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Abstract
It is traditionally thought to be challenging to incorporate tougher ceramic particles into a softer aluminium matrix. Powder
metallurgy has emerged as a significant fabrication technology in this context. Silicon carbide (SiC) is reinforced to aluminium
with varying reinforcement, i.e., 5, 10, and 15 %. The samples were sintered in a microwave sintering furnace at 550 °C ± 5 °C.
The scanning electron microscope and the field emission scanning electron microscope (FESEM) were used to inspect the
microstructure (structure/shape, dislocations, and grain distribution) of prepared powders and sintered composites. Water dis-
placement methods were used to assess the density and porosity of prepared composites. X-ray diffraction (XRD) is used to
assess the existence of intermetallic compounds (if any) and contaminations. Mechanical investigations were performed on
aluminium and its composites, as well as the effect of particle size on the mechanical properties of Al/15 %SiC were studied
and presented. Density and porosity found to incline with the increase in SiC content. Properties such as hardness, ultimate tensile
strength (UTS) and yield strength (YS) of the reinforced composites (5, 10, and 15 %) were significantly improved, whereas
elongation rapidly declined compared to pure aluminium. Also, the UTS and YS increases with the decrease in reinforcement
particle size. The dominant mechanisms are ascertained to be dislocation density, refined grain size, and porosity.
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1 Introduction

The mechanical properties of the reinforced composites were
influenced by the random dimensions, shape, and weight frac-
tions of the reinforcement, matrix material, and reaction at the
junction of the interface. Reinforced material should be uni-
formly dispersed to focus on increasing mechanical properties
such as micro hardness and tensile strength. According to the
findings, diffusion bonding, particle size, and particle shape
all have an effect on the microstructural integrity and mechan-
ical performance of the desired compact [1]. Ceramic rein-
forced composites with apparent low density, higher melting

points, elevated hardness, good Young’s modulus, and resis-
tance against corrosion are becoming more popular in ad-
vanced manufacturing, avionics, and ceramic armour mate-
rials [2].

Metal matrix composites (MMCs) are superior advanced
materials that are created by combining two or more mate-
rials to achieve specific properties. They have gained pop-
ularity in all these years due to their superior strength qual-
ity, higher stiffness, and wear content when compared to
unreinforced alloys [3–5]. Aluminium metal matrix com-
posites (AMMCs) have been identified as potential candi-
dates as typical MMCs due to their exceptional specific
strength, wear resistance, and high-temperature perfor-
mance. Massive research was done on ceramic based com-
posites to analyze properties like resistance to wear, tensile
structural behavior, fracture toughness, and cyclic stress
behavior. Ceramic composites such as silicon carbide, rice
husk ash, graphene, boron carbide, and carbon nanotubes
outperform monolithic ceramics in terms of mechanical
properties [6, 7]. Because of its unparalleled electrical, ther-
mal, and mechanical properties, SiC has been widely used
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as reinforcement in recent years to improve matrix perfor-
mance [2, 8]. SiC particulates reinforced aluminium matrix
composites (AMCs) require far more properties than con-
ventional alloys, such as high strength, thermal properties,
and frictional wear and corrosion resistance. Proper densi-
fication and microstructure which is free from micro-holes
and other deficiencies is obtained when Al/SiC composites
are sintered by SPS at 510 ºC [9, 10].

Powder metallurgy (P/M) provides homogeneous particu-
late distribution and causes less reaction between matrix and
reinforcement in the production of AMMCs [11]. In recent
years, powder metallurgical components have grown expo-
nentially for use in the vehicle industry and related technolo-
gies. P/M has been found to be appealing because it achieves
homogeneous particle distribution while processing AMMCs,
and the method controls interface kinetics and works indefi-
nitely at low temperatures. A high yield strength in the mag-
nitude of 355 MPa, as well as UTS of 430 MPa, is achieved
when SiC nano particles are dispersed uniformly into alumin-
ium base matrix and sintered by hot iso-static press (HIP)
sintering technique [12]. Microwave sintering, among the var-
ious sintering methods, provides extremely high heating rate,
a shorter fabrication time, a homogeneously distributed mor-
phology, and quality [13]. Microwave sintering of composites
is found to be more efficient than traditional heating methods.
Microwave heating, however, first produces heat inside the
material and then heats the whole volume. Due to high heating
rates and slow sintering temperatures, product uniformity,
high yielding, homogeneous volumetric heating, minimal
soaking time, environmental protection, equiaxed pores, ef-
fectual densification, refined microstructure, enhanced physi-
cal and mechanical characteristics, simplicity, distinctive
properties, and reduced environmental hazards have been
achieved [14–16].

From the economic analysis made by Venkatesh et al. [17]
it is understood that microwave assisted sintering (MAS) is
capable to produce high precision parts with reduced interme-
tallic compounds, with lesser defects, minimal sintering time
and temperature. Several studies have revealed that sintered
composites have also improved microstructural homogeneity
and mechanical properties [18, 19].

A revolutionary integrated manufacturing approach is mi-
crowave processing of powder metallurgy metal composites
has received little research attention in recent years. From a
review made by Shoba et al. [20], it is recognized that, while
developing sintered Al based composites various sintering
parameters like pressure, temperature, time, sintering atmo-
sphere (argon or nitrogen) play a crucial role. Although there
is a lot of research on the microstructural behavior and me-
chanical characterization of Al/SiC microwave sintered
MMC’s with varying SiC volume fractions, the effect of par-
ticle size on the mechanical behavior is rarely seen. Hence the
present work addresses the microstructural and mechanical

properties of pure Al and its composites, as well as the impact
of three distinct particle sizes.

2 Experimentation

In this work, aluminum powder of 99 % purity and silicon
carbide with 99.5 % purity are procured from Otto Chemie
Pvt. Ltd., and are used as the starting materials. The powders
are mixed in the proportion of 5, 10, and 15 % by weight in a
ball mill (without balls). Next, the powders are compacted by
applying 120 bar pressure using hydraulic press of 20 ton
capacity [21]. Finally, the green compacted specimens were
sintered at 550 °C for 90 min in a microwave heating furnace.
The whole sintering process was performed under N2 gas
atmosphere [22, 23].

The experimental setup and the corresponding samples
were presented in Fig. 1. With JEOL (JSM7100F) field emis-
sion scanning electron microscope (FESEM) the microstruc-
tural analysis were done on the samples which were cut in
transverse direction. The samples for phase identification for
the composites were characterized by X-Ray diffractometer
(PROTO iXRD). Based on the Archimedes’ principle [24]
experimental density of the samples is presented. The porosity
of a composite can be obtained from the experimental and
theoretical densities. Hardness of the microwave sintered alu-
minum samples was measured using a SHIMADZU G20 mi-
crohardness tester. A load of 500 gmwas applied for 15 s, and
the indentation diameter was measured at five different loca-
tions to measure the Vickers hardness number of the samples.
Tensile tests of the sintered samples were performed on flat
tension test samples collected with a width of 15 mm and a
gauge length of 30 mm using a servo-hydraulic testing ma-
chine with a crosshead speed of 0.254 mm/min. The initial
strain rate was 1.69 × 10− 4 s− 1. SEM was also used to
examine the fracture surface morphology of the specimens
that were cut for the tensile test. In order to evaluate the effect
of SiC particle size on the mechanical properties of the com-
posites, SiC powder (37 μm) was milled (tungsten carbide
balls of ϕ 10 mm) in a planetary ball mill for 5 and 10 h with
a rotating speed of 250 rpm and ball/powder mass ratio of 10:1
to attain particle sizes of 23 and 10 μm respectively [25, 26].
The Al reinforced composites with different particle sizes are
fabricated using the same conditions by powder metallurgical
process to evaluate the tensile behavior.

3 Results and Discussions

The micrograph of the starting materials (silicon carbide and
aluminium powder) considered for the present study is shown
in Fig. 2. SiC particles with an average size of 37 μm were
identified to be irregular and angular in shape. Aluminium
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powder particles with an average size of 26 μmwith elliptical-
shaped particles were observed.

Figure 3 illustrates a scanning electron micrograph of mi-
crowave sintered samples of pure Al, Al + 5 %SiC, Al +
10 %SiC, and Al + 15 %SiC composites. A favorable distri-
bution of strengthener particles in the matrix has been
achieved indicating that the powder metallurgy with micro-
wave sintering treatment effectively disperses the SiC parti-
cles throughout the aluminium matrix. The distribution of Al
and SiC particles also seems to be heterogeneous. From
Fig. 3b-d it can be seen that, the interfacial bonding between
reinforcement and the matrix is extremely good. Figure 3e
presents the EDX analysis, which confirms the presence of
aluminium and silicon carbide in the prepared composites.

Figure 4 reveals the XRD pattern of the prepared com-
posites. The presence of aluminium and silicon carbide
peaks are acknowledged from the pattern. The XRD

patterns of Al/SiC composites show that the diffraction
peaks corresponding to SiC are steadily rising, indicating
that the SiC particle content improves with the reinforce-
ment ratio. It has been realized that SiC particles do not
interact with aluminium to develop any intermetallic com-
pounds such as the Al3C4 phase etc.

3.1 Density and porosity

Density measurements were made to determine the porosity of
the prepared composites and the impact of the reinforced ce-
ramic content on the composites’ density. The density and
porosity of the manufactured composites with diverse SiC
particle contents are determined [24, 27]. Figure 5 depicts
the variation in the composite material’s measured density
and porosity. Compared to pure aluminium, the density was

Fig. 2 a) SEMmicrographs of (a)
SiC particles (b) Al powder

Fig. 1 (a) The experimental setup
(b) fabricated samples
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Fig. 3 The sintering data (power and piston movement) for (a) SiC-Al2O3, (b) SiC-TiC, and (c) SiC-B4C during the FSPS run
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increased by 6.28 %, 10.75 % and 16.66 % for composites
containing 5 %, 10 %, and 15 % SiC particulates, respective-
ly, which is due to the addition of higher denser SiC particles
in aluminium. The porosity was determined [28] using known
theoretical and experimental densities. The porosity of com-
posites enhanced slightly with increasing SiC content. The
maximum porosity obtained is 2.1760 % for Al/15 %SiC
(Fig. 5). The amount of porosity in the produced composites
is less than 3 %, which is really the utmost porosity level
tolerable in the production of AMMCs [29]. This means that,
despite having a higher porosity level, the porosity level of up
to 2.1760 % is believed to be acceptable and appropriate in
the current research work.

3.2 Hardness

Hardness refers to a material’s resistance to surface indenta-
tion. Because of the inclusion of harder SiC particulates in the
aluminium matrix, the hardness increases as the fraction of
reinforcement increases. Figure 6 depicts the hardness of pure
aluminium and its composites. The Vickers hardness value of
pure Al is 93.5 VHN, and the hardness value rises as SiC
content rises, with the maximum obtained hardness value
seeming to be 121.5 VHN for Al/15 %SiC sintered compos-
ite. The existence of harder and more tightly bonded SiC par-
ticles in the Al matrix, which impedes dislocation movement,
increases the hardness of AMMC’s [30]. An increasing trend
in the hardness of the composites signifies that the particulates
present in the matrix has progressed the composite’s overall
hardness. As the matrix is a soft material and the reinforce-
ment particulates are harder and make a positive contribution
to the hardness of the composites. Also, the hardness of the
reinforced sintered composites has improved due to a reduc-
tion in the grain size of the composites. It is also reported by
the Hall-Petch relation that hardness inclines with a decline in
grain size [31].

3.3 Tensile behavior

As per the tensile test results, the reinforced composites have a
higher tensile strength than pure Al. The ultimate tensile
strength (UTS) of composites was reported to increase with
an increment in SiC content, as per the engineering stress-
strain plots (Fig. 7). When compared to pure Al, the UTS for
all the samples (5 %, 10 %, 15 %) were drastically improved

Fig. 4 XRD pattern of pure Al, Al/5 % SiC, Al/10 % SiC and Al/15 %
SiC composites
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by 29.64 %, 71.59 % and 103.26 %, and that of yield
strengths (YS) were 21.16 %, 49.36 % and 61.06 %, respec-
tively, as depicted in Fig. 8.

Based on the studies carried out, many researchers pro-
posed various strengthening mechanisms while performing
investigations on AMMCs. Nonetheless, the mechanical
strength of the composites is not dependent on a single mech-
anism but rather on a combination of several mechanisms that
may act concurrently. In general, the strengthening mecha-
nisms of MMC’s include the Hall- Petch strengthening, the
Orowan strengthening, thermal mismatch strengthening and
load transfer from matrix to reinforcements [31, 32]. The

identified strengthening mechanism in the present study is
reported in the subsequent paragraphs:

3.3.1 Dislocations based strengthening mechanism

SiC has a coefficient of thermal expansion (CTE) of about 5 ×
10− 6/°C, whereas aluminium has a CTE of about 23 × 10− 6/
°C. Dislocations form at the interfaces due to the difference in
CTE’s [33]. In general, a mismatch in the CTE between the
reinforcement and the matrix alloy results few dislocations at
the junction of the interface, which strengthens the matrix
alloy. The contribution of ceramic particles (SiC in this study)
to total composite tensile strength could be attributed to higher
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dislocation density in the composite matrix caused by a ther-
mal mismatch during fabrication followed by sintering be-
tween the ceramic particulates and the Al matrix. Several
studies [34–37] have found the same pattern of this behavior.
Thermal strain is found to be related to the CTE of SiC and
aluminium. The higher the dislocation density, the higher is
the alloy’s strength [38]. The relation between the strength and
dislocations/dislocation density (ρ) due to the thermal mis-
match during fabrication is stated by [39]:

Deltaσy ¼ Gb
ffiffiffi

ρ
p ð1Þ

Where, G is shear modulus.
It can be seen from Eq. 1 that the greater the number of

dislocations, the greater the composite’s strength. The number
of dislocations will rise as the SiC content increases. It is
obvious that the dislocations arises from the interface and
appear to be large in number for Al/15 %SiC composites,
resulting in higher strengths.

3.3.2 Strengthening Due to Refined Grain Size

Figure 9 presents FESEM micrographs of the surface of pure
Al and Al/15 % SiC composite. This micrograph clearly
shows that both the Al and the composites have a distinguish-
able grain boundary, but the grain size is smaller and there are
more grain boundaries in Al/15 %SiC composites. Tensile
strength is inversely related to average grain size [40]. The
area resists tensile or external force as the grains are refined,
and the number of boundaries multiplies. Because of the fre-
quent changes in the direction of dislocations at grain bound-
aries, dislocation motion is slowed. Higher grain refinement
tends to improve the grain boundaries for SiC particles and
matrix material, potentially delaying SiC particle detachment
from the matrix material while still applying tensile load. The
Hall–Petch relationship is well-known to achieve high
strength by reducing grain size. The Hall–Petch equation
mathematically describes the relationship between yield stress
and grain size as mentioned in Eq. 2 [31]:

σY ¼ σo þ Ky
ffiffiffi

d
p ð2Þ

Where σY is the yield strength and d is the grain diameter.
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From Eq. 2 it is realized that, the yield strength is inversely
related to grain size. As can be seen in Fig. 9, as the SiC
particle content increased, the grain size shrank dramatically,
which results in higher strength for Al/15 %SiC composite.

3.4 Fracture Analysis & Elongation

The fracture morphology of tensile samples was analyzed to
understand the effect of reinforcement particles in the fabri-
cated composites. Corresponding FESEM images of fractured
surface of the pure Al and the composites is shown in the
Fig. 10. The fracture morphology of pure Al revealed typical
ductile fracture characteristics for pure Al. Pull out of alumin-
ium is clearly observed in fractured samples of pure alumini-
um, results in a cup and cone fracture, indicating ductile nature
of the metal. Also, it is further noticed that the fractured sur-
face consists of voids of considerable size. This feature is
presented in Fig. 10a. The size of voids declined with increase
in SiC particulate content in the composites. The grain refine-
ment due to microwave sintering and the addition of SiC par-
ticulate content are the primary causes for the shrinkage of
voids in the composites, as observed from the Fig. 10b-d.

Despite the fact that the size of the voids in the composites
decreases significantly as the SiC particulate content of the
composites increases, the presence of hard reinforcement par-
ticles in the soft matrix causes plastic flow localization at the
Al/SiC interface. Hence, the fracture morphology of Al rein-
forced with 5 %, 10 % and 15 % SiC composites revealed
brittle fracture characteristics. Also, the stress concentration at

the matrix particles interfaces produces reduced elongation,
which includes particle fracture at higher reinforcement per-
centages. The ductility is significantly impacted by the fabri-
cation technique and perhaps even the reinforcement.
Obviously, powder metallurgy followed by microwave
sintering enhanced the UTS, but high percentage of SiC rein-
forcement (of 15 %) exhibited reduced ductility of 9.28 %
when compared to pure Al which has an elongation of 17.25
%. The inclusion of reinforcement content reduces the elon-
gation fracture of the composites [41–43]. Similar studies
[42–48] were considered for comparison of the present work
and the same is plotted for a quick view in Fig. 11. The frac-
ture of reinforcement particulates and localization of matrix
deformation are thought to be the primary causes of composite
ductility reduction. Furthermore, the elongation was greatly
reduced as the SiC content in the composites increased in
comparison to pure Al, resulting in an increase in hardness
and tensile strength. Similar results were presented for various
fly ash reinforcement contents [48].

3.5 Particle’s Size Effect on the Mechanical Properties
of Al/15 %SiC Composites

It is obvious from the experiments that 15 % SiC reinforced
composite demonstrate increased strength; therefore the effect
of SiC particle size on 15 % SiC reinforced composite has
been explored. The tensile properties (UTS, YS and elonga-
tion) of Al/15 %SiC composite with 37 μm, 23 and 10 μm
particle sizes of SiC are illustrated in Fig. 12. It is clear to

Fig. 10 FESEM images of
fractured surface (a) Pure
aluminium (b) Al/5 %SiC
composite (c) Al/10 %SiC
composite (d) Al/15 %SiC
composite
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observe that UTS, YS and elongation of Al/15 %SiC com-
posite increase with the decrease in the particle size, indicating
that particle size has substantial impact on the composite’s
mechanical behavior. Owing to the smaller inter-particle spac-
ing and higher work hardening rate, it is widely acknowledged
that minimizing the reinforcement size can result in a finer
microstructure and enhanced mechanical characteristics of
composites for a specified particle volume fraction [41]. The
effects of direct and indirect strengthening are both enhanced
when particle size is reduced. It can be seen from the stress-
strain curve for varying particle sizes of SiC (Fig. 13) that the
elongation of the composites increases with the reduction in
particle size. This could be because, the inter-particle spacing
decreases when the SiC particulate size lowers for a fixed
particle volume percentage. The interface area between the

matrix and the SiC particulates grows as the SiC particle size
decreases, allowing more load to be transmitted from the ma-
trix to the SiC particulates. It’s worth noting that a big inter-
facial area might help the matrix generate more dislocations,
which improves the mechanical properties of the composites.

Larger particulates are more easily fractured than smaller
ones. This is very much visible from the corresponding
FESEM images (Fig. 14) of fractured surface of Al/15
%SiC composites with 37 μm, 23 and 10 μm particle sizes
of SiC. Figure 14a-c represents voids that range from large to
small size. It is understood that the particle fracture strength is
controlled by the intrinsic voids within the particulate.
Because the size of a void is restricted by the particle’s size,
larger particles are more prone to fracture. Hence, the elonga-
tion is greatly improved for Al/15 %SiC composites with
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10 μm (13.72 %) particle sizes of SiC when compared to
37 μm (9.28 %) and 23 μm (11.88 %).

4 Conclusions

The powder metallurgy technique with microwave
sintering mode was realized to be effective in dispersing

the SiC particles throughout the aluminium matrix. The
density of Al/15 %SiC composites was raised by 16.66
%, when compared to pure aluminum. The Al/15 %SiC
composite achieves a maximum porosity of 2.18 %,
which is substantially within acceptable limits. The Al/
15 %SiC composite exhibited an improved UTS, YS,
microhardness while having a low elongation. Increased
dislocation density and refined grain size are the possible
mechanisms that are responsible for higher UTS and YS.
The results reveal that particle size has a substantial im-
pact on the composites mechanical properties. For Al/15
%SiC composite the UTS, YS and elongation were found
to increase with the decrease in particle size. In compar-
ison to the Al/15 %SiC composite with 10 μm sized SiC
particulates, there was a 39.6 % and 45.8 % rise in UTS
and YS, respectively compared to 37 μm sized SiC par-
ticulate composite.
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