-CNTs/PMMA remained stable even at instrumental
maximum temperature i.e., 600 °C with 6.7% residue.
Therefore, the calculated Tyg; value is also expected to be
greater than 239.3 °C which is significantly higher than both
PMMA and CNTs/PMMA. This higher value of Ty, reflects
that APTES not only reduced the agglomeration of CNTs by
adsorbing at its surface but also helped in increasing the resis-
tant ability of PMMA against the flow of heat.

4 Conclusion

Successful syntheses of APTES-CNTs/PMMA and
CNTs/PMMA composites have been reported and monitored
by FTIR spectroscopy. As confirmed by XRD study and SEM
analysis, APTES helped in having composites with uniform
dispersion of CNTs. Significant improvement in dielectric
properties particularly maximum value (40) of dielectric con-
stant has been achieved for organic filler based PMMA com-
posites. Conductivity value obtained for both APTES-CNTs/
PMMA and CNT/PMMA composites was around 10~ S/cm.
Results of thermal stability like other characterization tech-
niques are in the favour of use of APTES along CNTs for
synthesis of composites.
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