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Abstract
The glass system 22SiO2- 23Bi2O3-37B2O3-13TiO2 � ð5� xÞ LiF- x BaO; ð0 � x � 5Þmol:%. was fabricated using melt-
quenching techniques. X-ray diffraction and ultrasonic techniques were used to characterize the glasses. X-ray diffraction
patterns were used to prove that fabricated glasses are amorphous. The impacts of incorporating BaO on the composition
dependence of the elastic characteristics of fabricated samples were explained. Density of the manufacture glasses increment,
and molar volume reduced. The elastic moduli were investigated experimentally then compared using theoretical arguments.
Makishima – Mazinize model were used to determine the elastic moduli theoretically for fabricated samples. Elastic moduli
increase with BaO, and experimental and theoretical elastic moduli are in good agreement. Deviation values between elastic
moduli (both experimentally and theoretically) were estimated. All the experimental variations values of elastic moduli of
fabricated glasses were increment as BaO increased. Latent heat of melting, diffusion constant, and Grüneisen factor have been
used to link the mechanical and thermodynamic characteristics of manufactured glass.
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1 Introduction

Excellent mechanical, thermal, optics, and radiation character-
istics attract researchers to titanate borosilicate glasses. As a
result, titanate borosilicate glasses are among the most thor-
oughly investigated. These glasses are doped with different

transitionmetal oxides (TMO) and form dense glass networks.
Theoretical and experimental methods were used by many
physicists and chemists to investigate these glasses [1–12].
Because of its exceptional mechanical characteristics, glass
with (TMO) has been used in a variety of applications in
recent decades [13–16].

TiO2 is a common glass preservative that is used to en-
hance the glass’ mechanical and radiation characteristics.
Glass scientists are interested in TiO2 because small amounts
of it can have a big impact on mechanical and shielding char-
acteristics [17–22]. TiO2 is important in glass systems because
of its various coordination states Ti+4, Ti+5, and Ti+6. Because
of the change in coordination, TiO2 can have a completely
different effect on the characteristics [17–22].

Glasses manufactured of BaO-TiO2-SiO2-B2O3 have an
appealing structure for observing changes in glass behavior,
as well as LiF-TiO2-SiO2-B2O3 glasses, represent the same
behavior [23–25]. As a result of its high dielectric constant
and chemical stability, another glass system, titanium barium
borosilicate glass, is being investigated. Mechanical and radi-
ation properties of titanium barium borosilicate glass have
been discovered to be useful. Shen et al. [26] investigated
the structural characteristics of titanium barium silicate glass
after doping it with La2O3. In the titanium barium silicate
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glass, Komori et al. [27] added a provides an appropriate of
Nb2O5. Rammah et al. [28] investigate the structural and
shielding characteristics of the TeO2-LiNbO3-BaO-BaF2-
La2O3 glass system. El Batal et al. [29] investigate the NaF-
CaF2-B2O3 glass system’s structural and gamma irradiation
influence. The effects of La2O3 on the mechanical, and radia-
tion characteristics of NaF - BaO - PbO - B2O3 glasses were
studied by Abd El-Rehim [30] and Shaaban et al. [31].

The fabricated glasses were examination using mechanical
techniques. The impact of increasing BaO content onmechan-
ical features has been investigated.

2 Materials and Methods

The glass system 22SiO2- 23Bi2O3-37B2O3-13TiO2� ð5� x
Þ LiF- x BaO; ð0 � x � 5Þmol:%. in Table 1 was fabricated
using melt-quenching techniques. H3BO3 is transformed into
B2O3 and H2O evaporation. The reactants were blended and
melted in ceramic crucibles for 2 h at 1200 °C in an electric
furnace. At 450 °C, the manufactured samples were annealed.

A Philips X-ray diffractometer (model PW/1710) that used
to examine the samples’ condition. The glass density was
calculated using the Archimedes principle and CCl4 as the
buoyant medium.

Ni content calculated Ni ¼ 6:023�1023x mol fraction of cation� valency of cation
Vm

� �

,inter-ionic distance ;Ri ¼ 1
ConcentrationofNi

� �1
3
, polaron radius

rp and internuclear distance ri, determined as, rp ¼ 1
2

�
6N

� �1
3, r

i ¼ 1
N

� �1
3 . Ba – Ba separation computed as ðdBa� BaÞ ¼

VB
m
N

� �1
3
and VB

m¼ Vm
2 1�2Xnð Þ , average number coordinated m

¼P nciX i . The number of bonds as nb ¼ NA
Vm

P
nciX i .

Mechanical constraints in totalNcon ¼ Nbs þ Nbb where Nbb

is bond bending constraints and Nbs is bond stretching, Nbb

¼
P

xim
2 ,Nbs ¼

P
xið2m� 3Þ. Considering floppymodesMf

¼ 2� 5m
6 , density of cross-linking DCL as Dcl ¼ Ncon � 2,

CNeff ¼ 2
5Ncon þ 3. Cohesive energy (CE) is calculated using

a formula CE (Kcal /mol) = 18.17+.
4.53Eopt , or (e.V /atom) = 0.792 + 0.198Eopt (eV). The

predictable network volume (Nv ) and network connectivity
(Nc ) are as [32].

Ultrasonic velocities were determined using a pulse-echo
procedure (Echograph model 1085), repeated the experiments
three-time. Elastic moduli (longitudinal waves L, transverse
waves G , young’s modulus Y , and bulk modulus KÞ are
calculated using velocities in addition to density as L ¼ ρv2l ,
G ¼ ρv2t , Y ¼ 1þ σð Þ2G , and K ¼ L� 4

3

� �
G . Using the

concept of packing densityVi and dissociation energy Gi, the
elastic moduli of the samples can be evaluated [33, 34].

Fractal bond conductivity d ¼ G
K
�� �

� 4.
Vi ¼ 3�

4

� �
NAðmRA

3 þ nRO
3Þm3:mol�1; and Gi ¼ 1

Vm

� �
P

iGiXi , metallic elements and oxygen Rm and RO are the

Pauling ionic radii. According to this concept L ¼ K þ 4
3

� �
G;

Table 1 The glass constitution of the investigated samples

Sample code SiO2 Bi2O3 B2O3 TiO2 LiF BaO

mol:%.

G 1 22 23 37 13 5 0

G 2 22 23 37 13 4 1

G 3 22 23 37 13 3 2

G 4 22 23 37 13 2 3

G 5 22 23 37 13 0 5

Fig. 1 XRD of manufactured samples

Fig. 2 ρ & Vm of manufactured samples
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G ¼ 30 � V2
i Gi

Vi

� �
, Y ¼ 8:36ViGi, and K ¼ 10V2

i Gi. The ratio

of Poisson’s σ ¼ 1
2 � 1

7:2*Vi

� �
. Impedance of the acoustic sys-

tem; Z ¼ vLρ: Hardness in microns; H ¼ 1�2σð ÞY
6 1þσð Þ .

Temperature of Debye: θD ¼ h
k

9NA
4�Vm

� �1
3
Ms; Where h, k and

NA are Planck’s, Boltzmann’s, and Avogadro’s constants,

respectively. Velocity averagesMs ¼ 1
3

2
v3
T
1
v3
l

 !1
3

. Coefficient of

thermal �P¼23:2 vL�0:57457ð Þ . Oxygen Molar Volume and

Oxygen Packing Density Vo ¼ M
ρ

� �
1P
xini

� �
, and OPD ¼

1000C
Vm

� �
Mol
L

� �
. Diffusion constant Di and the latent heat ΔHm

estimated as:Di ¼ r2i KθD
96h and ΔHm ¼ 9M

128
riKθD
h

� �
2. The bond

length is denoted by ri and molar mass of the samples is M.

Grüneisen parameter (ϒ) determined as Υ ¼ 9ðV2
L�

4V2t
3 Þ

2ðV2
L�2V2

T Þ
.

3 Results and Discussions

3.1 Physical Investigation

Figure 1 shows the XRD of manufactured glasses in the 2θ
between (10–100). Only the XRD for 22SiO2- 23Bi2O3-
37B2O3-13TiO2-3LiF-2BaO is shown here because the
XRD of all manufactured glasses was similar. The hump in
the synthesized glass in Fig. 1 indicates that it is non-
crystalline because of the presence of short-range effects.
Therefore, make sure the fabricated samples are amorphous
[35–38].

Figure 2 depicted the measured density, ρ and molar vol-
ume, Vm . With an increase in BaO content, the density of
glasses increased. Because of the higher molecular weights

Fig. 3 OPD & Vo of fabricated glasses

Fig. 4 Nc & Nv of fabricated glasses

Table 2 Physical characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-
ð5� xÞ LiF- x BaO glasses

Samples G 1 G 2 G 3 G 4 G 5

(Ni) (1021 ions/cm3) - 0.312 0.629 0.948 1.57

Ri (Å) - 15.06 11.86 10.35 8.753

ri (Å) - 17.347 13.7 11.96 10.13

rp (Å) - 4.98 3.93 3.43 2.91

(dBa−Ba), nm 0.58 0.573 0.566 0.564 0.561

(m) 4.82 4.84 4.86 4.88 4.92

nb (10
28 m−3) 7.19 7.42 7.63 7.69 7.69

Nbs 2.41 2.42 2.43 2.44 2.46

Nbb 3.32 3.34 3.36 3.38 3.42

Ncon: 5.73 5.76 5.79 5.82 5.88

Mf 2.017 2.03 2.05 2.07 2.1

DCL 3.73 3.76 3.79 3.82 3.88

CNeff 5.292 5.304 5.316 5.328 5.352

cohesive energy, CE(Kcal/mol) 32.48 32.17 31.69 31.37 30.03

cohesive energy, CE (atom /e.V) 1.42 1.4 1.38 1.37 1.31

Fig. 5 VL & VT of fabricated glasses
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and density of BaO, (153.326 & 5.72), than LiF
(25.939&2.64 g/cm3), the result is easily explained.

With the addition of BaO, the Vm values were found to
decrease. It was ascribed to the formation of a glass network
because of an increase in the number of bridging oxygens
(BO) in glass [39–43].

Similarly, as BaO increased,OPD values increased and Vo
decreased. In fabricated glasses, Ba+2 has a lower field
strength than LiF, which can result in an increase in (BO).
Moreover, as the number of (BO) atoms risen, voluminous
units incorporating end oxygen atoms reduced, resulting in
an increment in OPD values and a decline in Vo. Figure 3
depicted OPD& Vo [44–48].

Figure 4 shows variation in Nc & Nv with BaO content,
indicates that adding BaO has similar ρ & Nm effects. When
compared to the parent composition, the structure contracted,
and when BaO was added, the contraction effect was even
stronger. The improvements in the glass connection can be
seen in Figs. 2, 3 and 4. This result agrees with the others
[47–51].

Because of the decrease in molar volume, the ion concen-
tration (NiÞ of Ba+2 rises. In this study, (Ri ), (ri ), and (rp ) were
calculated, and it was discovered that decreased as Ba+2 con-
centrations increased. This decrease was accompanied by a
reduction in Vm. Due to the decline in Vm, the values of ðdB
a� BaÞ increased with the concentration of Ba+2.

(m ) is a crucial parameter for determining whether the
oxygen bond is bridging or not. It is discovered that Ba+2

increases the value of m increased, indicates that adding
BaO has created (BO). These findings revealed that as the
content of BaO increased, nb increased as well. In the glass
system, the role of a BaO modifier is illustrated. Table 2 sum-
marizes the calculated values for these parameters [45–51].

Eopt: values andCE have a direct proportional relationship.
As a result, as BaO concentration rises, the cohesive energy
values decrease. The values ofNcon:,Nbs, andNbb are approx-
imated. With the increase in BaO, these parameters are report-
ed to increase. With increment BaO, CNeff, DCL, and Mf

values increase. Table 2 summarizes the calculated factors
[48- 51].

3.2 Mechanical Characteristics

Figure 5 exemplifies the ultrasonic (longitudinal (VL ) and
shear (VT )) velocities for fabricated glasses at various BaO
mole %. The propagation of both (VL ) and (VT ) velocities in
bulk samples was responsible for changes in glass structure.
The (VL ) and (VT ) were both increased as a result. This
behaviour, indicating that BaO plays a dominant role in ve-
locities in these glasses. The fact that the addition of BaO
caused a rapid movement of the (VL ) and (VT ) inside the

Table 3 The values of (VL ), (VT
), and elastic moduli of 22SiO2-
23Bi2O3-37B2O3-13TiO2-ð5� x
Þ LiF- x BaO glasses

Samples name VL VT L G K Y Lth Gth Kth Y th
(m. s−1) (GPa)

G 1 4705 2620 86.53 26.83 50.75 68.43 51.04 21.7 22.12 46.47

G 2 4770 2655 92.14 28.54 54.08 72.82 53.75 22.4 23.91 48.48

G 3 4825 2705 97.34 30.59 56.55 77.76 56.4 23.04 25.67 50.41

G 4 4885 2730 101 31.54 58.94 80.3 58.67 23.7 27.09 52.14

G 5 5030 2795 107.85 33.3 63.45 85.03 59.03 23.8 27.24 52.46

Fig. 6 L;G;K & Y elastic moduli experimentally of fabricated glasses Fig. 7 L;G;K & Y elastic moduli theoretically of fabricated glasses
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network of the glass structure was revealed by the increase in (
VL ) and (VT ) of the considered glass. As BaO increased, (VL )
and (VT ) of these samples increased as well. Table 3 shows
the values of (VL ), (VT ).

The elastic moduli (experimentally and theoretically) in
this study behave in a similar way to (VL ) and (VT ), as shown
in Figs. 6 and 7. The higher bond strength and the change in
the coordination number of Ba-O than Li-F structural units
caused an increase in elastic moduli as the BaO expanded.
Addition BaO creates the glass structure more rigid, increas-
ing the velocity and elastic moduli. Table 3 shows elastic
moduli data.

The following are the estimated deviation values between

elastic moduli (both experimentally and theoretically): Dev:

¼ ðelasticmoduliÞex�elasticmoduliÞth
elasticmodulið Þex : The deviation values of elastic

moduli were demonstrated in Fig. 8. Elastic moduli increase
with BaO, and experimental and theoretical elastic moduli are
in good agreement.

Variations in elastic moduli, on the other hand, can control
the amorphous networks. All the experimental (H ; Z; d;σ, θD
; �P;Ms;Vi Gi ) values of elastic moduli of fabricated glasses
were collected in Figs. 9, 10, 11 and 12. Variations in elastic
moduli are like (VL ) and (VT ) variations. Therefore, these
variations were increase as BaO increase. H increase from
4.019 to 4.4958, σ increase from 0.2752 to 0.2766, Z increase
from 1.84 to 2.14, θD increase from 329.15 to 356.75, �P

increase from 109141.7 to 116682.7,Msincreasef rom2022:9
to2158:4; and Vi crease from 0.398 to 0.434. As a result, as
the amount of BaO in the glass increases, the structure be-
comes more rigid and tough. All glass samples had (d ) close
to 2. This indicates that all the glasses have a two-dimensional
layer structure network. Table 4 shows these variations.

3.3 Latent heat ofmelting ΔHm, the diffusion constant
Di and Grüneisen factor (ϒ)

When a material is melted, the molecules change state from
solid to liquid, and the latent heat of melt is a form of internal
or potential energy stored by the melted substance [52]. The
diffusion constant is a measurement of molecule mobility that

Fig. 8 Diviation of elastic moduli (experimentally & theoretically) of
fabricated glasses

Fig. 9 H ; Z; d; and σ of fabricated glasses

Fig. 10 Msand θD of fabricated glasses

Fig. 11 �P of fabricated glasses

Silicon (2022) 14:6457–6465 6461



is determined by the frequency with which the molecule
moves and is controlled by the medium’s restricting forces.
The Hm Di values were demonstrated in Fig. 13. Table 4
records theHm Di values of examined glasses. The values of
Hm Di in the range 42-58(103.J) and 2.5-3(109m2S-1) indi-
vidually. In the fabricated glass samples, Hm Di increased as
BaO increased, due to an increase in the total number of bonds
nb and bridging oxygen (BO). These results are supported
with elastic moduli data.

Grüneisen parameter, which connects the characteristic of
heat capacity at constant volume, K, αp, and Vm, is one of the
most important quantities in thermodynamics. ϒ increment
from 1.629 to 1.64 with increasing BaO as shown in Fig. 14
and lists in Table 4.

Tg and the sound velocity have been shown to be related by

Heuer and Spiess [53–56], Tg ¼ CgMV2
s , where Cg is con-

stant, andM average molecular mass. According to Kanno, H,
Tg Tm

.
¼2

3
�

. Tm has been shown to be as Tm ¼ MV2
mθ

2
D

Cs
,

where Cs is constant, and Tm ¼ 3Tg

2 , where Tg glass trasitio
n temperature . The values of TgandTm increase as an
increment of BaO concentration. As a result, the fabri-
cated glasses’ Tg; Tm, and shear elastic constant exhibit
the same behavior. Table 4 records the TgandTm values
of examined glasses. As a result of the preceding ob-
servations, we can deduce that TgandTm are strongly
related to the elastic constant.

Fig. 12 Vi Gi of fabricated glasses

Table 4 Variations in elastic
moduli for fabricated glasses Samples G 1 G 2 G 3 G 4 G 5

Vi x10
−6, (m3) 0.398 0.412 0.426 0.434 0.434

Gi, (kcal/kJ 13.969 14.067 14.164 14.358 14.455

αp, (K
−1) 109142.67 110650.67 111926.67 113318.67 116682.67

d 2.11 2.11 2.16 2.14 2.10

σ 0.275 0.276 0.271 0.273 0.277

Zx107 (kg.m−2. s−1) 1.84 1.93 2.02 2.07 2.14

θD, (K) 329.15 336.61 345.51 349.9 356.75

OPD, (mol/L) 18.35 17.78 17.28 17.05 17.12

Vo, (cm
3/mol) 54.48 56.25 57.88 58.64 58.41

H, (GPa) 4.02 4.27 4.67 4.77 4.96

Ms (m. s−1) 2022.88 2049.98 2087.4 2107.2 2158.36

ΔHm 43.13 46.11 49.66 53.76 56.47

Di 2.65 2.73 2.817 2.92 2.97

ϒ 1.629 1.631 1.61 1.62 1.64

Tg (°C) 489.1 506.8 522.7 540.0 581.6

Tm (°C) according to mechanical 929.3 927.6 938.9 959.0 1033.6

Tm (°C) 733.7 760.2 784.1 810.1 872.4

Fig. 13 Di Hm of fabricated glasses
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4 Conclusions

Using melt-quenching techniques, the glass system 22SiO2-
23Bi2O3-37B2O3-13TiO2� ð5� xÞ LiF- x BaO was prepared.
The influences of BaO on the mechanical characteristics of fab-
ricated glasses were investigated in the current article. The fabri-
cated samples are amorphous, according to XRD analysis. In this
manuscript, the molar volume is reduced while the density is
raised. The ultrasonic velocity elasticmoduli of fabricated glasses
are mainly affected by changes in glass network connectivity. In
the current study, LiF was substituted for BaO because single-
bond Ba O energy in the glass network is higher than Li F
energy, making these glasses more rigid. Moreover, BaO has a
higher average cross-link density than LiF, which contributes to
its superiority. Therefore, as BaO levels rise, all the mechanical
parameters rise as well. As a result, the fabricated glasses’Tg; Tm

, and shear elastic constant exhibit the same behavior. The Latent
heat of melting, diffusion constant, and Grüneisen factor have
been used to link the mechanical and thermodynamic character-
istics of manufactured glass.
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