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Abstract
Halloysite nanotubes (HNTs) were incorporated into an EPDM/SBR rubber/styrene-butadiene rubber (SBR) composite by melt
blending of HNTs into the EPDM/SBR blend. The mechanical properties, abrasion and swelling resistance of HNTs ranging
from 2 parts per hundred rubber (phr) to 10 parts per hundred rubber (phr) were investigated in EPDM/SBR base rubber. Tensile
strength, 100% modulus (modulus at 100% elongation), elongation at break and tear strength were evaluated at ambient
temperature using electric universal tensile testing equipment in accordance with ASTMD-412. Hardness, abrasion and swelling
resistance were determined using Shore-A Durometer, DIN abrader and immersion techniques, respectively. The results show
that increasing HNT content increased tensile strength, tear strength, hardness (stiffness), and crosslink density. The surface
morphology of tensile-fractured material was studied using field-emission scanning electron microscopy (FE-SEM). According
to FE-SEM results, the most roughness of the surface was seen at HNTs filled rubber nano-composites.
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1 Introduction

Polymers are lightweight, have a high specific strength/mod-
ulus, are easy to process, and are inexpensive [1]. Without
some kind of reinforcement, a rubber substance, whether polar
or non-polar, has weak physico-mechanical properties [2].
The addition of a number of ingredients with special roles,
such as curatives (activator, catalyst, and vulcanization or
cross-linking agents), aids in the enhancement of those prop-
erties. At the present days, rubber and curatives materials are
well-known and are not becomes an issue to any further ex-
tent. However, many academicians and researchers have re-
cently improved the problem of modifying or replacing

traditional additives such as carbon black (CB) and silica
[3–5]. Because of their unique particle form and hydrophobic
surface, CB is recommended as a strong reinforcement parti-
cle with better dispersibility in rubber matrix [6]. In addition,
CB particle caused pollution in atmosphere and displayed
dark color in the composite [7, 8]. Due to its hydrophilic
surface, silica is recognised as a white filler with similar rein-
forcement effect as CB and low dispersion in rubber matrices,
which appears in natural rubber (NR) composite [6, 9]. As a
result, a variety of researchers [10–14] have introduced new
types of nano-fillers, such as clay particles, to enhance the
mechanical and swelling properties of rubber composites.
They are also layered silicates and belong to the phyllosilicate
group, which includes montmorillonite, saponite, and
hectorite. Silica, which is commonly used as a rubber rein-
forcing filler, is a non-carbon filler [15, 16], with usage second
only to carbon black in the rubber reinforcing industry. The
presence of many hydroxyl groups on the surface of silica, on
the other hand, causes filler tendentious aggregation, which is
unfavourable to rubber composite performance.

Carbon nanotubes (CNTs) are divided into single-walled
carbon nanotubes (SWCNTs), which have a typical diameter
of 1–2 nm, and multi-walled carbon nanotubes (MWCNTs),
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which have an outer diameter of 3–30 nm or more, depending
on the number of graphitic layers comprising their structure
[17]. CNTs also have a low mass density and a large aspect
ratio (length to diameter ratio of approx 1000) [18].
Mechanical (elastic modulus: 1–1.7 TPa), thermal (thermal
conductivity greater than 3000 W·m−1·K−1), and electrical
(electrical conductivity: 105 S·m−1 – 107·S·m−1) properties
are all outstanding [19]. Carbon nanotubes, while their enor-
mous benefits, have a few disadvantages. CNTs have a great
inclination to aggregate due to their nanometric size. Carbon
nanotubes are also rather costly [20, 21]. Natural halloysite
nanotubes are another sort of nanotubular structure (HNTs).
HNTs have been found to be effective as nanofillers in a
variety of rubber materials [22, 23]. HNTs are a two-layered
aluminosilicate (Al2Si2O5(OH)4. H2O) with a hollow tubular
structure in the micron range and chemically similar to kaolin
particles [24, 25]. HNTs are a type of phyllosilicates material
that consists of one octahedral sheet and one tetrahedral sheet
with six-membered rings and 1:1 layers. The crystalline struc-
ture of HNTs is double layered. The outer layer surface of
HNTs has Si-O groups, while the inner side surface and tube
edges have Al(OH)3- groups [26]. HNTs have a higher aspect
ratio than clay minerals (montmorillonite, saponite, and
hectorite) due to their tuber shape. HNTs have an aspect ratio
ranging from 10 to 130, depending on the tube dimension.
HNTs’ large surface area and aspect ratio are likely to have
a unique reinforcing impact on the polymer matrix. For nano-
composites to improve their mechanical and thermal proper-
ties, good interaction and interfacial adhesion between the
rubber matrix and nano-filler particles are essential [7]. The
lengths of HNTs typically range from 300 to 1500 nm, with
inner diameters of 15–100 nm and outside diameters of 40–
120 nm [27, 28]. HNTs are a low-cost, environmentally ac-
ceptable substance that can be disseminated in a polymer ma-
trix more easily than carbon nanotubes [29]. Because of the
fact that HNTs materials are naturally occurring and much
cheaper, yet structurally comparable to MWCNTs, the
HNTs could be a best choice for more expensive CNTs for
some applications. EPDM, SBR, and silicone rubber can all
endure temperatures as low as −40 degrees Celsius, making
them ideal for low-temperature applications. Both materials
have the same degree of compression set, making them suit-
able for applications requiring a high level of durability.
EPDM and SBR have high tensile strength and abrasion re-
sistance, making them ideal materials for dynamical loading
and force applications that require a lot of physical effort [30,
31].

The addition of HNTs to the EPDM/SBR matrix results in
a new material. Because of the high aspect ratio and low
density, HNTs nanofiller materials combine the features of
matrix and filler, and may also display additional properties.
Nano-reinforcement has been the focus of recent nanocom-
posites manufacturing research in order to produce improved

or tailored mechanical performance. This usually refers to
gaining some unique tensile qualities, as well as abrasion
and swelling resistance, in the case of nano-reinforcements.
This work is an important accountability in the creating of
new material of EPDM/SBR nanocomposites filled with var-
ious contents of HNTs. The objective of this paper is to ex-
plain the reinforcing ability of EPDM/SBR nanocomposites
on the mechanical and swelling properties.

2 Experimental

2.1 Materials

Sigma-Aldrich supplied the halloysite nanotubes (HNTs) and
swelling chemicals. The HNTs had a relative density of
2.53 g/cm3 and a basic surface area of 65 m2/g. The tubes
had a diameter of 40–80 nm and a length of 1 to 4 μm.
Arihant Reclamation Private Limited, Delhi, India, provided
ethylene-propylene-diene monomer (EPDM) rubber (KEP-
270; Mooney viscosity 71 ML1 + 4, 125 °C; ENB content
4.5 wt.%; ethylene content 57 wt.%, volatile content
0.4 wt.%; specific gravity 0.86) and styrene-butadiene rubber
(SBR-1502; bound styrene 23.5 wt.%; volatile matter
0.3 wt.% ash 0.2 wt.%; organic acid 5.8 wt.%; specific gravity
0.94; Mooney viscosity 52 ML1 + 4, 100 °C). The zinc oxide
and stearic acid used as activator, sulphur used as vulcanizing
agent , tetramethylthiuram disulfide (TMTD) and
mercaptobenzothiazyl disulfide (MBTS) used as accelerator
and was purchased from Sigma-Aldrich. Without any further
purification, all chemicals were utilised as received.

2.2 Preparation of Nanocomposites

In an open mill mixer, EPDM rubber, styrene-butadiene rub-
ber (SBR), Halloysite nanotubes (HNTs), and other ingredi-
ents (zinc oxide, stearic acid, tetramethylthiuram disulfide
(TMTD), mercaptobenzothiazyl disulfide (MBTS), and sul-
phur) were mixed together (50 °C). The friction ratio is main-
tained in mixer is 1:1.4. Stage 1: Before mixing, rubber was
passed 9–10 times between the mill rollers having a less than
1 mm nip gap. Stage 2: After homogenization of both the
rubber (i.e., EPDM and SBR), the other ingredients like acti-
vator (zinc oxide and stearic acid), accelerator (TMTD and
MBTS), and curing agent (sulphur) were added according to
Table 1. For preparing various samples of EPDM/SBR
blends, the amount of HNTs were different proportion as
shown in Table 1. A semi-automated electrically powered
hydraulic press was used to shape the composites sheet with
a thickness of 2 mm. At a pressure of 30 MPa, the press
temperature was held at 160 °C for a 10 min cure time.
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2.3 Testing and Characterization of Rubber
Composites

EPDM/SBR nanocomposites were tested for tensile properties
(tensile strength, elongation at break, and modulus) according
to ASTM D-412. At ambient temperature, the tensile proper-
ties were calculated using a Universal Testing Machine
(UTM) model Dak System Inc., T-72102, series 7200 with a
crosshead speed of 500 mm/min. The tear strength is also
measured in the same machine and conduction as per ASTM
D-624 [10]. The hardness of the composites has been per-
formed as per ASTM D-2240 by the Shore-A Durometer
hardness tester. The abrasion characteristics of the rubber
composite were measured using a DIN abrader according to
ASTM D-5963 and are expressed in terms of volume loss.
The swelling resistance was measured using the ASTM
D-471 immersion process [12]. At different temperatures of
30 °C, different penetrates such as aromatic, aliphatic, and
chlorinated hydrocarbons are used to analyse the swelling
properties of the composites. The mole percent uptake was
calculated by this Eq. (1)

Qt mol%ð Þ ¼ Mt−M 0ð Þ=MW
M 0

� 100 ð1Þ

where, Mt = Final mass of the composite,
M0 = Initial mass of the composite.
MW = Molecular weight of the penetrate.
The following eq. (2) [32–34] was used to measure the

degree of crosslinking density:

ϑ
mol
cm3

� �
¼ 1

2Mc
ð2Þ

where, Mc = Molar mass of the polymer between crosslinks.
The Flory-Rehner eq. (3) was used to measure the molar

mass between the crosslinks of the composites [32–35]:

Mc
g
mol

� �
¼ −ρpVsV1=3

r

ln 1−Vrð Þ þ Vr þ χV2
r

ð3Þ

where, ρp = Polymer Density,

Vs = Molar volume of the solvent (106.3 mL/gmol),
Vr = Volume fraction of the solvent-swollen filled poly-

mer compound,
χ = Interaction parameter of the polymer (0.3) [36], and.
Vr can be determined by the following eq. (4) [37]:

Vr ¼ 1

1þ Qm
ð4Þ

where, Qm = Weight swell of the composites in toluene.
The tensile fractured surface of composites were observed

with a Sigma with Gemini Column, CARL ZEISS FE-SEM,
USA at the acceleration voltage of 10 kV. The specimen sur-
faces were coated with gold with thickness of 10–20 nm.

3 Results and Discussion

Figure 1 depicts the stress-strain curves of EPDM/SBR-HNTs
nanocomposites. The addition of 2 phr of HNTs to an
EPDM/SBR blend resulted in stresses of roughly 8.15 MPa,
a 33% increase over the base EPDM/SBR blend, whereas the
addition of 10 phr of HNTs to an EPDM/SBR blend led in a

Table 1 Formulation of
EPDM/SBR-HNTs Compounds Sample code Compounds (phr)

EPDM SBR HNTs Zinc oxide Stearic acid MBTS TMTD Sulphur

H0 80 20 0 4 1.5 1.2 1 2.5

H2 80 20 2 4 1.5 1.2 1 2.5

H4 80 20 4 4 1.5 1.2 1 2.5

H6 80 20 6 4 1.5 1.2 1 2.5

H8 80 20 8 4 1.5 1.2 1 2.5

H10 80 20 10 4 1.5 1.2 1 2.5

Fig. 1 Stress-strain curve of the EPDM/SBR-HNTs composites
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stress of 12.78 MPa, a 109% increase over the base
EPDM/SBR blend. Furthermore, because to the increased dis-
continuity in the rubber composite material, the addition of
HNTs has reduced the strain % of EPDM/SBR-HNTs com-
posites. Figures 2, 3, 4, 5, 6, and 7 show the mechanical
properties of EPDM/SBR-HNTs nanocomposites, with infor-
mation of mechanical properties such as tensile strength,
100% modulus, elongation at break, tear strength, hardness,
and abrasion resistance. From Fig. 2, it is observed that the
tensile strength of base rubber is very low strength, which is
ineffective in practical application and is why desires to be
incorporated by nano-materials. The addition of HNTs to
EPDM/SBR-HNTs nanocomposites will increase their tensile
strength. When the addition of HNTs is about 10 phr, the
tensile strength of rubber nanocomposites is about 109% of
that of base rubber blends. Furthermore, as the content of
HNTs increased from 0 to 6 phr, the tensile strength increased
rapidly due to better dispersion of nano-particles within the
EPDM/SBR rubber matrix, and from 8 to 10 phr due to poor
interaction, lesser agglomeration, and bonding between HNTs
and EPDM/SBR matrix, which is responsible for the slight
improvement in HNTs and rubber properties. As a result, the
rubber-filler interfacial region’s reinforcing effect of HNTs
becomes extremely effective in influencing the tensile
strength of EPDM/SBR-HNTs nanocomposites, resulting in
increased tensile strength.

Figure 3 shows the modulus with different proportions of
HNTs, calculated at 100% elongation. Figure 3 shows that as
the HNTs loading in the EPDM/SBR composites increased,
the modulus calculated at 100% elongation increased. The
modulus at 100% elongation was used to determine the stiff-
ness of the rubber composite. The 100%modulus was primar-
ily influenced by the surface area, scale, and structure of
HNTs. As a result, the composite with 6 phr of HNTs had a

higher degree of cross-linking (as shown by the crosslinking
density test), resulting in a higher 100% modulus. Since the
composites filled with a higher amount of HNTs had a lower
degree of chemical cross-linking, as shown by the cross-link
density property in Fig. 8, the composites filled with a higher
amount of HNTs had lower values. Low structural integrity,
which is a significant parameter that can affect the character-
istics of HNTs’ reinforcing capacity, is also a result of high
HNTsmaterial. As a result, when compared to higher amounts
of HNTs, the reinforcing impact of HNTs was reduced. The
moduli were mostly impacted by the structure and surface
area. EPDM/SBR composites filled with 8 phr of HNTs had
a 3% decrease in modulus compared to EPDM/SBR compos-
ites filled with 6 phr of HNTs filler. However, because a
change in modulus frequently has negative effects for appli-
cations, the reduced modulus is regarded as a positive.

Fig. 2 Tensile strength of the EPDM/SBR-HNTs composites

Fig. 3 100% modulus of the EPDM/SBR-HNTs composites

Fig. 4 Elongation at break of the EPDM/SBR-HNTs composites

6614 Silicon (2022) 14:6611–6620



The effect of HNT loading on elongation at break is
depicted in Fig. 4. With the addition of HNTs to the
EPDM/SBR composites, the elongation at break decreased.
The inter-tubular and interfacial bonding between the HNTs
and the EPDM/SBR rubber matrix, as well as the better con-
tact of the HNTs within the rubber matrix, play a key role in
reducing the elongation at break. The improved interactions
between the nano-filler and the rubber matrix increased the
composites’ strength and stiffness, reducing their ductility.

Figure 5 shows that as the HNTs were increased, the tear
strength of the EPDM/SBR composites increased. The high
crosslinking density of the HNTs-loaded composites was re-
sponsible for the steady increase in tear strength with the in-
clusion of HNTs in the composite. As a result, it can be in-
ferred that HNTs inhibited crack propagation, thereby increas-
ing the composites’ resistance. As a result, HNTs with high
structural integrity have a fair resistance to crack propagation.

The mechanical property of rubber composites that is most
significant is their hardness. Figure 6 illustrates the hardness
of EPDM/SBR-HNT composites. The hardness of the com-
posites varies depending on the amount of HNTs present. It
begins at 53 Shore-A for unloaded compounds and steadily
increases as the amount of HNTs in the HNTs nanofiller filled
EPDM/SBR composites increases. The degree of cross-
linking has a significant effect on the hardness of a compound.
Furthermore, the HNTs’ lower active surface area may have
increased cross-links, which increased the composites hard-
ness. The mechano-chemical grafting of EPDM/SBR molec-
ular chains on the HNTs surfaces and the stretching orienta-
tion of HNT in EPDM/SBR-HNTs composites may be re-
sponsible for the enhancement of characteristics.

The abrasion loss of EPDM/SBR composites reinforced
with HNTs is shown in Fig. 7. The abrasion resistance in-
creases as the content of HNTs increases. This is due to the
reinforcing effect of HNTs, which resulted in a stronger

Fig. 5 Tear strength of the EPDM/SBR-HNTs composites

Fig. 6 Hardness of the EPDM/SBR-HNTs composites

Fig. 7 Abrasion loss of the EPDM/SBR-HNTs composites

Fig. 8 Molecular weight of the polymer between the crosslinks (Mc) and
crosslinking density of the EPDM/SBR-HNTs composites
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rubber-filler network. Furthermore, increasing the
crosslinking density made the composites stiffer and more
abrasion resistant.

The mole percent uptake of the rubber composites in
different solvent (aromatic, aliphatic and chlorinated) at
30 °C are shown in Table 2. The mole percent uptake
was considerably decreased for HNTs reinforced com-
posites as compared to neat EPDM/SBR blends. The
higher HNT reinforcement in the EPDM/SBR rubber
matrix limits the swelling-induced expansion of the rub-
ber chains. This makes it very difficult for the solvent
to penetrate the gaps between the rubber molecules,
lowering the mole percent uptake. Hence, the rubber
blend composites have higher solvent barrier properties
compared to neat EPDM/SBR blends. The trend was in
the order of: dichloromethane > chloroform > benzene >
toluene > xylene > mesitylene > n-pentane > n-hexane
> carbon tetrachloride > n-heptane > n-octane. The
higher molecular weight of solvent exhibited the lowest
absorption and vice-versa. From the Table 2, mole per-
cent uptake trend was in order of: chlorinated > aromat-
ic > aliphatic.

The crosslinking density was calculated by the help
of equilibrium swelling measurement. A sample dimen-
sion about 250x250x2 mm was cut from the rubber
sample . To asses s the c ros s - l i nk ing dens i ty ,
EPDM/SBR composites were soaked in toluene for
three days at 23 °C, with the toluene being replaced
with new solvent (toluene) every day. An immersion
test is performed to examine the nanofiller-rubber ma-
trix interaction. Figure 8, shows the molecular weight of
the polymer between the cross l inks (Mc) and
crosslinking density of EPDM/SBR blend composites

with different proportion of HNTs. The obtained result
shows an increasing trend in crosslinking density after
loading the HNTs. The crosslinking density is deter-
mined in part by the molecular weight of the polymer
between the crosslinks (Mc). The Mc values of HNTs
filler filled EPDM/SBR nanocomposites are lower than
those of unfilled EPDM/SBR nanocomposites. With in-
creased HNTs content, the molar mass between
crosslinks (Mc) decreased. The accessible volume be-
tween consecutive crosslinks reduced as the Mc values
declined. As the amount of HNTs in the EPDM/SBR-
HNTs nanocomposites increased, the crosslinking densi-
ty also increased. Tensile strength, tear strength, hard-
ness, and abrasion resistance are all improved by in-
creasing crosslinking density.

The FE-SEM micrograph of the fractured tensile sur-
face are shown in Fig. 9 (a) HNTs Fig. 9 (b)
EPDM/SBR blends, (c) EPDM/SBR composites contain-
ing 6 phr HNTs and (d) EPDM/SBR composites con-
taining 10 phr HNTs. The image of HNTs is shown in
Fig. 9 (a), showing the tube-like dimension and the
nature of the tubes. It can be concluded that the tensile
fractured morphology surface of unfilled EPDM/SBR
was relatively smooth (Fig. 9 (b)). For EPDM/SBR re-
inforced with 10 phr composite, the tensile fractured
surface exhibited notable undulating stripes and rough
characteristics (Fig. 9 (d)). In comparison, the tensile
fractured surface of EPDM/SBR reinforced with 6 phr
HNT shows large deformation and many tear folds (Fig.
9(c)), and no noticeable curatives (zinc oxide, stearic
acid, sulphur, etc) particles were observed, showing ex-
cellent compatibility and good interfacial bond strength
between HNTs and EPDM/SBR compound due to the

Table 2 Mole percent uptake for different penetrant of composites material at 30 °C

Sample
code

Mole percent uptake (mol%)

Aromatic Aliphatic Chlorinated

Benzene Toluene Xylene Mesitylene n-
pentane

n-
hexane

n-
heptane

n-
octane

Dichloromethane Chloroform Carbon
tetrachloride

H0 3.95 3.57 3.46 3.03 2.42 2.34 2.28 2.24 5.42 4.56 2.26

H2 3.65 3.28 2.71 2.46 2.16 2.02 1.95 1.87 4.86 4.17 1.94

H4 3.63 3.25 2.67 2.39 2.03 1.98 1.81 1.756 4.62 4.17 1.86

H6 3.59 3.17 2.63 2.36 1.96 1.95 1.83 1.72 4.56 4.08 1.75

H8 3.58 3.14 2.65 2.35 2.04 1.92 1.86 1.8 4.54 4.03 1.87

H10 3.52 3.09 2.59 2.28 1.92 1.87 1.78 1.74 4.42 3.86 1.76
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SiO2-Al2O3 present in the HNTs filler, which was reli-
able with the improved tensile strength of the
composite.

4 Conclusions

EPDM/SBR with various HNT loadings was prepared in
this research, tensile properties, tear strength, hardness,

abrasion, and swelling resistance tests were conducted
and analyzed. Compared with EPDM/SBR blend, addi-
tion of HNTs resulted in 109% increase of tensile
strength, 45% increase of 100% modulus and 11% in-
crease of hardness. The improved interactions between
the nano-filler and the rubber matrix increased the com-
posites’ strength and stiffness, reducing their ductility.
The HNTs were found to act as a reinforcing agent in
the crosslinking process.

(a) HNT nanofiller 

(b) EPDM/SBR blends 

Fig. 9 The tensile fractured
surfaces of EPDM/SBR-HNTs
composites
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